
Stochastic Implementation of LDPC Decoders

Warren J. Gross
Department of Electrical and Computer Engineering

McGill University

Montreal, Quebec, Canada, H3A 2A7

Email: wjgross@ece.mcgill.ca

Vincent C. Gaudet and Aaron Milner
Department of Electrical and Computer Engineering

University of Alberta

Edmonton, Alberta, Canada T6G 2V4

Email: vgaudet@ece.ualberta.ca

Abstract— LDPC codes are found in many recent communica-
tions standards such as 10GBASE-T, DVB-S2 and IEEE 802.16
(WiMAX) We present a review of a new class of “stochastic”
iterative decoding architectures. Stochastic decoders represent
probabilistic messages by the frequency of ones in a binary
stream. This results in a simple mapping of the factor graph
of the code into silicon. An FPGA implementation of a LDPC
decoder with 8 information bits and 8 coded bits is described.
On an Altera Cyclone FPGA, the throughput is 5 Mbps when
clocked at 100 MHz and is expected to increase nearly linearly
with the code length. Simulations of the decoder on an Altera
Stratix FPGA indicate a potential throughput of 8 Mbps.

I. INTRODUCTION

Low-Density Parity Check (LDPC) codes [1] are found

in a variety of recent communications standards, such as

10GBASE-T, DVB-S2, and IEEE 802.16 (WiMAX) and there-

fore, hardware decoding architectures have recently been an

active research area. In an effort to develop new, more effi-

cient architectures, researchers have been looking “back” to

reevaluate the fundamental assumptions underlying decoding

hardware. A good example of this is the application of

analog computing to decoders. It has been demonstrated that

continuous-time, continuous-valued analog signal processing

is well suited to developing high-speed, low-power, and area-

efficient decoders [2–8]. In this paper we describe and present

new results for a new decoding method, inspired by analog

decoding, called stochastic decoding [9]. Stochastic decoding

is based on simple digital “stochastic” computing circuits first

described in the 1960s [10] and later used in implementing

artificial neural networks [11]. We believe that stochastic

decoders exhibit the simplicity of analog decoders, but address

key limitation of analog technology such as scalability, device

mismatch, and the relative difficulty of design and verification.

In this paper we describe a hardware implementation of a

stochastic decoder for a LDPC code. In Section II we review

the fundamentals of iterative decoding of LDPC codes. Section

III describes the concept of stochastic decoding. An overview

of a hardware architecture for a stochastic LDPC decoder is

presented in Section IV. Results of an FPGA implementation

are given in V. Conclusions are offered in Section VI.

II. BACKGROUND

A. Decoding LDPC Codes

Low-Density Parity Check (LDPC) codes are a class of

error-correcting codes that can approach the Shannon capacity.

= = = = = = = = = = = = = = = =

+ + + + + + + +

Fig. 1. Factor graph of a length 16 LDPC code.

Although discovered in the 1960’s by Gallager [1], their

potential was only recognized after the breakthrough discovery

of turbo codes in 1993 [12]. Turbo codes, LDPC codes, and

other related codes such as repeat-accumulate codes, form

a class of of codes that have powerful decoding algorithms

defined by iteratively passing messages on a graphical model.

The development of efficient iterative decoder hardware has

been an active area of research over the last several years.

From an implementation point of view, the interesting features

of this type of decoder are:

1) The input and output of the decoder are “soft” values

representing the probability of a bit being a ‘1’,

2) They process soft values internally,

3) They consist of a collection of relatively simple process-

ing elements, connected by an interconnection network,

4) Decoding consists of several rounds or, iterations, of

passing soft messages between the processing elements

along the interconnection network.

The graphical model for decoding LDPC codes is called

a factor graph [13]. A factor graph is a bipartite graph that

represents the code constraints and consists of two types of

nodes, equality nodes and parity-check nodes. An example of

a factor graph for a rate 1/2 length 16 LDPC code is shown

in Figure 1.

