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Abstract 

The Cell Broadband Engine Architecture and the first 
implementation of this architecture, the Cell Broadband 
Engine, appear to be a good fit for a variety of signal 
processing applications. This paper presents an overview 
of the architecture and the processor, and focuses on those 
characteristics that benefit signal processing applications. 
We discuss major application areas in which Cell has 
already been shown to excel, and we explain the 
fundamental attributes that deliver the performance 
advantages of Cell.  
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Introduction 

The Cell Broadband Engine Architecture (CBEA) 
[CBEA05] defines an architecture well suited for a wide 
variety of next-generation compute- and communication 
intensive applications. The Cell Broadband Engine 
processor (CBE or, informally “Cell”) achieves a 
significant performance per Watt and performance per 
chip area advantage over conventional high-performance 
processors, and is significantly more flexible and 
programmable than single-function and other optimized 
processors such as graphics processors, or conventional 
digital signal processors. While a conventional state of the 
art microprocessor may deliver about 20+GFlops of 
single-precision (32b) floating-point performance, Cell 
delivers 200+ GFlops at comparable power. A state of the 
art graphics processor may deliver nearly 2 Teraflops, but 
on more generic applications only a small fraction of peak 
performance is typically reached. 

 An ever-increasing fraction of the workloads of a 
PC processor is dominated by media-rich and generally 
parallelizable applications that fit the multicore Cell 
processor well. At the same time, many devices in the 
home are becoming network connected. If a device no 
longer operates in isolation, it has to become more 
responsive to the various data formats the network 
(internet) presents, and this favors the more flexible and 
programmable solutions over the less programmable ones. 
Network connectivity also places greater demands on 

maintaining system integrity and on maintaining privacy 
and security. The Cell processor has been designed to 
provide a more sound foundation in hardware for these 
functions [Shimizu05] than conventional security 
mechanisms that depend on the integrity of the operating 
system or hypervisor. While the impetus for Cell was the 
need for a processor for SCEI’s next generation game 
system, Cell has been designed to address a wide variety 
of applications, many of which fit the characteristics of 
applications usually performed by signal processors. 

 The remainder of this paper is organized as 
follows. We first provide an overview of the architecture 
and the CBE processor and then discuss what makes the 
CBE suitable as a signal processor.  Then we briefly 
discuss a number of programming models [Kahle05] that 
seem appropriate for signal processing on Cell. We 
discuss a number of applications on which Cell has 
already demonstrated good performance, and end with a 
short discussion of some applications for which Cell may 
have potential. 

 

The Cell Broadband Engine Architecture 

 

 
Figure 1. Power Architecture™ as a basis for CBEA. 

 

The 64-bit Power Architecture™ (Figure 1) provides the 
foundation on which the Cell Broadband Engine 
Architecture (CBEA) is built. CBEA compliant 
processors support 32b and 64b Power and PowerPC 
applications. Cell not only supports the Power 
architecture ISA but inherits the memory translation, 
protection and SMP coherence model of mainstream 64b 
Power processors, as defined by the segment and page 
tables. In addition, CBEA supports virtualization (logical 
partitioning), large pages, and other recent innovations in 
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the Power architecture. It is therefore quite easy to port an 
existing operating system such as Linux from Power to 
Cell and leverage the Power processor core. Extensions of 
the OS are required to leverage the SPEs. 

 CBEA extends the Power Architecture in a 
number of ways (see [CBEA05] for a full description).  
Here we only summarize the most important extensions.  

 

 
 

Figure 2. Memory Flow Control. 

  

The first and most significant extension of the Power 
architecture is “memory flow control” (Figure 2). 
Memory flow control introduces “local storage” (or “local 
store memory”) and (DMA) transactions to move data 
between local storage and the system memory effective 
address space as defined by the Power architecture. Each 
local storage memory defines a separate address space, 
implemented as fast, on-chip RAM in the Cell Broadband 
Engine. In order to facilitate local store to local store 
transfers, and to allow direct (albeit usually inefficient) 
access by the Power cores in the system, local storage is 
aliased as memory in the system memory map. DMA 
transactions are coherent in the system, and behave much 
like the load and store instructions in the Power 
architecture. Thus, if a DMA transaction transfers data to 
or from a local store and that data is cached is cached 
elsewhere, the normal Power architecture coherence rules 
apply. Also, CBEA defines DMA equivalents of the 
“locking” loads and stores of the Power architecture that 
allow DMA transactions to participate in locking 
protocols. Thus Figure 2 describes a fully coherent 
system. 

