
Assertion Checkers in Verification, Silicon Debug and In-Field Diagnosis

Marc Boulé, Jean-Samuel Chenard and Zeljko Zilic
McGill University, Montréal, Québec, Canada

marc.boule@elf.mcgill.ca, {jsamch,zeljko}@macs.ece.mcgill.ca

Abstract

Assertion Based Design, and more specifically, Assertion
Based Verification (ABV) is quickly gaining wide acceptance
in the design community. Assertions are mainly targeted
at functional verification during the design and verification
phases. In this paper, we concentrate on the use of assertions
in post-fabrication silicon debug. We develop tools that effi-
ciently generate the checkers from assertions, for their inclu-
sion in the debug phase. We also detail how a checker gen-
erator can be used as a means of circuit design for certain
portions of self test circuits, and more generally the design
of monitoring circuits. Efficient subset partitioning of check-
ers for a dedicated fixed-size reprogrammable logic area is
developed for efficient use of dedicated debug hardware.

1. Introduction

Hardware verification aims to ensure that a design fulfills
its given specification by either formal or dynamic (simula-
tion based) techniques. As one facet of Assertion-Based De-
sign, Assertion-Based Verification (ABV) is quickly emerg-
ing as the dominant methodology for performing hardware
verification in practice. Using temporal logic, a precise de-
scription of the expected behavior of a design is modeled,
and any deviation from this expected behavior is captured
by simulation or by formal methods. Hardware assertions
are typically written in a verification language such as PSL
(Property Specification Language, IEEE 1850 standard) or
SVA (SystemVerilog Assertions). When used in dynamic
verification, a simulator monitors the Device Under Verifi-
cation (DUV) and reports when assertions are violated. In-
formation on where and when assertions fail is an important
aid in the debugging process, and is the fundamental reason-
ing behind the ABV methodology.

Assertion-Based Design practices also advocate the use
of assertions as part of the design effort, when used as a for-
mal specification (describing designer intent). Assertions are
also applied beyond design and verification, when used with
a checker generator. In such cases, hardware checkers can be
produced to create permanent circuitry that can be added to
the design in order to perform self-test, on-line silicon moni-
toring and diagnosis assistance during the lifespan of the IC.

Design under
verification

Prototype
circuit

In-field
circuit Assertion checker P / ctlr.

Debug
interface

Emulator
interface

a) Verification

c) Diagnosis
and self-test

b) Silicon
debug Assertion checker

Assertion
checker

Figure 1. Usage scenarios for hardware assertion checkers.

Individual assertions, once converted into circuit form,
are also referred to as assertion circuits. These checker cir-
cuits are typically expressed in a hardware description lan-
guage. An assertion checker is a circuit that captures the be-
havior of a given assertion, and can be included in the DUV
for in-circuit assertion monitoring. Efficient circuit-level as-
sertion checkers generated by our tool can be used in a vari-
ety of contexts, three of which are outlined in Fig. 1. These
contexts are: a) checkers are used in the verification stage
when the design is to be simulated, emulated in hardware or
executed on a simulation accelerator; b) checkers are used
to perform post-fabrication in-circuit debugging; c) in-field
custom circuits for in-chip diagnosis and self test. The cir-
cuits may be temporary in verification, whereas in contexts
b) and c), they represent a permanent addition to the IC. As-
sertion checkers for verification are the topic of extensive re-
cent research; in this paper, we focus on the remaining two
contexts. The contributions of this paper are:

• Introduction of resource-efficient assertion checkers for
use in post fabrication silicon debug;

• Use of the concept of a checker generator for perform-
ing synthesis of self-test and diagnosis circuits;

• Algorithm for assertion partitioning in the presence of
a reprogrammable circuit area dedicated for in-circuit
run-time execution of checker circuits;

• Use of above techniques for on-line and in-field moni-
toring and diagnosis of circuits.

In the following section, we give a short background on
assertions, assertion checkers and checker generators. In



Section 3, we show how assertion checkers can be used be-
yond the verification stages, and into full silicon assertion de-
bugging. Section 3.1 shows how assertions, combined with a
checker generator can be used to automatically design certain
types of circuits. Example scenarios are shown in self-test
and in-field diagnosis. Section 4 shows how assertion check-
ers can be managed in a dedicated reprogrammable logic
area, for use in system-on-chip designs as an example. Ex-
perimental results for this section are reported in Section 5.