Decoding is performed using the sum-product algorithm
[13]. For each iteration, soft messages reflecting the proba-

bility of a bit being ‘1’ are passed from the equality nodes to

the parity check nodes along the interconnection network, then

return messages are sent from the parity-check nodes back to

the equality nodes. The messages are computed by functions

known as “probability gates” [13] in the equality and parity

check nodes. These can be viewed as the soft-information

equivalent of the code constraints.

Graph nodes of arbitrary degree can always be decomposed

into nodes of degree three and therefore, we only need

7131424401321/05/$20.00 ©2005 IEEE

to describe the operation of the two types of degree-three

probability gates. The output on any given edge of a node

is a function of the input on the other two edges. A degree-

three node therefore needs to contain three copies of the basic

probability gate to generate output messages on all three edges

in parallel. The basic probability gates are:

• Parity Check Probability Gate: A parity-check node

enforces even parity among the three bits represented

along its edges. Given the probabilities of two input

bits Pa and Pb, the probability of the output bit, Pc, is

computed by the “2-input soft XOR” function:

Pc = Pa(1 − Pb) + (1 − Pa)(Pb). (1)

• Equality Probability Gate: Similarly, the “2-input soft

equality” function in the equality nodes for inputs Pa and

Pb is:

Pc =
PaPb

(1 − Pa)(1 − Pb) + PaPb
, (2)

where the division is required to normalize the messages

to be the probability that c = 1. Decoding proceeds until

a codeword is found, or until a predetermined number of

iterations is reached.

III. STOCHASTIC DECODING

A stochastic decoder, introduced in [9], is a digital im-

plementation that uses an alternate message representation

to implement the probability gates as described in (1) and

(2). The idea behind stochastic decoding is similar to Pearl’s

“stochastic simulation” of belief propagation [14], but Pearl’s

method is not directly applicable to error-control decoding

[15].

A. Stochastic Message Representation

Messages passed along the edges of the graph in the sum-

product algorithm are probabilities, with values between 0.0

and 1.0. Stochastic decoding represents these messages as

Bernoulli sequences which encode a probability P as the

frequency of ‘1’s in a sequence of bits. For a sequence of

N bits, if m bits are a ‘1’, then the probability represented by

this sequence is

P =
m

N
. (3)

For example, a value of 0.5 can be represented by a sequence

of bits, with exactly half of them being a ‘1’. Note that this

representation is not unique, as it does not matter in what

positions in the sequence the ‘1’s are, and that the precision

of representation increases with the length, N , of the sequence.

B. Stochastic Gates

The stochastic representation of messages in the graph

results in very simple hardware for the probability gates in

(1) and (2). The “soft XOR” gate required when the inputs

are probabilities reduces to a standard “hard” XOR gate when

the inputs are Bernoulli sequences. The parity-check node

stochastic gate is shown in Figure 2 with the addition of a

D flip-flop for timing synchronization.

Pa(1 Pb) + (1 Pa)PbPa(1 PbPP) + (1 PaPP)PbPPDD QQ
PaPa

PbPb

clkclk

Fig. 2. Parity check stochastic gate.

QQ
PaPa

PbPb

clkclk

JJ

KKKKK

Fig. 3. Equality stochastic gate.

The equality node requires multiplications of probabilities

and a division to realize the normalization. The multiplica-

tions are implemented with AND gates, and a J-K flip-flop

implements the division as shown in Figure 3.

C. The Stochastic Decoding Algorithm

The stochastic decoding algorithm proceeds by the nodes

exchanging a single bit along each edge in the graph at each

clock cycle. We will refer to the decoding rounds as “cycles” to

emphasize that they do not correspond directly to the iterations

in the sum-product algorithm. One of the advantages of the

stochastic approach, in addition to the simple stochastic gates,

is that only two wires (one in each direction) are required to

represent each edge in a fully parallel implementation of the

factor graph, reducing the routing congestion problems typical

of multi-bit digital representations [16].

IV. DECODER ARCHITECTURE

A high-level block diagram of the decoder structure is given

in Figure 4. The major components include the signal level

to probability conversion, the digital to stochastic conversion,

the stochastic decoder factor graph, and the final stochastic to

digital conversion.

