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ABSTRACT 
Maintaining reliable networks of low cost, low energy wireless sensor network (WSN) nodes is a 
major concern. One way to maintain a reliable network is to perform in-field testing on nodes 
throughout their lifetimes, identifying failing nodes so that they can be repaired or replaced. This 
chapter explores the requirements for a wireless test access mechanism, and introduces a method 
for remote execution of software-based self-test (SBST) programs. In an effort to minimize 
overall test energy consumption, an SBST method is derived that takes the least amount of 
microcontroller cycles, and is compatible with system-level optimizations such as concurrent test 
execution. To further reduce test energy, compression algorithms compatible with WSN nodes 
are explored for use on test programs. The efficacy of all proposed methods is evaluated 
experimentally, using current measurement circuitry applied to a WSN node. 
 
INTRODUCTION 
Wireless sensor networks (WSN) have become available for use in various industrial control, 
environmental monitoring, and military applications. Typical WSN applications require that the 
network be reliable and maintainable in order to be useful. Such constraints necessitate a unique 
approach to the design and testing of WSN nodes. It may seem counter-intuitive that reliable 
networks can be built with what are often inexpensive nodes that are individually unreliable. In 
fact, one way to maintain a reliable network is to test nodes throughout their lifetimes in order to 
identify failing nodes so that they can be repaired or replaced. This is especially vital when nodes 
are deployed in inhospitable environments that accelerate their failure rate. This work is aimed at 
addressing the aggregation of quality issues in the operation of WSNs: correct operation, 
reliability, availability, and operation under strict energy constraints. 
 

While much work has been dedicated to the manufacturer testing of embedded systems such 
as WSN nodes, this chapter addresses the in-field testing of nodes in a deployed WSN. There are 
several obstacles in realizing this type of testing scenario, starting with the lack of a testing 
infrastructure. Such as infrastructure needs to define how testing is carried out at a network-level 
and how test programs and test responses are stored and communicated. There is also a need for 
test programs that achieve an adequate test quality, or fault coverage, of individual node 
components and of the node as a whole. All the while, nodes must operate while using as little 
energy as possible. This poses significant challenges in maintaining wireless signal quality, and 
consequently, reliable network operation. It means that the overhead of performing testing must 
be kept to a minimum, so as not to severely impact the operational life of the node. These 



obstacles are addressed in this chapter, and the approach used is briefly introduced in the 
following subsections. 
 
Testing Infrastructure 
To achieve a reliable WSN, one requires an infrastructure for performing remote node tests. Until 
recently, the most efficient and often only in-field self-testing involved using built-in self-test 
(BIST) hardware within wireless nodes. Since this is often not possible due to the performance, 
area, and energy overheads (Krstic, Lai, Cheng, Chen, & Dey, 2002), a promising type of 
software-based testing is introduced as an effective alternative. These software-based self-test 
(SBST) programs work by using an existing microcontroller unit (MCU) instruction set to 
perform self-testing of all digital and mixed-signal components on a WSN node. The SBST 
programs allow an equivalent test quality to be achieved while minimizing energy consumption. 
 

An infrastructure is presented that allows a basestation to distribute SBST programs to nodes 
in the network, remotely execute the SBST programs, and return test results back to the 
basestation. A method is also presented that harnesses regular network nodes as helper nodes in 
characterizing the wireless links that they can establish with their neighbours. The resulting 
testing infrastructure allows detection of failed node and even predication of failing nodes to be 
achieved. 
 

To ensure that nodes are properly tested, any test that is employed must meet an acceptable 
coverage of modeled faults (fault coverage). The SBST programs that are used must then be built 
to test the entire node, and must cover every testable component on-board the node. Testable 
components include the MCU, memory, RF module, and sensors, as these are the primary 
components of any WSN node. A known-good test result for each test must also be calculated 
and stored separately. The result can then be compared with actual results remitted by nodes.  
 
Energy Efficiency 
Since nodes are power-sensitive devices whose power sources are often on-board batteries, 
network quality can suffer if some or all nodes exhaust their energy reserves prematurely. Any 
overhead energy consumption must be minimized, such as the running of self-test programs. To 
do this, several energy-saving techniques are introduced which can reduce test energy 
consumption and test time: 
 

• Test optimization – Test time is decreased by selecting the most efficient set of instructions 
to achieve the same test quality. 

• Test combination – There is an inherent overlap in testing separate systems on the same 
node. The coverage of each test is analyzed and redundancy eliminated. 

• Test concurrency – By reordering and rescheduling tests, test energy and test time can be 
reduced. 

• Test program compression – Compressing test programs reduces communication and, in 
turn, the energy required to perform testing. 

 
By taking this approach, we address WSN quality issues that are currently impediments to 

correctly operating, reliable, available, and energy-efficient networks. 



 
BACKGROUND 
The introduction of ultra-low power network protocols such as IEEE 802.15.4 and its overlay 
protocol, Zigbee, has allowed wider use of a new class of devices. The new protocols enable 
devices to save energy otherwise expended in frequent communication, and are well-suited to 
wireless sensor networks (WSNs). A typical WSN is composed of sensor nodes and a basestation. 
The nodes’ main function is to collect data through environmental sensors, as well as to control 
actuators to physical processes. At minimum, each sensor node contains an embedded MCU, 
wireless transceiver, antenna, environmental sensors/actuators, and a battery, as seen in Figure 1. 
To minimize cost, components can be COTS parts assembled on a printed circuit board (PCB) 
containing a printed dipole antenna. The MCU is used to collect and process sensor data, which is 
stored on-board its embedded memory. The MCU also performs wireless network communication 
through the attached RF module, in infrequent and low-power packet transmissions. 
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Figure 1. Generic Node Architecture 
 

Data harvested from the environment is relayed by nodes to the basestation through the 
network. The basestation serves as a focal point of the network, where sensor readings are 
aggregated and actuator control is focused. A sensor node itself may be required to refine data 
before announcing its results, or communicate with neighbouring sensor nodes. The following are 
general network-level requirements that a robust WSN should meet: 

 
• Availability – The network should be online and available to the applications running on-

board both the basestation and nodes. 
• Scalability – Networks with thousands of nodes may become commonplace in 

environmental monitoring or military applications. The system must scale to 
accommodate such uses. 

• Self-Organization – Harsh operational environments leads to a high rate of node failures. A 
robust network must be able to circumvent failed nodes and organize to a new functional 
state. 

• Timing – Real-time operation must be available to support applications where it is 
necessary. 



• Data Aggregation – Sending data from individual nodes in large networks to a single 
basestation may overwhelm available network bandwidth. The ability of some nodes to 
poll data from a cluster of their peers can alleviate this pressure. 

 
Node-specific requirements include the following, but are not limited in scope to a node, as 

failure to meet them can have a network-level effect: 
 
• Low Power Consumption – Nodes are often battery operated and must remain functional for 

months or years. Since manual replacement of batteries is often not possible, minimizing 
power consumption is critical in achieving a robust network. 

• Low Cost – Since wireless sensor networks are potential replacements for present wired 
sensor networks, they must remain low-cost in order to make them a viable alternative. 

 
WSN Availability 
To ensure that a WSN can operate for a long time, a reliability assessment must be performed on 
the failure rates of its individual nodes. Even if redundancy techniques or highly reliable 
hardware are utilized, nodes can be deployed in harsh or even hostile environments that 
accelerate their failure. Of particular concern are failures that can sever the network and render a 
portion inaccessible. These failures affect network availability, which can be defined as the 
probability that the entire network is available for use. The primary challenge is to maintain a 
working application in the face of node failures, while detecting and even predicting the failure of 
sensor nodes and their components. The probability that a network will be restored to full 
operation in a given amount of time after a failure has occurred is defined as network 
serviceability (Chiang, Zilic, Radecka, & Chenard, 2004) or maintainability (Lala, 2001). In 
reality the calculation of such a metric is a complex task (Callaway, 2004), although some models 
exist, such as the Exponential Failure Law (EFL) defined in (Lala, 2001). 
 