2. Background

Assertions are at the foundation of assertion based verifi-
cation, and are specified using a variety of Boolean expres-
sions as primitives, along with regular expressions and nu-
merous temporal operators. Assertion languages have com-
plex syntax and semantics and are beyond the scope of this
paper; however, to illustrate how assertion checkers can be
generated, an example assertion in PSL is shown below.

assert always ({rose(req)} |=> {req[*0:4] ; req& grant});
In this example, the arbiter is expected to grant the bus to

the client within four clock cycles of the request signal go-
ing high. The client must also keep its request signal active
until it receives control of the bus which is indicated by the
grant signal. If any of these post-conditions do not occur,
the assertion will trigger and indicate an error. The |=> op-
erator is a temporal implication, with preconditions and post-
conditions appearing as left and right arguments respectively.
rose(b) is an operator that evaluates to true when the Boolean
expression b is true in the current clock cycle, and was false
in the previous cycle. In this example, the post-condition is
a regular expression consisting of a temporal concatenation
“;” of two sub-expressions, the left of which contains a rep-
etition range and the right expression is Boolean.

Assertions are used at various stages of the design pro-
cess. In tools such as Modelsim and VCS, when a circuit
is simulated the assertions are monitored by the simulation
kernel. When designs are to be emulated in hardware, asser-
tions can not be directly mapped into the hardware because
they are written in a higher-level language that is not neces-
sarily amenable to synthesis. When the power of assertions
is to be used in hardware, a checker generator is used to auto-
matically produce monitoring circuits (also called assertion
checkers), from the given assertion statements. Two such
checker generators are MBAC [6, 7] and FoCs from IBM
[1]. The MBAC checker generator creates resource efficient
assertion checker circuits, and supports the entire simulat-
able subset of PSL. These checkers can also be instrumented
with various debugging enhancements [5].

Running MBAC on the above assertion creates an asser-
tion checker circuit comprising 7 flip-flops and 8 four-input
combinational logic cells. The circuit monitors the design

signals, and produces a single-bit output that indicates the
status of the assertion in real-time. If the assertion signal re-
mains low during the entire execution, the design is found to
respect the given property, provided sufficient stimulus and
coverage were exercised. This checker can then be instan-
tiated in the device under test, in order to perform verifica-
tion in hardware emulation, or to perform debugging of fabri-
cated silicon, or even to perform in-field run-time diagnosis.

Assertions and debugging are receiving attention from
many EDA companies. Temento’s DiaLite product ac-
cepts assertions and provides in-circuit debugging features.
DAFCA’s ClearBlue solution [3] offers silicon debugging
instruments such as in-circuit trace buffers for capturing
signals or supplying vectors, signal probe multiplexers and
logic analyzer circuitry. Assertions can also be instrumented
and changed dynamically in specialized reprogrammable
logic. The idea of assertion grouping was brought up in [3],
and is explored further in this paper in Section 4.

3. Checkers for Silicon Debug

The silicon debugging process is aimed at finding and
possibly correcting design errors in a post-fabricated IC, usu-
ally referred to as first silicon. Assertion checkers produced
by MBAC can not only be used for emulation and simulation
verification before fabrication, but also for post-fabrication,
when a set of assertion checkers is purposely left in the de-
sign. The checkers can test for functional faults and timing
issues which can not be fully tested pre-fabrication. By con-
necting the checker outputs to the proper external equipment
or on-board read-back circuits, the user can get immediate
feedback on assertion failures in order to start the debugging
process. A checker generator capable of producing resource-
efficient checkers is clearly an advantage when checkers take
up valuable area that has to be committed before tape-out.

Assertion-based silicon debug differentiates itself from
emulation based verification because in silicon debug, the
design is implemented in its intended technology, as opposed
to being implemented in reprogrammable logic during hard-
ware emulation. This allows at-speed debugging under ex-
pected operating conditions, and assertion checkers play an
important role here as well. Figure 2 a) shows how assertion
checkers in silicon are used to monitor the state of the device
under test during the entire execution. This monitoring mode
is identical to that which is used verification, with the nuance
that the checkers exist in permanent silicon and can be used
during the lifetime of the device, as opposed to temporary
verification checkers which are removed before tape-out.

3.1. Checkers in Self-Test and In-Field Diagnosis
The checkers for silicon debugging mentioned at above

serve their purpose, but can ultimately be removed for pro-
duction quantity re-spins. In a more general usage scenario,
the expressive power of assertions, combined with a checker



b) Concurrent Self-
Test

a) Silicon DebugState of Device, Time

Assertion Checkers

Test Seq. 1 T.S.2 T.S.n
...