A. Input Conversion

Inputs to the stochastic decoder are assumed to be BPSK-

modulated noisy samples, and must be converted into stochas-

tic data streams. This is accomplished in two steps. The first

step involves a transformation from the log-likelihood domain

into the probability domain, and the second step involves

generating a stochastic stream based on the appropriate prob-

abilities.

The signal level to probability conversion is done with a

small LUT. The conversion of a digital value to stochastic

stream is a fairly simple process but requires a large number

of independently random bits. Using multiplexers and these

714

Fig. 4. Decoder block diagram.

SoutSSoutD0D0

N0N0

N1N1

N2N2

N3N3

D1D1

D2D2

D3D3

N4N4

Fig. 5. Digital value to stochastic stream conversion.

random bits, the stochastic stream can be generated with a

simple combinational logic structure like the one shown in

Figure 5 where the vector D is the binary input value and

N is the (m + 1)-bit random noise vector, where m is the

width of the word D. Figure 5 shows our implementation for

m = 4. This circuit is derived from that in [11] which uses m
noise bits, setting N4 = 0. However, using a zero input biases

the stochastic stream since an input of D = 0000 can be

exactly represented, but D = 1111 can only be represented

by a stream with the probability of a 1 being 15/16. By

setting the input N4 to be a random bit with probability 1/2,

the representation is shifted so that the smallest represented

probability is 1/32 and the largest is 31/32.

B. Supernodes

For stochastic operations to be performed effectively, each

bit in an operand stream must be independent of the bits in

the other operand stream. However, through some computa-

tional elements of the decoder, bit-to-bit dependencies and

correlations are introduced into the output data streams. The

data streams become increasingly unsuitable for further use

in stochastic computation. The J-K flip-flop equality check

nodes in the decoder seem to be acutely sensitive to these

dependencies in the inputs and often become locked at a value

for long periods of time until the right set of inputs arrives to

unlock them [15].

In order to reintroduce randomness, the concept of a supern-

ode was introduced in [15]. A supernode takes a stochastic

stream and repeats the same signal value but regenerated such

that the correlations and dependencies are removed. In short,

it cleans up the signal and restores the useful properties of

randomness permitting further stochastic computation on the

stream.

The structure of a supernode is simple and consists of a

counter and a digital to stochastic converter. The input stream

feeds directly into the counter to tally the number of ones in

the stream for a given number of cycles. This count is then

given to the digital to stochastic converter to generate a new

stream. For example, if the converter uses a three bit counter,

the counter would count the number of ones in the input stream

for eight cycles. The resulting count encodes the fraction of

‘1’s in the regenerated stochastic stream.

For actual implementation, one must choose a width for the

counter. A wider counter provides a higher degree of precision

in repeating a stochastic stream with a constant value since

more distinct levels can be represented. However, a counter

with a smaller width requires much less time to update and

can more readily propagate changes or fluctuations in the

input stream’s intended value. In this implementation it was

found empirically that three bits was a suitable width for the

repeaters in the graph. Making the counters wider impaired

the cascading of calculation updates through the factor graph

causing erroneous values to be calculated. Making the counters

too narrow lost the precision and regenerative effect of the

supernode.

C. Stochastic Decoder Graph

The stochastic probability streams are the inputs to the

decoder graph. We implemented the length 16 LDPC code

as shown in Figure 1. There are 16 equality nodes and 8

parity check nodes. Between the nodes of the decoder graph,

supernodes were inserted to reduce correlations.

D. Stochastic to Digital Conversion

The final stage of decoding involves processing the output

of the stochastic decoder graph into the final output of the

decoder, which is a hard decision of the decoded bit. The

stochastic stream to bit conversion is performed by an up/down

counter that takes the stream as input. Every time a one is

found in the stream, the counter is incremented. Every time

a zero is found in the stream, the counter is decremented.

At any given cycle, the sign bit of the counter indicates the

hard decision, with a ‘0’ sign bit indicating a positive value

and therefore a decoded ’1’ and a ‘1‘ sign bit indicating a

negative value and therefore a ’0’.