 CBEA also introduces “Synergistic Processor 
Elements” (SPEs) (Figure 3) [Flachs05]. Each Synergistic 
Processor is an autonomous processor that stores its 
program and data in its associated local storage memory. 
The SPEs treat their associated local storage memory as 
private memory. Thus, with respect to modifications by 
the associated SPE only, local storage memory is not 
coherent in the system. Because the local store is treated 

as private, and because there is no translation or 
protection on this memory with respect to access by the 
associated SPE, it is a part of the SPE program state. The 
most distinctive feature of the SPEs is, as mentioned, the 
fact that the SPEs address local store for instructions and 
data, and only access system memory through 
asynchronous DMA operations. The rationale for this 
additional level of software managed memory is the 
phenomenon known as the “memory wall”. With 
microprocessors having improved about three orders of 
magnitude in frequency in the last 20 years, memory 
latency has not decreased very much. As a result a miss in 
the on-chip caches results in a delay of several hundred 
instructions. Modern processors speculate deeply to get 
more transactions in flight to cover this memory latency, 
but speculation is quite expensive in both chip area and 
power, and the depth of speculation that even the most 
modern processors can support is increasingly insufficient 
to cover the memory latencies. The CBEA schedules 
transfers between main store (shared memory) and local 
storage explicitly, and, because these transfers are 
asynchronous, it is much easier for implementations to 
allow many of these transfer commands to be issued and 
processed in parallel. On applications that access memory 
in a predictable manner, this allows Cell processors to 
gain a significant performance advantage.  

 

 
 

Figure 3. Synergistic Processors. 

 

 DMA transactions can be issued in one of three 
ways. First, the DMA command queues and mechanisms 
can be accessed via memory mapped IO (MMIO), 
enabling the Power processors, and SPEs not associated 
with the target or source local store to issue DMA 
commands to or from any local store in the system. 
Second, commands can be issued by the SPE associated 
with a particular local store and DMA unit by using a set 
of “channel” commands. Channel commands are 
essentially asynchronous special-purpose register read 
and write operations, and come in blocking and non-
blocking flavors allowing, for example, an SPE program 
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to choose between waiting, polling or reacting in an 
interrupt driven mode.  A third mechanism is the “DMA-
list” command, where a list of DMA commands is stored 
in the source or target local store, and only a single 
command is issued to the associated DMA unit to go and 
process that list. When the applications allow it, the use of 
DMA-list commands tends to deliver the highest possible 
system performance, because it leverages the capability of 
the DMA units to act as independent data-moving 
processors that fetch their instructions from local store. 

The SPEs support a SIMD-RISC instruction set 
Gschwind05]. While conventional RISC processors 
support, for historical reasons, separate register files for 
integer, floating-point, and SIMD data types, the SPEs 
supports only a single 128-entry, 128-bit unified register 
file to store all types of data. Conditions, counts and 
branch link addresses are also stored in these registers. 
This large register file is a distinct advantage on compute 
intensive applications (anything with an inner loop that 
can be unrolled and interleaved to hide instruction 
latency) as enough named registers are available to the 
compiler to accomplish this. Conventional processors 
with fewer named registers have to resort to register 
renaming in order to allow a large number of instructions 
to be processed simultaneously, but this creates a 
considerable hardware administration overhead, and, as 
processors become increasingly power limited this is less 
and less effective. As is the case in conventional 
processors that have been extended with a SIMD media 
unit, using the SIMD capability of the SPEs is optional; 
features like the 128 registers and improved memory 
management can provide significant performance 
advantages to scalar codes also. To allow 
implementations of the SPEs without large branch 
prediction structures in hardware, the SPEs support a 
“branch hint” instruction. This instruction specifies that 
an instruction at address “A” is likely to be followed by 
and instruction at address “B”, and can be used to 
eliminate branch penalties in program loops and several 
other situations. 

 

Real-time Facilities in Cell 

 

 CBEA defines other optional additions to the 
64b Power architecture to enhance the real-time 
characteristics. The extensions include “replacement 
management tables (RMT)” for various caches in the 
system allowing the user, compiler, or OS to control 
cache management. Another extension is token 
management. This controls the arbitration points in the 
system to provide a guaranteed fraction of access 
(memory or bus bandwidth) to a “resource allocation 
group”. These facilities make it possible, for example, to 
have a real-time, and a non-real-time OS partition to co-
exist at the same time on a single chip while still 

providing real-time guarantees to the real-time partition. 
With CBEA processors envisioned to perform real-time 
tasks such as gaming or streaming in combination with 
non real-time tasks such as web browsing, this was seen 
as important functionality. 

The Cell Broadband Engine 

 

 

Figure 4. Cell Broadband Engine Processor. 

The Cell Broadband Engine (CBE) (Figure 4) is the first 
commercial implementation of the CBEA. The CBE 
contains a dual-threaded Power Processor Element (PPE), 
eight Synergistic Processor Elements (SPEs), an on-chip 
Rambus XDR controller with support for two banks of 
Rambus XDR memory and an aggregate memory 
bandwidth of 25.6 GB/s as well as a configurable I/O 
interface capable of (raw) bandwidth of up to 25+25GB/s 
in symmetrical configurations. The I/O can be configured 
as two logical interfaces, one of which can be coherent, 
and bandwidth can be allocated to either of these 
interfaces in increments of 5GB/s. The physical layer for 
the I/O interfaces is Rambus FlexIO. 