Chk.1 Chk.2 Chk.n

c) Non-Concurrent Self-
Test

n Test Sequences

n Assertion Checkers

Figure 2. Debugging and self-test using checkers.

generator can be used to actually perform explicit circuit de-
sign, going beyond the bounds of verification and debug-
ging. This is not unlike the Production Based Specification
research [11], which was based on regular expressions. In
our proposed scenario, any form of monitoring circuit that
can be expressed by an assertion, once fed into our checker
generator, can produce a complex error-free circuit instantly.
These circuit-level checkers are in fact more akin to actual
design modules rather than verification modules.

A checker generator allows the flexibility of automatically
generating custom monitor circuits from any assertion state-
ment. Coding checkers by hand can be a tedious and error-
prone task. In certain cases, a single PSL statement can im-
ply tens or even hundreds of lines of RTL code in the corre-
sponding checker. Using assertions and a checker generator
can be a very efficient way of automating the design of cer-
tain types of circuits. An example where this technique can
be utilized is in designing certain portions of self-test cir-
cuits (and Built-In Self Test [2]). Off-line BIST techniques
are well established, and are based on the traditional TPG→
CUT→ ORA architecture shown in Fig. 3 a). (TPG = Test
Pattern Generator, CUT = Circuit Under Test, ORA = Out-
put Response Analysis). Off-line BIST techniques typically
employ a mixture of pseudo-random and deterministic TPG.

Our technique based on assertions also applies to self
test, albeit at a higher level. Test pattern generation is in-
stead referred-to as test sequence generation (TSG). Fig-
ure 3 b) shows an assertion-based off-line self-test archi-
tecture, whereby test sequences are applied to the input of
the CUT, and assertion checkers are used as the response
analysis. In this approach the signature can be encoded as
one bit, representing success or failure. The offline self-
test, when executed prior to device startup is considered non-
concurrent, and is illustrated in Figure 2 c). The use of as-
sertions and a checker generator allows the response analysis
circuitry to be designed with greater ease.

Our checker-based self-test techniques also apply to the
design of on-line self-test circuits [4], as shown in Fig. 2 b).
In this scenario, the checker generator is used to design the
analysis circuits that correspond to the given test sequences.

a) Traditional Offline BIST

Output
Checkers

TPG CUT ORA

b) Assertion-Checker-Based
Offline Self-Test

Signature
compare Pass/Fail

Pass/Fail

MBAC

TSG CUT

Reference signature(s)

Assertions

Figure 3. Traditional BIST vs. self-test using checkers.

Assertion
Checkers

Circuit

Circuit

Assertion
Checkers Decision

Logic MUX

i0

i1 s

Figure 4. Run time diagnosis using assertion checkers for

redundancy control.

Contrary to silicon debug and the other self-test techniques
mentioned previously, a checker for a given test sequence is
only used as a response analyzer when the test sequence is
being exercised. In the concurrent self-test model, the device
is momentarily interrupted for testing, or alternately, unused
resources are concurrently tested during runtime.

Using assertions and a checker generator as a means of
circuit design poses difficulties when it comes to stimulus
generation; however, the design of many types of monitor-
ing and analysis circuitry can benefit directly from this tech-
nique. The high-level expressiveness of an assertion lan-
guage combined with an assertion compiler can be used as
a quick method to automatically design circuits.

If checkers are incorporated in the final circuit design, in-
circuit diagnostic routines can be implemented during field
deployment. Assertion checkers can be an integral part of
any design which attempts to assess its operating conditions
on-line in real time. Run-time assertion checker monitoring
can be performed, and the results of checkers analyzed by
an on-board CPU which can then send regular status updates
off-chip. Real-time diagnosis based on in-circuit checkers
can be especially important in mission-critical environments.
For example, if a multitude of assertion checkers running
concurrently with the device were to detect an error, a sec-
ondary redundant system could be instantly activated. Figure
4 shows an example of how our methodology can be used to
design the diagnosis circuits for switching in redundant sys-
tems. Designing an array of safety-checking circuits can be
more easily performed using assertions and a checker gener-
ator for circuit design.



Figure 5. Typical SoC floorplan implementing fixed and re-

programmable assertion checkers.