WSNs are subject to time-varying component connectivities due to factors impacting their 
wireless links (Chiang et al., 2004). Phenomena such as multipath fading, the “hidden terminal” 
problem (Callaway, 2004), and electromagnetic interference (EMI) contribute to the complexity 
of calculating an important metric such as availability. For the purpose of this paper, the concern 
is on overall system-level availability of a WSN application. So perceived availability can be 
defined as the probability that a WSN application is functioning correctly over a period of time 
(Chiang et al., 2004). Since WSNs are by nature distributed systems, the definition of reliability 
can be divided into component-level (local) and process-level (global) (Hariri & Huitlu, 1995; 
Raghavendra, Kumar, & Hariri, 1988). While component-level reliability deals with the 
reliability of individual elements which comprise the distributed system, such as nodes, process-
level reliability includes all processes, hardware components, and communication channels which 
constitute the WSN.  

 
Component-level failures can affect process-level reliability, which in-turn affects perceived 

availability. For example, a component-level failure of a network gateway node can cause the 
node to fail, and the network to split, which will affect perceived network availability. If node 
failures could be detected in such a scenario, then network down-time can be minimized. Periodic 
node testing is one method to ensure that nodes are continually operating correctly, while a 
survey of other methods can be seen in (Koushanfar, Potkonjak, & Sangiovanni-Vincentelli, 



2004). Since nodes can be repaired or replaced after they are found to be defective, testing can 
play an essential role in maintaining a high degree of network availability. The following section 
will explore various system-level testing options available for use on WSN nodes. 
 
System-level Testing 
Since WSN nodes are made to be deployed in inhospitable or even hostile environments, it is 
often impossible to obtain physical access to the devices in order to perform functional testing on 
them. Accelerated failures can also be attributed to the inhospitable environments in which WSNs 
might be used. Environmental conditions can compromise the reliability of node operation and by 
extension, the availability of the WSN itself. To achieve a high reliability and availability in a 
sensor network, node failures must be detected and/or averted during network operation. Thus, 
the in-field testing of individual nodes throughout their lifetimes is essential in predicting and 
detecting node failures and, in turn, improving network availability. Higher-priced systems, such 
as those in military applications, achieve enhanced reliability by using redundancy and highly 
reliable parts. However, such configurations have been shown to be unsuitable to power sensitive 
devices (Hariri & Huitlu, 1995). The cost and power consumption of such methods can quickly 
become prohibitively large on WSN nodes. It is clear that an alternative way of achieving the 
needed reliability and availability is needed that allows devices to retain a small power footprint 
and cost. 
 

There are several methods of functional testing which can be used for system-level testing of 
nodes, including: 

 
• Boundary Scan 
• Hardware Built-in Self-Test (BIST) 
• Software-based Self-Test (SBST) 

 
Boundary scan methods require dedicated pins and larger, modified flip-flops to be physically 

incorporated onto a chip. Devices known as automatic testing equipment (ATE) are traditionally 
interfaced physically with the device-under-test (DUT). The ATE executes automatic test-pattern 
generation (ATPG) algorithms which create test vectors to stimulate potential faults based upon 
some fault model. The test vectors are shifted into the chip through the dedicated pins, the tests 
executed, and test responses shifted out. To overcome the need for physical connectivity, some 
research has been done in creating overlays which allow remote testing capability, as in the 
boundary scan that wirelessly interacts with the DUT in (Chiang et al., 2004). The process of 
shifting test vectors and responses can also consume a disproportionate amount of power for the 
testing of a sensor node. Using BIST resolves this issue by using dedicated hardware on-board the 
DUT to generate test vectors to output a single resulting test signature. However, hardware BIST 
is often not possible due to the performance, area, and energy overheads of dedicated test 
circuitry (Krstic et al., 2002). Since BIST is most often not included on sensor node components, 
creating a custom chip would also be relatively expensive when there are cheaper common off-
the-shelf (COTS) parts available. 

 
Recent work in software-based self-test (SBST) programs (Zhang, Zilic, & Radecka, 2006; 

Kranitis, Paschalis, Gizopoulos, & Xenoulis, 2005; Paschalis & Gizopoulos, 2005) offers a way 
to achieve high quality testing with a small performance overhead and no area penalty. The SBST 



programs utilize an existing MCU’s instruction set to perform a self-test of all digital and mixed-
signal components on a WSN node. Various test sequences are run through the system bus, 
peripherals, transceiver, and MCU itself in order to uncover faults based on some fault model. A 
summary of the combined test results, also known as a test signature, can then be generated. The 
signature can either be directly passed onto a basestation, or compared to a known-good result 
stored within the SBST program itself. The recent work in SBST can be attributed to its 
numerous advantages in certain systems over traditional methods, including: 

 
• Testing while chip is running at full functional speed (at-speed testing) (Chen & Dey, 2001) 
• Generation of deterministic test vectors from SBST program code 
• Unique signature responses contained within SBST program code and compared by MCU 

(Chen & Dey, 2001) 
• No need for expensive automatic test equipment (ATE) 
• In-field testability 
• Energy efficiency 

 
This self-testing approach is considered an inexpensive way of achieving reliability, 

availability, and serviceability in a WSN. There are other compelling reasons for the use of 
SBST, such as certain tests that can determine if the hardware or software of a node has been 
tampered with by an intruder. The same interface is compatible with providing manufacturer 
testing, where tests are broadcast to multiple nodes simultaneously. This reduces the need for 
individual node testing using expensive automated testing equipment (ATE) or alternative on-
board testing interfaces. Recent work in developing SBST programs for embedded processors 
includes the work of (Kranitis et al., 2005), which was used as the basis for an overall WSN node 
testing methodology proposed in (Zhang, Zilic, & Radecka, 2006; Zhang, 2005). 

 
The SBST approaches used thus far on microprocessors can be classified into two categories. 

The first includes (Shen & Abraham, 1998; Batcher & Papachristou, 1999) that have a high level 
of abstraction and are functionally oriented. The second category includes (Kranitis et al., 2005, 
Chen & Dey, 2001; Kranitis, Paschalis, Gizopoulos, & Zorian, 2002), which are structurally 
oriented and require structural fault-driven test development. From the first category, (Shen & 
Abraham, 1998) requires a lengthy test set, whereas the approach of (Batcher & Papachristou, 
1999) is not purely a software-based method and requires some extra hardware. In the second 
category, a gate level netlist is necessary in (Chen & Dey, 2001), which is difficult information to 
obtain for COTS chips because of intellectual property (IP) constraints. The SBST methodology 
in (Kranitis et al., 2002) is based upon the application of deterministic test patterns targeting 
structural faults of individual processor components. The work of (Kranitis et al., 2005) builds 
upon (Kranitis et al., 2002) by defining test priorities for different processor components. The 
SBST proposed in (Kranitis et al., 2005) is also used as the basis for the methodology proposed in 
(Zhang, Zilic, & Radecka, 2006; Zhang, 2005), and shares desirable characteristics with 
functional testing, like high-level test development using the instruction set. The work takes a 
lower-level approach in its use of RTL information and uses a divide-and-conquer method to 
target individual components with the stuck-at fault model. This allows a high fault coverage of 
more than 95%, and is thus used as a model in the development of the SBST programs seen here. 

 



In the early 1980’s, an s-graph model at the register transfer level (RTL) was proposed (Thatte 
& Abraham, 1980; Brahme & Abraham, 1984) to represent a microprocessor, and used 
functional-level fault models for instruction-level test generation. Many further graph-based 
functional testing methods were later proposed, such as (van de Goor & Verhallen, 1992; Joshi & 
Hosseini, 1998), but suffered from the need for large amounts of manual effort in order to 
produce a relatively low fault coverage. The application of such test sets is also a lengthy process 
on microprocessors with large numbers of registers and instructions, since most of these methods 
relied on external ATE to deliver input test patterns and compare test responses. 
 