There are two phases of computation. In the initialization

phase, the stochastic decoder is operated for TINIT cycles, but

the output up/down counters are not updated. In the decoding

phase, the decoder is run for TCHECK cycles, and the up/down

counters are updated on each cycle. After these TCHECK

cycles, decoding and up/down counting continues until a valid

715

codeword appears at the output, through verification of the

parity check constraints of the code. Note that the number of

clock cycles required to decode a codeword is not constant.

E. Generation of Noisy Bits

The conversion of a digital value into a stochastic stream

requires a number of random bits. Not only are random bits

required for this initial conversion, but more are required

by the supernodes that regenerate the stochastic streams.

It has been suggested that a standard linear feedback shift

register (LFSR) provides an insufficient level of randomness

for stochastic computation [11]. In the regular structure of an

LFSR, there is strong correlation between adjacent bits. This

degrades the quality of calculation that can be performed by

the computational elements. Linear Hybrid Cellular Automata

(LHCA) however, provide vectors with a higher degree of

randomness. The correlation between adjacent bits is reduced

significantly with relatively little structural overhead [17]. Sev-

eral LHCA of different lengths and characteristic polynomials

were used to generate the large number of required random

bits.

F. Demonstration Framework

In addition to the decoder itself, a demonstration apparatus

was built to provide the decoder with sample data, evaluate

the output, and gather performance metrics. The apparatus and

decoder were programmed together on the same FPGA to

reduce the interface complexity and test times. In the end,

it was found that there was sufficient space on the FPGA

to include two copies of the test apparatus and decoder on

the same chip that could be multiplexed to increase the

testing throughput by a factor of two. For each variation of

(TINIT , TCHECK) or signal-to-noise ratio (SNR), a trial of

226 or 67 million data bits were run through the system to get

an accurate measurement of both decoder throughput and bit-

error-rate (BER) performance. In addition to the components

already described, the framework also included a user interface

with push buttons, LEDs, and seven segment displays to

facilitate the gathering of the test measurements.

V. FPGA IMPLEMENTATION

The final decoder design and the demonstration apparatus

were synthesized onto an Altera Cyclone EP1C12F324C8

FPGA with 12, 060 Logic Elements. FPGA resource usage,

maximum clock frequency, bit error rate, and throughput

measurements were recorded for a small (16, 8) LDPC decoder

illustrated in Figure 1. The decoder occupied 1491 logic

elements, or 12% of the FPGA. When synthesized onto the

Cyclone FPGA, a maximum clock rate of just over 100 MHz

was achieved. When synthesized onto a Stratix FPGA family,

the maximum clock rate rose to 165 MHz. The actual bit rate,

however, varies with the decoder configuration.

A. Decoder Performance

Figure 6 shows the bit error rate performance of the FPGA

implementation of the decoder. Compared with a software

0 1 2 3 4 5 6 7
10

-5

10
-4

10
-3

10
-2

10
-1

E
b
/N

0
 (dB)

B
E

R

Simulation. (T
INIT

,T
CHECK

) = (128,128)

FPGA. (T
INIT

,T
CHECK

) = (128,128)

FPGA. (T
INIT

,T
CHECK

) = (32,32)

Fig. 6. The BER of a simulation of stochastic decoding and the BER of the
FPGA implementation.

Fig. 7. Computation time to decode a single codeword for a length 16 LDPC
decoder.

simulation of stochastic decoding, there is approximately 0.4

dB loss at a BER of 10−4, attributed to the coarse 4-bit

quantization of the input probabilities. Very little difference

in bit error rates was observed as the TINIT and TCHECK

parameters were varied. In Figure 7 the decoding times for

different (TINIT , TCHECK) variations are shown. The times

shown in the graph are the average number of clock cycles re-

quired to decode a single codeword. Thus, for high SNR values

the decoder is capable of running with an average period of

approximately 19.5 clock cycles per uncoded information bit.

On the Cyclone FPGA operating at 100 MHz, the decoder is

capable of decoding at 5.1 MBit/s. Then, on a Stratix device

operating at 165 MHz, the average bit rate rises to 8.4 MBit/s.