4. Dedicated Programmable Logic for Checkers

Hardware assertion checkers can be incorporated as a part
of the final silicon as dedicated checkers that continuously
monitor the circuit for abnormal conditions. In a typical
ASIC, some of the IP cores are known to be quite robust
from previous use or because they are provided by a third
party vendor with previous successful tape-outs. Therefore,
a balance between risk mitigation and on-chip assertion ca-
pabilities has to be calculated. Programmable-logic fabric or
reconfigurable elements are increasingly inserted into ASICs
to allow corrections of silicon bugs or to bypass faulty mod-
ules. Since this reconfigurable fabric should be unused at
the initial tape-out, it represents an excellent opportunity to
include assertion monitors with no cost impact.

Figure 5 shows different levels of core confidence, as
could be encountered in a typical System-on-Chip (SoC) de-
sign, for example. Core1 could have been used in a previous
design, thus the confidence is high and a limited number of
connectivity points are shared with the programmable fab-
ric. Core3 could be a new design and thus being more risky,
more re-programmable resources are dedicated to potential
bug fixing, while additional checkers can be built into the
silicon as extra precaution and to assist post-silicon debug.

The assertion checkers benefit from observability on the
main system buses for protocol checking and assertion-based
debugging enhancements. Before tape-out, an analysis of
each checker circuit is performed and the routing overhead
is estimated based on each assertion’s input dependencies.
Once the design is locked with a specified list of available
monitoring points, the tool can provide the designer with
all the assertion checkers that will be supported by the fu-
ture ASIC. New assertion checkers can be generated after
tape-out as long as they respect the silicon constraints. The
reprogrammable logic IP core can even be combined with
the assertion based concurrent BIST from Fig. 2 c). In this
scenario, the microprocessor can coordinate the instantiation
of the proper checkers for each test sequence in the repro-
grammable fabric. Checker groups (also called partitions, or
subsets) are instantiated one after the other in the reconfig-

urable area, to correspond with the set of test sequences be-
ing run. Reprogramming FPGA fabric on the fly for different
tasks is known as run-time reconfiguration [10].

4.1. Assertion Checker Partitioning Algorithm

The MBAC checker generator can process any set of
properly constructed PSL statements (no branching time log-
ics) and transform them into synthesizable RTL code. Since
the resulting code is heavily instrumented through comment
blocks, it contains the necessary information to perform
higher-level analysis of the checker integration. A second
tool builds a database of each of the checker modules by au-
tomating their synthesis and extracting all the relevant met-
rics. In our current implementation, we use the Xilinx XST
synthesis tools for VirtexII FPGA devices.

Once the checkers have been individually synthesized and
their sizing metrics are obtained, the partitioning algorithm
shown in Figure 6 is used to create subsets of checkers suit-
able for multiple reconfigurations in the reprogrammable
logic area. This algorithm is based on solving the subset-sum
problem by dynamic programming [9]. However, because
the circuit metrics comprise two variables, namely # of flip-
flops (FF) and # of lookup tables (LUT), the typical subset-
sum procedure can not be employed directly on its own. We
have therefore developed a two-phase algorithm, which re-
turns a near-optimal partition, given the circuits’ metrics and
the size of the reprogrammable area (also specified as # of
flip-flops and # of lookup tables).

Phase 1 in the algorithm (lines 3-8) uses flip-flops as
the dominant metric and performs subset-sum on this met-
ric (line 5). The subset-sum algorithm requires that the cir-
cuits be sorted in increasing order according to the dominant
metric (line 4). A search is then performed for the best subset
according to the size limit of this dominant metric which also
respects the maximum size for the secondary metric (line 6).
Once the best subset has been determined, it is logged and re-
moved from the set (lines 7 and 8). This procedure continues
until the set of checkers is empty (line 3).

The dominant / secondary metrics are interchanged and
the same procedure is repeated (lines 9 to 14). A com-
parison is then made between both phases (lines 15 to 18),
and the solution with the fewest subsets is logged. When
both phases have the same number of subsets, it was empiri-
cally observed that the more balanced partition is the one for
which the dominant metric corresponds to the metric which
is the most constrained by the area limits (smallest freedom).

It can be shown by counterexample that the algorithm is
not guaranteed to create an optimal partition; however, our
experiments show that it drastically outperforms the brute
force approach in computation time. Furthermore, when one
of the metrics has a large amount of freedom with respect
to its constraint, the problem tends toward a single variable
subset sum for which our algorithm is optimal.