Reduction of Test Data Volume 
As the speed of modern chips has increased, the speed of the testing interfaces to these devices 
has not followed suit. This, in addition to increasing design complexities have contributed to 
longer test times of devices seen as of late, as noted by the Semiconductor Industry Association 
(2005). Compression of test data aims to reduce the volume of information transferred between a 
DUT and its tester. This is often done to reduce the overall time required to test a device, since 
the majority of test time is spent in the sending of test data and the receiving of a response. As a 
summary, the work thus far performed in test data compression has largely fallen into the 
following groups (Khoche, Volkerink, Rivoir, & Mitra, 2002): 
 

1. Compression of fully-specified test vectors 
2. Compression of incompletely-specified test vectors 
3. Hardware Built-In Self-Test (BIST) 
4. Compression/compaction of test responses 

 
Methods 1, 2, and 4 require ATE to be connected to a DUT, where a remote interface could 

serve for in-field testing. For each test executed, a compressed test vector known as a test cube is 
generated by the ATE and transferred to the node where it is decompressed on-the-fly. The test is 
then executed and a response sent back to the ATE. In method 1, the test cube is a directly 
compressed test vector generated by the ATPG algorithm, while method 2 can employ many 
different schemes to further compress test vectors. In this method, the fact that most test vectors 
effectively contain many don’t-care (X) bits is used to allow even greater compression. A type of 
lossy compression (Salomon, 2004) is applied, which is effective when only a few select bits of a 
test vector need to be exactly reproduced on the DUT. In Method 4, test response vectors can 
similarly be reduced in size. Compression can be performed on-board the DUT by the same 
algorithm as Method 1, or test responses can be compacted to signatures. These signatures are 
generated in much the same way as a simple hash, often by linear-feedback shift-register (LFSR) 
hardware. 

 
All test communication for the aforementioned methods is done through a boundary scan 

interface. However, it has already been shown that the secret keys of cryptographic chips can be 
compromised using boundary scan attacks, and it is expected that boundary scan chains will 
become increasingly inaccessible on future production chips (Hely, Bancel, Flottes, & Rouzeyre, 
2006). The test methods are also limited by the speed of the boundary scan chain, which can be 
significantly slower than a typical integrated circuit’s operational frequency while incurring an 
area overhead. The exception is BIST, which can run at-speed and is improved through 



deterministic BIST methods (Liang, Hellebrand, & Wunderlicht, 2001), but is expensive in terms 
of physical device area and disallows the use of many COTS parts. 
 
TESTING INFRASTRUCTURE 
The testing of nodes is accomplished through the use of SBST programs within a testing 
infrastructure. Such an infrastructure for distributing and executing tests was found to be lacking 
from the literature. As part of the test protocol, SBST programs are dynamically loaded as needed 
onto nodes by the basestation, whose job it is to also collect back test responses signaling a pass 
or fail condition. A node-level view of the protocol functionality can be seen in Figure 2. 
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Figure 2. General Description of WSN Node Testing Protocol 
 

The test protocol also defines network-level tests, such as the scenario shown in Figure 3, 
where shaded arrows represent test channels. It can be seen that the Node Under Test (NUT) 
performs most of its testing through self-test but is also evaluated by neighbouring nodes. Testing 
is initiated by the basestation, which transfers a compressed SBST program to the NUT. The on-
board MCU decompresses the SBST program and stores it in embedded flash memory, enabling 
the basestation to remotely activate NUT self-testing. Once activated, the NUT executes the 
SBST program, which begins by executing MCU core self-testing, and continues to include 
embedded RAM, embedded flash memory, on-board data/address buses, and peripherals such as 
sensors. A resulting signature is calculated and sent back to the basestation, where it is compared 
to a node’s known-good signature. If a signature is deemed correct, the RF module and antenna 
have also effectively been tested as operating correctly on a pass/fail level. For a more 
comprehensive evaluation of RF module and antenna performance, several nodes neighbouring 
the NUT can be used to track a decline in communication efficiency. An additional test program 
can be distributed to instruct the NUT and its neighbours to communicate at predetermined power 
levels. The results are sent back to the basestation, which tracks and analyzes changes over time 
to anticipate failing RF modules, and hence, failing nodes. 
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Figure 3. Node Testing Architecture 
 
RF MODULE TEST SCHEME 
Traditional test schemes that can be applied to WSN node RF transceivers work by looping 
transmitter output back into the receiver, and capture a test response in the baseband of the 
receiver (Dabrowski, 2003; Halder, Bhattacharya, Srinivasan, & Chatterjee, 2005; Ozev, 
Orailoglu, & Olgaard, 2002). A digital signal processor (DSP) is commonly used to analyze the 
test response at the receiver end. The advantage of this method is that receiver and transmitter 
subsystems are decoupled, but the testing method requires the addition of hardware to provide the 
loopback path. 
 

An SBST method is introduced here to test RF modules, consisting of an RF transceiver and 
on-board printed antenna, with the aid of other nodes in the network. Several RF operating 
metrics are characterized and compared with some specifications of the IEEE 802.15.4 (2006) 
communication standard, parts of which are seen in Table 1. Instead of specifying tests for each 
component of an RF module, the module is considered in its entirety and functionally verified 
based upon published specifications. 
 
Transmission Power and Receiver Sensitivity 
To ascertain RF module transmission power and receiver sensitivity, a simple SBST test is 
introduced here. Test packets are sent in long bursts from the basestation to the NUT, where their 
reception is tallied. After completion, a test response is sent from the node to the basestation 
containing the packet error rate (PER) of the transmission. The receiver sensitivity of the node 
can be calculated with the Friis transmission equation (Stutzman & Thiele, 1997). Using the same 
method, the roles of basestation and node can be swapped to find NUT transmission power. The 
transmission power that achieves the required PER can be determined by varying the power in 
steps, as this is a software-programmable value on many RF transceivers. 

 



Specification Requirement 

Transmission 
Power Minimum output power -3 dBm 

Receiver 
Sensitivity 

Minimum input signal power yielding a packet error rate 
(PER) of < 1% -85 dBm

Adjacent Channel 
Rejection 

Min. ratio of the adjacent channel signal level to desired signal 
level with PER of < 1% (interference with adjacent channel) 0 dB 

Alternate Channel 
Rejection 

Min. ratio of the alternate channel signal level to desired signal 
level with PER of < 1% (interference with alternate channel) 30 dB 

Table 1.  Select RF Specifications of the IEEE 802.15.4 Protocol 
 
Adjacent Channel and Alternate Channel Rejection 
Many COTS RF transceivers use radio bands that many other devices are licensed to operate on. 
Since there is a high likelihood of interference between devices, IEEE 802.15.4 specifications 
require RF modules to reject the interference generated by other devices on neighbouring 
channels. A test is thus proposed for the ability of the RF module to perform this task. Here, 
adjacent channel refers to the channels closest in frequency to the channel being used, while 
alternate channels are those in-turn closest to the adjacent channels. For example, if channel 13 is 
being used, channels 12 and 14 are adjacent, while channels 11 and 15 are alternate. 
 

An adjacent/alternate channel rejection test can be constructed as seen in Figure 4. In this 
scenario, the NUT is sent a long burst of packets from the basestation on a particular channel, 
while the helper node generates interference on either the adjacent or alternate channel. Using 
data from the receiver sensitivity test, transmission power on channel n2 is set so that received 
signal strength on that channel is slightly higher than the minimum specification. This signal on 
channel n2 is made purposely weak so that it will be sensitive to adjacent/alternate channel 
interference. Setting distances d1 = d2, the transmission power on channel n1 is found which 
causes a PER of 1% in channel n2. Again using the Friis equation, the adjacent/alternate channel 
rejection ratio can be found. 
 