 An on-chip coherent fabric supports an aggregate 
bandwidth of up to 96 bytes per (processor) cycle 
[Clark05]. The coherent fabric is organized as four rings, 
two of which run clockwise and two counterclockwise, 
with a separate command fabric. This “Element 
Interconnect Bus” is completely managed by hardware, 
and programmers are generally not aware of it. The SPEs 
can simultaneously source and sink 8 bytes per processor 
cycle (25.6+25.6GB/s at 3.2GHz), and deliver 8 single 
precision flops per cycle (25.6GFlops at 3.2GHz per SPE 
and 200+ GFlops for CBE). The SPEs are dual-issue 
processors, and can perform a load, store, shuffle, channel 
or branch operation in parallel with a computation. With a 
6 cycle load latency to the 256kB local store and software 
controlled branch prediction, the SPE is highly effective 
at computation (basically anything with a loop that can be 



unrolled and interleaved), but not optimally efficient at 
“gcc/TPCC” (load-compare-add- branch) type codes.  
Still, with 8 processors on a single die, aggregate integer 
performance is quite respectable even on “gcc” type code. 
Also, while SPE virtualization is supported, the 256kB 
local storage memory means that a full SPE context 
switch is relatively expensive. 

 

Cell Programming 

 

The Cell processor supports a wide variety of 
programming models. Here we summarize a few that are 
most likely to be of benefit for signal processing 
applications.  

 In the device extension model, one or more SPEs 
are providing a function through a device-like interface. 
The application is not aware of the existence of the SPEs, 
it just sees a set of capabilities that in other systems may 
have been provided by graphics processors, physics 
processors, image processors, audio processors, encoders, 
decoders etc. etc. In this model SPEs are not directly 
accessed by the applications. 

 In a function offload model the SPEs are used to 
accelerate compute-intensive functions. The functions are 
invoked in an RPC-type manner by a thread running on 
the Power processor. Because every SPE (thread) has an 
associated Power thread, SPEs can in turn invoke 
operating system functions that are then serviced by the 
PPE thread. While this programming model provides 
perhaps the most straightforward extension of multithread 
SMP programming, it is relatively easy to overwhelm the 

Power processor. The set of functions supported by one or 
multiple SPEs can also be a third-party provided library. 

 In a computational acceleration model the SPEs 
act more autonomously. “SPE threads” are scheduled by 
the operating system much like PPE threads, and SPEs 
access memory, synchronize and communicate (all via 
DMA) on their own. It this model the PPE runs the 
operating system, and may provide administrative 
functions, and is usually involved in error handling, but 
applications run almost exclusively on the SPEs. 

 Streaming programming models are also readily 
supported on Cell. Since local storage is memory mapped, 
external devices can, if given permission by the OS, 
DMA directly to local storage. This mapping also allows 
local storage to local storage DMA transfers without 
having to go via main store, keeping the communication 
entirely on chip (if the source and target local store are on 
the same chip).  Thus a computational pipeline with one 
or more computational kernels per SPE is readily 
supported. In general, workload balancing is a bit more 
difficult in this model than in the computational 
acceleration model, as the pace is set by the SPE in the 
pipeline with the most work. 

Cell Application Examples 

 

A number of signal processing and media applications 
have been implemented on Cell with excellent results. 
Several of these are reported at this conference. A first 
category of applications is advanced visualization such as 
ray-casting [Minor05], ray-tracing, and volume rendering 
[Sakamoto05]. These applications can benefit 
significantly from the ability of the Cell processor to 
support a large number of concurrent memory accesses. 
When coded to leverage this capability Cell can 
outperform conventional processors by significantly more 
than an order of magnitude on these applications. 
Streaming applications such as media encoders and 
decoders [Sakai05], [Jagmohan05] and streaming 
encryption and decryption standards [Shimizu 05] have 
also been demonstrated to perform about an order of 
magnitude better on Cell than on conventional PC 
processors. The performance improvements for these 
compute bound applications are readily understood from 
the number of SPEs (8) and the CPI advantage the large 
register file provides. Another class of applications that 
cell performs well on are Fast Fourier Transforms (single 
precision) [Chow05]. While FFTs can be written to be 
less dependent on unstructured memory access than, say, 
ray-casting or ray-tracing, FFTs do have an intrinsic 
scatter-gather characteristic and the application is sped up 
over conventional PC processors by more than an order of 
magnitude. 

 

Discussion 

 

The Cell processor provides a highly programmable high-
performance platform for a great variety of signal 
processing applications. The computational density of the 
Cell synergistic processors, and their ability to support a 
large number of concurrent memory access are 
fundamental advantages for compute intensive 
applications.  
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