1: FUNCTION: SUBSET-CIRCUIT(set C of circuit metrics (FF, LUT), areaFF , areaLUT )
2: D ← C
3: while there are circuits left in C do // phase 1 (dominant metric is #FFs)
4: sort circuits C according to #FF s
5: build dynamic programming table T for subset-sum on #FF s
6: search T for best subset S such that

∑
si∈S #LUTs(si) < areaLUT

7: log subset circuits in S as a group in phase 1 results
8: remove circuits S from C
9: while there are circuits left in D do // phase 2 (dominant metric is #LUTs)

10: sort circuits D according to #LUT s
11: build dynamic programming table T for subset-sum on #LUT s
12: search T for best subset S such that

∑
si∈S #FFs(si) < areaFF

13: log subset circuits in S as a group in phase 2 results
14: remove circuits S from D
15: if number of subsets in both phases differs then // analysis
16: return results of phase which has the fewest subsets (groups)
17: else
18: return results of phase for which the subset-sum was performed on metric with smallest freedom

Figure 6. Assertion circuit partitioning algorithm.

5. Experimental Results

In this section we demonstrate the use of our algorithms.
The MBAC checker generator is used to produce assertion
checkers for two suites of assertions. The assertions are used
to verify an AMBA slave device and AMBA AHB interface
compliance, and were taken from Chapter 8 in [8]. Because
of the temporal nature of the assertions, the assertion check-
ers utilize more combinational cells than flip-flops. However,
the partitioning algorithm can operate on any type of circuits
whether they are balanced or biased towards either flip-flops
or combinational logic.

Table 2 shows the individual resource usage of checkers
for the assertions in the AHB and mem slave examples. In
the table, N.A. means Not Applicable, and occurs for circuits
containing only one FF with no feedback path (the MHz is a
clk-to-clk figure). The checker generator used is MBAC ver-
sion 1.71, and the checkers are synthesized with Xilinx XST
8.1.03i. The target device is an XC2V1500-6, and the syn-
thesis is optimized for speed (as opposed to area). Table 1
shows how the assertion circuits from Table 2 are partitioned
into a minimal number of sets by the subset-circuit algo-
rithm, for a target area of 50 FFs and 50 four-input LUTs. In
both cases, phase two results were logged (dominant LUTs).
The right-most column lists the sums of the circuit metrics
in each group.

Table 3 shows how the actual resource usage can be
slightly diminished when the circuits that form a subset are
actually synthesized together. As a general result, it can be
expected that as the number of circuits per subset increases,
the resource sharing becomes more important, and the over-
all metrics for a given subset become smaller. For compar-
ison purposes, Table 3 also lists the full-set metrics, which
are obtained by synthesizing all checkers as a single module.

Table 1. Checker partitions for reprogrammable area.

AHB example:
Subset Assertion circuits in partition ΣFF, ΣLUT

#1 {A9, A14, A15} 4, 50
#2 {A8, A22, A23, A25} 5, 50
#3 {A7, A10, A21, A24} 5, 50
#4 {A6, A11, A13} 6, 50
#5 {A1, A2, A3, A4, A5, A12, A16} 14, 50
#6 {A17, A18, A19, A20, A26} 29, 26

Total: 63, 276

mem slave example:
Subset Assertion circuits in partition ΣFF, ΣLUT

#1 {A6, A8, A19, A20, A21, A22, A26} 7, 50
#2 {A1, A11, A15, A18, A23, A24} 15, 50
#3 {A2, A3, A5, A7, A9,

A10, A14, A16, A17, A25} 21, 50
#4 {A4, A12, A13} 6, 8

Total: 49, 158

The end result is an efficient partition of checkers which
minimizes the number of times the reprogrammable logic
area must be reconfigured. A test procedure can then run a
batch of test sequences with a given subset of checkers, then
instantiate a new set of checkers, re-run the test sequences,
and so forth. Once the verification with checkers is finished,
the reprogrammable fabric can be used for the functionality
of the intended design.

6. Conclusions

As assertion based verification becomes more dominant
in the design community, hardware assertions can be used



Table 2. Resource usage of assertion checkers.

AHB example:
Assertion FFs LUTs MHz Assertion FFs LUTs MHz Assertion FFs LUTs MHz

ahb A1 2 2 667 ahb A10 1 6 N.A. ahb A19 3 3 667
ahb A2 2 3 611 ahb A11 2 30 667 ahb A20 3 2 667
ahb A3 2 3 667 ahb A12 2 18 667 ahb A21 1 23 N.A.
ahb A4 2 2 611 ahb A13 2 18 611 ahb A22 1 21 N.A.
ahb A5 2 2 667 ahb A14 1 12 N.A. ahb A23 1 21 N.A.
ahb A6 2 2 667 ahb A15 1 36 N.A. ahb A24 1 19 N.A.
ahb A7 2 2 667 ahb A16 2 20 667 ahb A25 1 6 N.A.
ahb A8 2 2 667 ahb A17 2 2 611 ahb A26 18 17 611
ahb A9 2 2 667 ahb A18 3 2 667