Interference 
Generating 

Helper Node

channel n1
distance d1

Node Under 
Test

Basestation

channel n2
distance d2

 

Figure 4. Test Framework of Adjacent Channel and Alternate Channel Rejection 



 
ENERGY EFFICIENCY OF MCU TESTING 
In this section, the dynamic programming idea of (Aho & Johnson, 1976) is used to construct the 
SBST programs proposed in (Kranitis et al., 2005) for testing an MCU. Since SBST programs are 
created using the MCU instruction set, a typical instruction uses one of many addressing modes 
and contains parameters such as a source register, destination register, and operand value. Energy 
optimizations can thus be performed based upon program length (number of cycles), instruction 
type, and instruction parameters. 
 

Software energy consumption can be shown to be proportional to program length, but some 
published works including (Nikolaidis & Laopoulos, 2001; Chang, Kim, & Lee, 2000) indicate 
that there is a dependency between instruction energy consumption and the values of instruction 
parameters. These instruction parameters are collectively referred to as energy-sensitive factors. 
The list of energy optimization criteria are addressed in our discussion by the use of instruction 
combination, instruction selection, and operand selection, respectively. 

 
We experimentally verify that an instruction’s energy consumption is proportional to the 

Hamming distance between the previous and current values of its energy sensitive factors. The 
average current drawn by the MCU can be measured as it repeatedly executes certain instructions 
or a short instruction sequence with different configurations of energy sensitive factors. From 
this, it can be determined that executing the same instructions with different addressing modes 
has a differing energy cost. Such measurements offer the opportunity to employ instruction-level 
energy reduction methods like instruction selection/combination which uses the least number of 
MCU cycles, as well as operand selection with least Hamming distance and weight. 
 
Instruction Selection and Combination 
The goal of instruction selection is to reduce program length by replace existing instructions with 
ones that require the least amount of cycles, while maintaining equivalent fault coverage. 
Instruction combination involves finding overlapping fault coverage between separate component 
tests. By combining component tests into a test superset, redundant testing can be eliminated. 
 

Consider the testing of register files using the March X algorithm (van de Goor, 1993), where 
the operation set performed on each register is OREG = {Write 0, Read 0, Write 1, Read 1}. Here, 
the most intuitive implementation of the WriteX sub-operation could be the set of instructions 
I(Reg, WriteX) = mov X, RN. In Table 2, we compare the set of instructions used to implement the 
OREG = {Write 0} operation before and after instruction selection. As is typical in low-power 
MCUs, there is a differing execution time for instructions depending on the addressing mode 
used. In I1, immediate-mode addressing of the mov instruction would, for example, take two clock 
cycles. The register-mode addressing used in all but the first instruction of I2 would then take one 
clock cycle. Using instruction selection would save n-1 clock cycles in the execution of the I2 test 
over that of I1, while properly propagating faults and conserving fault coverage. 

 
It is also common that the testing of one MCU component results in collateral coverage of 

other, non-targeted components. For example, arithmetic component testing can cause collateral 
coverage of the data bus. Instruction combination is useful in eliminating overlapping fault 



coverage in order to reduce total SBST program length, while also conserving fault coverage. 
Two or more component tests should be combined into an SBST program superset, where 
redundant instructions can be identified and eliminated. 
 
before  after  

I1:  I2:  
mov 0, R1  mov 0, R1  
mov 0, R2  mov R1 , R2  
… … 
mov 0, RN  mov RN−1 , RN  
  

Table 2. The Operation {Write 0} Before and After Instruction Selection 
 
Operand Selection 
Operand selection aims to reduce test energy consumption by minimizing the Hamming weight of 
all instruction operands and the Hamming distance of successive operands. Setting don’t–care 
bits in the operand to logic 0 serves to minimize Hamming weight, while a minimum bitwise 
change between the operands of successive instructions minimizes Hamming distance. 
Minimizing Hamming weight works on the principle that less energy is required for the transfer 
of logic 0 than of logic 1 in the binary coding used on MCU data buses. Minimizing Hamming 
distance reduces transistor switching, and thus CMOS switching power, which makes up the 
majority of power consumption in integrated circuits like MCUs. 
 

Consider ALU testing, where a set of instructions performs a single OALU = {add with carry} 
operation. In Table 3 the set of instructions I4 implements the operation add with carry using two 
0x8000 operands, which have a combined Hamming weight of 2. This is the lowest Hamming 
weight of any two operands that satisfy the test, and considerably lower than the combined 
Hamming weight of 32 in the operands of I3. Additionally, instruction selection is performed on 
the second instruction of I4 to reduce program length. Considering all of the instruction-level 
energy reduction methods covered in this section, and the SBST method proposed in (Kranitis et 
al., 2005), the pseudo-code for our energy-saving SBST method can be seen in Figure 5. 

 
before  after  

I3:  I4:  
mov 0xFFFF, RN  mov 0x8000, RN  
mov 0xFFFF, RM  mov RN , RM  
add  RN , RM add  RN , RM 
  

Table 3. The Operation {add with carry} Before and After Operand Selection 



 
Extract the set of all microcontroller components C = C1, C2, …, Cn; 
Extract the set of all operations each component performs O = O1, O2, …, Om; 
Extract the set of instruction sequences 
 I(C,O) = I1, I2, …, Ip, during execution, which cause component C to perform operation O; 
Reorder C with the test priority from high to low; 
for ( i = 1, I < n+1, i++ ) 
 Choose Ci from set C; 
 for ( j = 1, j < m+1, j++ ) 
  Choose Oj from set O; 
  Choose test sequence Ik from I(Ci,Oj) that has the smallest program length; 
  Set operand values of Ik to those with the least Hamming distance and weight; 
  Apply Ik with chosen operands to the input of Ci and propagate the result to primary 
  outputs; 
 endfor 
endfor 

Figure 5. Energy-Reduced SBST Algorithm 
 
ENERGY EFFICIENCY OF EMBEDDED MEMORY TESTING 
There is a need for SBST programs that test the flash memory often found on WSN nodes. Flash 
memory is prone to failure over time and is a prime candidate for the implementation of the 
SBST concept. Unlike RAM, once flash memory has once been written to, it cannot be 
overwritten without first performing a block-erase. This makes conventional memory testing 
methods such as (van de Goor, 1991) unsuitable. Instead, a March-type algorithm called March 
FT is proposed in (Yeh, Wu, Cheng, Chou, Huang, & Wu, 2002), which can be seen in Equation 
1. It has the highest fault coverage of all published approaches for most conventional faults and 
for all disturb faults. Here we aim to reduce the software energy required to perform the March 
FT algorithm. The extending of the single-bit-convert (SBC) memory addressing to flash memory 
is explored, as well as the interleaving of flash memory testing with other component tests. 
 
(f); ↓ (r1,w0, r0); ↕ (r0); (f); ↑ (r1,w0, r0); ↕ (r0)   (1) 

 
where: 

↑ and ↓ are increasing and decreasing address orders, respectively. 
(ex.: ↑ means from address 0 to address n−1). 

↕ means address order is irrelevant. 
n is the total size of memory to be tested. 
w0/1 is writing 0 or 1 into a cell, respectively. 
r0/1 is reading a cell, expecting a value of 0 or 1, respectively. 
f is the erasing of a block of flash memory. 

 
Single-bit-convert (SBC) Addressing for Memory Testing 
The SBC memory addressing scheme was introduced in (Cheung & Gupta, 1996) as an energy-
optimized way of addressing RAM for testing. It is an alternative to the way incremental 
addressing counts up or down through all testable memory addresses. SBC works by minimizing 



the Hamming distance between consecutive addresses, which reduces the switching activity on 
the address bus. In (Cheung & Gupta, 1996), address bus transitions are reduced by 50%, which 
accounts for a total energy consumption reduction of 18% to 77% depending on the size of RAM. 
As a candidate for use in March-type testing algorithms, SBC addressing can be used for any ↕ 
portions where incremental addressing is not explicitly enforced. 
 