VI. CONCLUSIONS

This paper has reviewed a recent stochastic computation-

based iterative decoding algorithm, as applied to LDPC codes,

and has presented an FPGA implementation of this algorithm

for a small length 16, rate 1/2 code. The throughput is

716

approximately 5 Mbps on a small FPGA. The throughput of

fully parallel iterative decoders, such as analog and stochastic

decoders, and decoders such as the one in [16], is postulated

to increase nearly linearly with code size, due to the increasing

number of information bits produced, and the relatively con-

stant decoding latency. Further investigations into stochastic

decoding will likely focus on the applicability of the algorithm

to the larger LDPC codes found in recent communications

standards, and to the suitability of the implementations to the

required specifications.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, pp. 21–28, January 1962.

[2] F. Lustenberger, M. Helfenstein, H. A. Loeliger, F. Tarkoy, and G. S.
Moschytz, “All-analog decoder for a binary (18,9,5) trellis code,” in
Proceedings of the 1999 European Solid-state Circuits Conference
(ESSIRC ’99), September 1999, pp. 362–265.

[3] M. Moerz, T. Gabara, R. Yan, and J. Hagenauer, “An analog 0.25µm
BiCMOS tailbiting MAP decoder,” in IEEE International Solid-State
Circuits Conference Digest of Technical Papers, February 2000, pp. 356–
357.

[4] C. Winstead, J. Dai, S. Little, C. Myers, C. Schlegel, Y.-B. Kim,
and W. J. Kim, “Analog MAP decoder for (8, 4) Hamming code in
subthreshold CMOS,” in IEEE International Symposium on Information
Theory, June 2001, p. 330.

[5] C. Winstead, N. Nguyen, V. Gaudet, and C. Schlegel, “Low-voltage
CMOS circuits for analog iterative decoders,” accepted for publication
in IEEE Transactions on Circuits and Systems I: Regular Papers.

[6] S. Hemati, A. H. Banihashemi, and C. Plett, “A high-speed analog
min-sum iterative decoder,” in Proceedings of the IEEE International
Symposium on Information Theory (ISIT 2005), September 2005, pp.
1768–1772.

[7] D. Vogrig, A. Gerosa, A. Neviani, A. G. Amat, G. Montorsi, and
S. Benedetto, “A 0.35–µm CMOS analog turbo decoder for the 40-
bit rate 1/3 UMTS channel code,” IEEE Journal of Solid-State Circuits,
vol. 40, no. 3, pp. 753–762, March 2005.

[8] M. Arzel, C. Lahuec, F. Seguin, D. Gnaedig, and M. Jezequel, “Analoc
slice turbo decoding,” in Proceedings of the IEEE International Sympo-
sium on Circuits and Systems, May 2005, pp. 332–335.

[9] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic
computation,” Electronics Letters, vol. 39, no. 3, pp. 299–301, January
6 2003.

[10] B. R. Gaines, “Stochastic computing systems,” in Advances in Informa-
tion Systems Science, J. T. Tou, Ed. Plenum Press, 1969, ch. 2, pp.
37–172.

[11] B. D. Brown and H. C. Card, “Stochastic neural computation I: Com-
putational elements,” IEEE Transactions on Computers, vol. 50, no. 9,
pp. 891–905, September 2001.

[12] C. Berrou, A. Glavieux, and P. Thitimajsjima, “Near Shannon limit error-
correcting coding and decoding: Turbo codes,” in Proceedings of the
IEEE International Conference on Communications, vol. 2, May 23-26
1993, pp. 1064–1070.

[13] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, February 2001.

[14] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[15] C. Winstead, A. Rapley, V. Gaudet, and C. Schlegel, “Stochastic iterative
decoders,” in IEEE International Symposium on Information Theory,
September 2005, pp. 1116–1120.

[16] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” IEEE Journal of Solid-State
Circuits, vol. 37, no. 3, pp. 404–412, March 2002.

[17] K. Cattell and J. C. Muzio, “Synthesis of one-dimensional linear hybrid
cellular automata,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 15, no. 3, pp. 325–335, March
1996.

717