mem slave example:
Assertion FFs LUTs MHz Assertion FFs LUTs MHz Assertion FFs LUTs MHz

mem slave A1 1 4 N.A. mem slave A10 5 16 456 mem slave A19 1 5 N.A.
mem slave A2 2 4 667 mem slave A11 5 22 469 mem slave A20 1 6 N.A.
mem slave A3 2 2 667 mem slave A12 2 3 667 mem slave A21 1 6 N.A.
mem slave A4 2 2 667 mem slave A13 2 3 667 mem slave A22 1 1 N.A.
mem slave A5 1 2 N.A. mem slave A14 2 3 667 mem slave A23 2 5 667
mem slave A6 1 7 N.A. mem slave A15 2 3 667 mem slave A24 1 4 N.A.
mem slave A7 1 2 N.A. mem slave A16 2 7 667 mem slave A25 1 3 N.A.
mem slave A8 1 7 N.A. mem slave A17 1 2 N.A. mem slave A26 1 18 N.A.
mem slave A9 4 9 417 mem slave A18 4 12 442

Table 3. Subset and full-set synthesis.

AHB example:
Subset FFs, LUTs

#1 4, 50
#2 5, 50
#3 5, 49
#4 6, 34
#5 13, 48
#6 29, 26

Total: 62, 257

Full-Set (FFs, LUTs)
60, 250

mem slave example:
Subset FFs, LUTs

#1 7, 43
#2 15, 47
#3 21, 47
#4 6, 8

Total: 49, 145

Full-Set (FFs, LUTs)
48, 129

beyond their intended purpose of pre-tape-out hardware ver-
ification. In this paper, we have shown how assertion check-
ers can be used for post-silicon debugging, and even for
certain types of circuit design, with applications in built-
in self test and in-field diagnosis. With the advent of
system-on-chip designs, checkers can be instantiated in re-
programmable logic cores in the device at no cost before the
logic is used for bug fixes. For such applications, a subset-
partitioning algorithm was developed to optimize the debug
resource usage, or in situations when the test-suite of asser-
tion checkers can not fit in the reprogrammable area. This
algorithm facilitates a low-overhead on-line concurrent self-
test strategy and improved debugging.

References

[1] Y. Abarbanel et. al. FoCs: Automatic Generation of Simula-
tion Checkers from Formal Specifications. In 12th Intl. Conf.
on Computer Aided Verification, pages 538–542, 2000.

[2] M. Abramovici, M. Breuer, and A. Friedman. Digital Systems
Testing & Testable Design. Wiley-IEEE Press, 1994.

[3] M. Abramovici et. al. A Reconfigurable Design-for-Debug
Infrastructure for SoCs. In Proc. of the 43rd Design Automa-
tion Conference (43rd DAC), pages 7–12, 2006.

[4] H. Al-Asaad, B. Murray, and J. Hayes. Online BIST for
Embedded Systems. IEEE Design & Test of Computers,
15(4):17–24, 1998.

[5] M. Boulé, J. Chenard, and Z. Zilic. Adding Debug Enhance-
ments to Assertion Checkers for Hardware Emulation and
Silicon Debug. IEEE Intl. Conference on Computer Design
(ICCD’06), pages 294–299, 2006.

[6] M. Boulé and Z. Zilic. Incorporating Efficient Assertion
Checkers into Hardware Emulation. IEEE Intl. Conference
on Computer Design (ICCD’05), pages 221–228, 2005.

[7] M. Boulé and Z. Zilic. Efficient Automata-Based Assertion-
Checker Synthesis of PSL Properties. IEEE Intl. High Level
Design Validation and Test Workshop, pages 69–76, 2006.

[8] B. Cohen, S. Venkataramanan, and A. Kumari. Using PSL/
Sugar for Formal and Dynamic Verification. VhdlCohen Pub-
lishing, Los Angeles, California, 2004.

[9] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. McGraw-Hill Book Company, 1999.

[10] M. Platzner. Reconfigurable Computer Architectures. http://
citeseer.ist.psu.edu/490784.html.

[11] A. Seawright and F. Brewer. Clairvoyant: A Synthesis Sys-
tem for Production-Based Specification. IEEE Transactions
on VLSI Systems, 2(2):172–185, 1994.