Interleaving Flash Memory Testing with Other Tests 
When a block-erase or chip-erase is performed on flash memory, the segment is generally filled 
with a sequence of logic 1 bits. Once a flash-write operation resets any bit to logic 0, the segment 
containing the bit must be block-erased to reset it back to logic 1. This erase operation is much 
slower than a read or write operation on flash memory. A block of embedded flash memory on-
board an MCU, for example, can be erased by executing a series of instructions located in either 
flash memory or RAM. When flash memory is subjected to an erase operation, all timing control 
is transferred to an embedded flash controller and MCU execution is stalled until the erase 
operation completes. The MCU resumes execution after completion, provided a different segment 
than the one containing program code was erased. However, if the erase operation is initiated 
from RAM, the MCU will execute code from RAM while the flash erase is taking place. This 
allows the otherwise wasted MCU idle time to be used to execute other tests from RAM, and is 
the premise of the test interleaving shown in Figures 6a and 6b. 
 

The efficiency of interleaving flash memory testing with other component tests depends upon 
several factors. The size of the flash block being erased, and hence its timing, must approximately 
match the time required to execute an unrelated component test. Figure 6a shows test routines 
requiring differing amounts of time and average power. In Figure 6b, the other component test is 
rescheduled into the same time slot as the flash-erase operation. This potentially causes a 
reduction in software energy consumption based upon the principle that executing simultaneous 
tests requires less energy than the sum of the energies of executing individual tests. This is 
because an MCU has an overhead power consumption, known as a baseline, simply being 
powered-on and ready to execute instructions. Equations for test time and test energy reductions 
can be seen in Equations 2 and 3, respectively. 

              
Min(TFE, TO) 

Time Reduction (%) = 
TTOTAL 

× 100 (2) 

EB - EA 
Energy Reduction (%) = 

EB 
× 100 (3) 

 
where: 
  TTOTAL = TCPU + TFE + TFP + TFR + TO (TCPU, TFE, TFP , TFR, TO are defined in Figure 6a). 

EB and EA are the total software energy consumed before and after time interleaving, 
respectively. 
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Figure 6a. Concept of Time Interleaving Individual Node Tests - Before Time Interleaving 
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Figure 6b. Concept of Time Interleaving Individual Node Tests - After Time Interleaving 
 
 
ENERGY EFFICIENCY THROUGH REDUCTION OF TEST DATA VOLUME 
It can be seen that none of the methods mentioned in the previous sections can be applied to 
compressing the volume of test data contained in SBST programs. Since the programs either self-
generate test vectors or contain them within the program code, a way to reduce test data volume is 
to compress the SBST programs themselves. In the following section we investigate the viability 
of compressing SBST programs by characterizing their structure. 
 
Characterization of SBST Program Code 
Data compression is the process of removing redundancy from a data set in order to represent the 
original with a smaller set. The less random a data set, the more redundancy that can be extracted 
to yield better compression. If the compression of SBST programs is to be considered, the 
programs themselves should be characterized as being of low entropy. An analysis is therefore 
performed on three real SBST programs from (Zhang, Zilic, & Radecka, 2006) used in testing 
WSN nodes, denoted Pn. As a useful measure of entropy, a histogram of symbol frequencies is 
produced by inputting SBST program machine code into MATLAB 7.0, with a symbol size of 1 
byte. Code compilation is targeted at the Texas Instruments MSP430 MCU that is part of our 
WSN research platform. 
 

Figure 7 shows that the frequency of some symbol occurrences is reasonably high in the 
measured SBST program. The many peaks and valleys visually depict that the program 



composition is somewhat redundant and thus a good candidate for compression. A similar 
analysis of two additional SBST programs found similarities in all of their frequently occurring 
bytes, which indicates that the programs share similar characteristics. These similarities can be 
attributed to: 
 

1. Instruction set structure – The target MCU instruction set is composed of instructions for 
single-operand arithmetic, two-operand arithmetic, and conditional branching. Single-
operand instructions share a 6-bit prefix such that the first byte of each instruction is 
0x10–0x13 (bytes 16–19 in decimal). Likewise, the first byte of conditional branch 
instructions falls into the range 0x20–0x23 (bytes 32–35 in decimal). 

 
2. Commonly used instructions and operands – Certain instructions are used more often in 

testing than others. For example, an efficient way to perform certain flash memory March 
testing is to write to an array of data elements (mov instruction), then read the array using 
an exclusive-or (xor instruction) between consecutive data elements. Certain operands are 
also more prevalent than others, such as passing 0x00 in the immediate addressing mode 
to test stuck-at-one faults in buses. 

 
3. Shared code between programs – There is inherent overlap between SBST programs if 

they are to be executed independently of each other. Segments of code holding constants 
and performing hardware initialization must often be replicated. 

 
In the following section, several general-purpose compression algorithms are explored for use 

on SBST programs due to the lack of appropriate SBST-specific techniques in the literature. 
Algorithm attributes are compared with each other and against node-specific requirements. 
 

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Byte of Data (decimal)

Fr
eq

ue
nc

y 
of

 O
cc

ur
en

ce
 (n

or
m

al
iz

ed
)

 

Figure 7. Data Byte Frequency of SBST Program P1 
 
General-Purpose Compression Algorithms 
There has been extensive work performed on entropy coding algorithms over the years, a 
summary of which can be seen in (Lelewer & Hirschberg, 1987). To uncover an effective method 



of compressing SBST programs, in this section three groups of prominent algorithms are 
evaluated: Lempel-Ziv-Welch (LZW), Dynamic Huffman, and Bentley-Sleator-Tarjan-Wei 
(BSTW). The algorithms are compared against the following node-specific requirements: 
 

1. Low energy consumption – By transferring compressed SBST programs instead of 
uncompressed ones, the power-hungry RF transceiver can have a smaller duty cycle and 
energy can be saved on-board a node. 

 
2. Low cost – Of the components in a typical node, a disproportionate amount of cost is 

attributed to the MCU. A selection should therefore be carefully made in choosing an 
MCU meeting the minimum requirements of the WSN application. Since a typical 
application such requires modest resources, an MCU with small amounts of processing 
power, RAM, and flash memory is often enough. It is typical for an MCU to contain 1kB 
of RAM, which must be taken into account when selecting a compression algorithm. This 
is important since the price difference between a common MCU with 5kB of RAM 
compared to 1kB can be almost double according to Texas Instruments (n.d.). 

 
LZW Compression 
The Lempel-Ziv-Welch (LZW) algorithm (Welch, 1984) was innovative in its approach to 
codebook construction, since new symbols are created out of combinations of symbols already in 
the codebook (Lelewer & Hirschberg, 1987). This means that the algorithm takes O(n2) time 
(where n is the set of source symbols), since both source symbol and codebook matching can vary 
in length. To take advantage of the full benefits of the LZW algorithm, the codebook size should 
be allowed to grow to several times that of the symbol set size. This allows more complex symbol 
combinations to be constructed for greater compression efficacy. Since the MCU and transceiver 
chip on-board a WSN node typically have register boundaries set at one or two-byte increments, 
making efficient use of registers requires a minimum codebook size of 256 symbols. Using even 
this small symbol size, the LZW algorithm would quickly occupy the limited memory resources 
of the node. Even if the codebook is limited to 4S entries (where S denotes the number of unique 
symbols of the codebook), in a worst-case scenario the remaining 3S entries would require about 
300kB of memory. Nevertheless, this algorithm is considered because of its ubiquity and as a 
measure of the compression performance that can be achieved with larger amounts of memory. 
 
Dynamic Huffman Coding 
Dynamic Huffman coding is an adaptive compression scheme that, unlike static Huffman coding 
(Huffman, 1952), dynamically generates its codebook as compression is taking place. One of the 
schemes known as Dynamic Huffman coding was made by Faller (1973), Gallager (1978), and 
Knuth (1985), after which it came to be known as Algorithm FGK. Different improvements were 
later made by Vitter (1987). As source symbols are mapped to codes, they are placed into a 
codebook with a hierarchical tree data structure. The observed frequency of source symbols is 
used to swap branches of the tree in order to continually give frequently occurring symbols 
smaller codes. As with all adaptive methods, compression performance improves as experience is 
built. The advantage these methods hold over original Huffman compression is that they only 
require O(n) time, and that the codebook need not be transmitted since the receiver may 
reconstruct it by adapting his codebook lockstep with the sender.  

 



While dynamic Huffman techniques offer a complexity less than that of LZW compression, 
the implications of maintaining a large hierarchical tree codebook are that it too requires 
significant memory resources. Each codebook node consists of the symbol frequency and the 
symbol itself, while the Huffman code of each symbol can be inferred from its position in the 
tree. Since nodes and branches of the tree are often swapped, in a practical implementation they 
must also be addressed with pointers which themselves use memory. The result of tracking 
symbol frequency is that memory usage grows logarithmically as n increases. To limit memory 
usage, an upper limit to symbol frequency can be declared, in which case the algorithm will 
become static beyond that limit. Alternatively, the frequency tables can be deleted and statistics 
gathering restarted, but this negates the experience that the codebook has built. 
 
BSTW Algorithm 
This algorithm by Bentley, Sleator, Tarjan and Wei (BSTW) (1986) is an adaptive compression 
method simpler than the dynamic Huffman coding that can outperform static Huffman in some 
cases (Bentley et al., 1986). As source symbols are input, the most frequent ones are given the 
shortest codes. In coding a source symbol, the algorithm outputs a code based upon its location in 
the codebook, then uses a Move-to-Front (MTF) scheme to place that symbol at the front of the 
codebook. This scheme ensures that symbols occurring frequently are efficiently encoded with 
small codes, especially if they appear in bursts. More importantly, symbol frequency is not 
explicitly tracked, as this is implicit in a symbol’s position in the codebook and does not require 
additional memory. 

 
The algorithm itself requires only O(n) time, and transmission of the codebook is also 

unnecessary for the same reasons as with dynamic Huffman techniques. In BSTW the outputted 
codes are actually indices to a changing codebook. The source data set is remapped from its 
original distribution into a data set resembling a geometric distribution, which can be imagined as 
source symbols being sorted into an order of descending frequency. An example of a reordered 
version of SBST program P1 can be seen in Figure 8, whose original representation is in Figure 7. 
Also seen in Figure 8 is a superimposed geometric distribution which approximates the BSTW-
reordered P1. 

 
Several implementation options for BSTW are possible, where the complexities of accessing 

the codebook data structure differ. The pseudo-code for one version of the algorithm is depicted 
in Figure 9, which in addition to a codebook uses an equally-sized structure to cross-reference 
codebook data. A linear search of O(n) is then saved since 2S memory is used instead of only S in 
the smallest implementation. After applying the BSTW algorithm, the resulting dataset must be 
re-encoded with a scheme such as universal codes or Golomb-Rice codes in order to achieve a 
smaller representation (compression). Such coding schemes give optimal or near-optimal results 
to data sets following geometric distributions. In the following section the three groups of 
compression algorithms that have been presented will be compared to each other to find a good 
candidate for use on SBST programs. 
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Figure 8. Data Byte Frequency of BSTW-reordered SBST Program P1 vs. Geometric Distribution 

y = P(1 − P)x (where P = 0.08) 
 
// codebook stores symbols, indices stores indices of codebook, inverse-indexed by symbol. 
for ( i = 0, I < size_of_source, i++ ) 
 index = indices [current_symbol] 
 destination = index       // write index to destination 
 if ( index ≠0 ) 
  Remove current symbol from codebook and shift codebook to fill hole 
  Fill indices with new index to codebook 
  Place current_symbol at front of codebook and fill indices with its index 
 endif 
 Increment source and destination by a symbol 
endfor  

Figure 9. BSTW Algorithm Pseudo-code 
 
Compression Algorithm Comparison 
In evaluating a compression algorithm for its potential suitability, the metrics of algorithmic 
complexity and memory footprint can be used as direct measures of meeting relevant node-
specific requirements. These metrics are therefore compared in Table 4 between the three 
aforementioned algorithms, where n represents the number of symbols processed, and S denotes 
the number of unique symbols of the codebook. The following section explores coding schemes 
which need to be applied to some compression methods, including BSTW, for unambiguous 
decompression to be possible. The coding schemes are evaluated based upon the same 
requirements as the algorithm comparison: complexity and memory requirements. 



 

Compression Algorithm Complexity over 
Source Data 

Codebook Memory Usage  
(worst case) 

n (n + 1)  Lempel-Ziv-Welch (LZW) O(n2) (S −1) + 
2 

Dynamic Huffman (Algorithm FGK) O(n) (S −1) log2(n) + S + Pointers 

Algorithm BSTW O(n) 2S 

Table 4. Compression Algorithm Comparison – Complexity and Memory Usage 
 
Static Coding 
Applying the BSTW algorithm described above on a set of source data coded in binary would 
generate a reordered dataset still in binary coding. In order to achieve compression, the dataset 
must be transformed into a smaller representation. Re-encoding the dataset using a static code can 
achieve this, since static codes are effectively a simplified form of compression that makes little 
or no use of probability estimation. Instead, they are generated in such a way as to be optimally 
suited to one particular probability density function (PDF). For example, the output data of the 
BSTW algorithm has been shown in Figure 8 to approximately conform to geometric distribution, 
so a static code suited to a geometric distribution could be used to express it. A code containing 
intrinsic delimiter bits can also be generated so that boundaries between codewords can be 
detected, which allows the resulting dataset to be unambiguously decoded. Codes such as these 
are said to contain the prefix property, such that no code is a prefix of any other code in the 
dataset. In the following discussion several types of coding are evaluated for complexity and 
memory requirements, as per the requirements already discussed. 
 
Universal Codes 
Universal codes are often used in conjunction with adaptive schemes because of the benefits of 
their prefix property. These codes map positive binary-coded integers into variable-length binary 
codewords. If the source symbol set is remapped in descending order of frequency (monotonically 
decreasing), such as BSTW-remapped Figure 8 is close to being, the advantage of using them 
includes the property that the resulting codes will be within a constant factor of the optimal code 
(Lelewer & Hirschberg, 1987). Asymptotically optimal universal codes include Elias-δ and 
Fibonacci codes, while Elias-γ codes are not (Lelewer & Hirschberg, 1987). All three codes 
include intrinsic inter-symbol delimiters, and a comparison between the mapping of their symbols 
can be seen in Table 5. Each code is catered to a different probability distribution, but notable 
differences includes the fact that errors in an Elias-γ code are often not recoverable, while in 
Fibonacci codes a 1-bit error can at most cause the loss of 3 symbols before the decoder is 
resynchronized. Each of the codes is also generated according to algorithms of differing 
complexity, but Fibonacci codes are especially difficult to develop as the most popular method is 
recursive. This property would likely preclude Fibonacci codes from being generated as needed 
for on-the-fly decoding, and an implementation would need to store the codes in system memory 
for lookup purposes. 
 



Rice Coding 
Rice coding (Rice, 1979), a special form of Golomb coding (Golomb, 1966), is a form of static 
coding that allows for a degree of probability estimation to accommodate different source symbol 
PDFs. Codes are generated by dividing a source symbol by a divisor, where the quotient of the 
division operation is represented in unary coding and the remainder in binary coding. Unary and 
Rice codes for some symbols can be seen in Table 5, both of which can be seen to also include 
inter-symbol delimiters. Rice codes differ from Golomb codes in that their divisor setting is 
restricted to powers of 2. This restriction ensures that the division operation can be performed on 
an MCU by simple bit-shift instructions, while the remainder is a logical bit-mask with the 
original symbol. Such a simple implementation requires a minimum of memory and allows codes 
to be generated deterministically on-the-fly as source symbols are processed. Compared to the 
generation algorithms of universal codes already reviewed, Rice coding is potentially of equal or 
less complexity. Other promising advantages of using Rice coding include the ability to vary the 
divisor setting between datasets without penalty, making the coding scheme more flexible than 
universal coding. 
 

Static Code 
Symbol 

Elias-δ Elias- γ Fibonacci Unary Rice* 

0 0 0 11 1 1 00
1 1000 100 0 11 01 1 01
2 1001  101 00 11 001 1 10
3 10100 11000 10 11 0001 1 11
4 10101 11001 000 11 00001 01 00
5 10110 11010 100 11 000001 01 01
6 10111 11011 010 11 0000001 01 10
7 11000000 1110000 0000 11 00000001 01 11

* with divisor setting of 4.
Table 5. Comparison of Symbol Coding for Various Static Codes 
 
 
EXPERIMENTAL RESULTS 
 
WSN Research Platform 
Energy measurement and RF module characterization experiments are performed with a real 
WSN node, known as the WSN research platform, consisting of a Texas Instruments 
MSP430F149 MCU and an RF module, assembled on a custom printed circuit board (PCB). The 
RF module is made up of a Chipcon CC2420 wireless transceiver, employing the IEEE 
802.15.4/ZigBee protocol at 2.4GHz, and a printed dipole antenna. The transceiver has 8 
programmable transmission power levels which range from 0dBm to -25dBm. It also has an 
integrated received signal strength indicator (RSSI) which gives a discrete value for received 
signal power that can be read from an internal register. The transmit and receive gains of the on-
board antenna, respectively GT and GR, have both been experimentally found to be -8 dB from 
prior work in (Chenard, Zilic, Chu, & Popovic, 2005).  



Energy consumption measurements are made by connecting the WSN research platform to a 
custom current-measurement circuit depicted in Figure 10. Both the research platform and 
current-measurement circuit are developed in-house (Zhang, Zilic, & Radecka, 2006; Zhang, 
2005). The output of the current-measurement circuit includes a voltage that is measured across a 
known resistance, giving an instantaneous current reading. Small currents are thus amplified to 
easily-measured voltages. This allows instantaneous power to be found, which when plotted over 
time, can be integrated to find total node energy consumption. All current-measurement circuit 
outputs are analyzed in this way using an Agilent Infiniium 54830D 600MHz mixed-signal 
oscilloscope. A portion of the node data bus (D0–D3) is forwarded to the oscilloscope to 
differentiate between test routines. The energy consumed by those test routines can then be 
calculated with Equation 4. 

 

 

Figure 10. Current Measurement Method 
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where: 
  E is energy, in joules. 
  Vdd is the supply voltage to the node. 
  tN and tM are the measurement start and finish times, respectively. 
  V = f(I) is the voltage output of the current measurement circuit. 
  I is the instantaneous current drawn by the node. 
  R is the resistance across which V is measured. 

 
RF Module Characterization 
The previously described RF module test scheme is tested here against select IEEE 802.15.4 
specifications shown in Table 1. Experimental results for this RF module characterization can be 
seen in Table 6, which can be seen to all exceed the required specification. 



 
The low-power IEEE 802.15.4 communication protocol has been developed to favor the use of 

battery-powered nodes. Such nodes are able to save energy by duty-cycling their MCU and RF 
transceiver, wherein they would spend most of their operational lives in a sleep mode. The 
protocol allows nodes to listen for periodic beacon transmissions in order to determine if a 
message is pending for them. Since beacon frequency can be varied, this mechanism allows the 
application designer to decide on a balance between node energy consumption and message 
latency. 

 
Table 7 shows energy consumption measurements of various node operating modes. It can be 

seen that mode 4 costs much less energy than mode 5. A periodic beacon network therefore offers 
a sizable node power savings, and its frequency can be catered to the timing requirements of the 
application in order to maximize energy savings. This can be done to periodically transfer and 
activate SBST programs on the node. To save additional energy, the node transmission power 
level should be set as low as possible while maintaining the required PER on the link. 
 

Specification Requirement Measured Result 

Transmit Power Minimum: -3 dBm -1 dBm 

Receiver sensitivity Maximum: -85 dBm -88 dBm 

Adjacent channel rejection Minimum: 0 dB 7 dB 

Alternate channel rejection Minimum: 30 dB 43 dB 
Table 6. RF Module Test Results 
 

Mode Mode Description Current (mA) 

1 Send 5 packets with maximum power level 20.0 

2 Send 5 packets with medium power level 15.0 

3 Send 5 packets with minimum power level 12.0 

4 Sleep between periodic beacon packets 0.39 

5 Continuous listen on RF channel 20.7 
Table 7. RF Module Operating Modes 
 
MCU Testing Efficiency 
The energy efficiency ideas for MCU testing we have previously discussed are experimentally 
tested here on our WSN research platform. Table 8 shows the energy consumption of an MCU 
SBST program before and after optimizations. The measurements show that operand and 
instruction selection achieved a 21.2% energy reduction in the running of the test, while also 
achieving a 20.1% test time reduction. 



 

Metric Unmodified 
Test 

After Operand 
Selection 

After Operand and 
Instruction Selection 

Energy (μJ) 2.558 2.430 2.014 
CPU cycles 940 940 751 

Table 8. Node Energy Consumption during MCU Testing 
 
Embedded Memory Testing Efficiency 
Two techniques were previously proposed to improve the energy efficiency of embedded memory 
SBST programs: SBC addressing, and the interleaving of flash memory testing with other tests. 
Here we compare the energy consumption of SBC addressing against binary addressing, and 
determine the energy effect of interleaving flash memory testing with either RAM testing or RF 
module testing. The testing modes, themselves portions of component tests, can be seen in Table 
9. Modes 5–7 are the first three elements of March FT algorithm for flash memory testing while 
modes 8 and 9 are the main elements of the March X algorithm used for RAM testing. Modes 8 
and 9 are made to iterate on a single RAM memory block 10 times in order to approximate the 
time required for mode 5. Since our WSN research platform contains only 2kB of RAM, this is 
used as a strategy to show the maximum energy savings effect of fully interleaving a flash 
memory block erase. 
 

Mode Mode Description 

5 Flash memory block erase (512 bytes) 
6 Flash memory block test (r1, w0, r0) (512 bytes) 
7 Flash memory block test (r0) (512 bytes) 
8 RAM block test (w0) (10 blocks = 5 kB) 
9 RAM block test (r0) (10 blocks = 5 kB) 
A RF Module Initialization 
B RF packet transmission (4 packets) 

Table 9. Test Mode Descriptions 
 
SBC Addressing of Flash Memory 
The current consumption of SBC addressing compared to binary addressing can be seen in Figure 
11. As expected, the average current of the SBC addressing can be seen to be slightly lower than 
that of binary addressing. However, SBC addressing requires greater test time, which means its 
energy consumption (power × time) is greater than that of binary addressing. Interestingly, this 
result is contrary to the one found in (Cheung & Gupta, 1996). The increased test time can be 
attributed to the need for extra instructions such as shift, xor, and mov, which convert addresses 
from binary to SBC. The additional current consumption of these extra instructions then exceeds 
the energy savings of using SBC addressing. 
 



 
Figure 11. Energy Comparison of Binary and SBC addressing 

 
Interleaving of Flash Memory Testing with Other Tests 
The concept we introduced of interleaving flash memory testing with other tests is experimentally 
tested here by running RAM testing and RF module testing during a flash memory block erase 
operation. Energy measurements for the interleaving of flash memory erase and RAM testing can 
be seen in Table 10, which show a 13.4% energy reduction and a 20.7% time reduction with the 
use of interleaving. Similarly, results for the interleaving of flash memory erase with RF module 
testing seen in Table 11 yield a 10.7% energy reduction and 14.2% time reduction with the use of 
interleaving. In the case of interleaving RAM testing, it is apparent that modes 8 and 9 are 
slightly synthetic in their use of a 10-iteration block operation. However, a meaningful energy 
savings would result in the case of an MCU with at least 5 kB of RAM to be tested. It should also 
be noted that the increased energy consumption seen in Table 11 over results of Table 10 for the 
same test modes is a result of the contribution of the RF module to total node energy 
consumption. 
 

Mode Test Item Energy Before 
Interleaving (μJ) 

Energy After 
Interleaving (μJ) 

5 Flash memory erase 143.10 
8 RAM (w0) 73.06 
9 RAM (r0) 78.54 

189.94 

6 Flash (r1, w0, r0) 413.16 421.77 
7 Flash (r0) 7.92 7.86 

 Total Energy (μJ) 715.78 619.57 

 Total Time (ms) 91.24 72.3 
Table 10. Interleaving Flash Memory Testing with RAM Testing 



 

Mode Test Item Energy Before 
Interleaving (μJ) 

Energy After 
Interleaving (μJ) 

5 Flash memory erase 231 
A RF Initialization 280.83 
B RF packet transmission 983 

1276 

6 Flash (r1, w0, r0) 723.03 707.46 
7 Flash (r0) 13.2 12.87 

 Total Energy (μJ) 2236 1996 

 Total Time (ms) 105.2 90.24 
Table 11. Interleaving Flash Memory Testing with RF Module Testing 
 
 
SBST Program Compression 
The first experiment compares the compression ratios of the three general-purpose algorithms 
previously presented on three real SBST programs. Results include an estimate of the minimum 
memory requirements for using each algorithm, based upon knowledge of their functioning and 
required data structures. The second experiment measures the energy required to receive 
compressed and uncompressed SBST programs on a real WSN node. 
 
Experimental Setup 
In the experiment comparing compression ratios, three real SBST programs from (Zhang, Zilic, & 
Radecka, 2006; Zhang, 2005) (denoted Pn) are used with algorithm families LZW, Dynamic 
Huffman, and BSTW. The SBST programs are compiled into machine-code for the MCU used in 
our WSN research platform. Compression ratio results for algorithm LZW are collected using the 
UNIX utility compress v.4.2.4, while for the dynamic Huffman family of algorithms, an 
implementation of algorithm FGK created by Toub (n.d.) is used. To evaluate the performance of 
several static coding methods, two variations of algorithm BSTW are actually implemented in 
MATLAB 7.0. Functions for determining the length of various static codes are also implemented 
in MATLAB 7.0, which are applied to the BSTW-remapped data. As an example, the equation 
for determining the length of a Rice-encoded symbol is given in Equation 5. 
 

The energy measurement experiment is performed with the WSN research platform. The 
energy contribution of only the transceiver is found by measuring the node energy consumption 
while the MCU is in a low-power sleep state and the transceiver is operating in listen mode. Since 
the current draw of the listen mode approximates the published current draw of receive mode of 
the CC2420 chip according to Chipcon AS (2004), it is used to isolate the transceiver component 
of total WSN node power consumption. Such an approximation is necessary since the transceiver 
would otherwise never be in receive mode with the MCU in a low-power sleep state. 
 

)(log1 2 divisor
divisor
symbol

++⎥⎦
⎥

⎢⎣
⎢  

(5) 

 



Compression Ratio Comparison 
While algorithm BSTW has been introduced as solely using the MTF heuristic, in this experiment 
an alternate heuristic denoted swap is also explored. In the MTF heuristic, when a new symbol is 
encountered it is moved to the front of the list, while using the swap heuristic it is exchanged with 
the element at the front of the list. A comparison of compression ratios and memory usage for the 
aforementioned algorithms can be seen in Table 12. 

 
Algorithm LZW gives both the best compression ratios across all three SBST programs, as 

well as the greatest memory usage. Since results are collected using a compiled utility, the 
minimum memory requirements are estimated to be 8kB, although the value is likely much 
higher. Even this very conservative estimate is enough to disqualify algorithm LZW from use on 
WSN nodes for requiring excessive memory resources, although its results are a useful 
benchmark for gauging the relative compression performance of the other algorithms. Programs 
P1 and P2 are compressed by LZW in the 30% range while P3 sees a 55% reduction.  

 
The memory requirements for algorithm FGK are estimated from the analysis in Table 4 for 

the same reasons as algorithm LZW, although it is found to require approximately 1.7kB of 
memory. Achieved compression ratios exceed those of BSTW (MTF) with Rice codes for divisor 
settings of 8 and 64, for all three SBST programs. Compared to BSTW (MTF) with universal 
codes, performance is better for P1 and P3 by a small margin.  

 
Algorithm BSTW with static codes has the lowest memory requirements of those compared 

(see Table 4), at 0.5kB. When heuristic MTF is combined with Rice coding with a divisor of 32, 
better performance over algorithm FGK is seen for P1 and P2 by a slim margin. Using a divisor of 
16, the performance of algorithm FGK is exceeded by a slightly larger margin for the same 
programs. Algorithm FGK gives better results for P3 in all cases at a cost of 3x the memory, 
although by a slim 3.6% compared to Rice coding with a divisor of 16. 



 
Compression Ratio (%) 

Algorithm 
P1 P2 P3 

RAM (Bytes)

Uncompressed 0 0 0 0 
Lempel-Ziv-Welch (LZW) 38.8 32.2 55.4 7936† 

Dynamic Huffman (Algorithm FGK) 15.8 19.4 27.5 1728‡ 
Rice Codes (divisor = 8) 7.7 16.7 18.4 
Rice Codes (divisor = 16) 18.8 22.5 23.9 
Rice Codes (divisor = 32) 17.3 19.7 19.5 
Rice Codes (divisor = 64) 9.9 10.3 10.7 

Elias-γ Codes 8.6 24.2 19.2 

BSTW 
(MTF) 

Fibonacci Codes 15.6 23.9 22.2 

512 

Rice Codes (divisor = 8) -31.9 -24.7 -29.6 
Rice Codes (divisor = 16) -1.4 3.1 -0.6 
Rice Codes (divisor = 32) 7.4 10.3 7.6 
Rice Codes (divisor = 64) 5.3 7.8 5.3 

Elias-γ Codes -2.8 -14.7 5.1 

BSTW  
(swap) 

Fibonacci Codes 8.3 0 13.4 

512 

† codebook of 4096 strings, where the first 256 symbols are 1 byte, and the rest at least 2 bytes 
(very conservative estimate). ‡ assuming 256 symbols, 16 kB blocks, and 2 byte pointers. 

 
Table 12. Achieved Compression Ratio vs. Memory Usage for three SBST Programs (denoted Pn) 
 
Energy Expenditure Comparison 
Reducing the volume of data received by the node directly leads to a reduction in node energy 
consumption, since the transceiver presents the highest power consumption of the system. In this 
experiment the goal is to quantify the energy savings of transferring compressed SBST programs 
to a WSN node from a basestation. Algorithm BSTW and Rice coding (with a divisor of 16) is 
used for its compatibility with the memory limitations of nodes. Both compressed and 
uncompressed versions of the same three SBST programs from Table 12 are transmitted, and the 
total energy consumption of the node is measured in receiving the programs. 

 
When the transceiver is receiving data, the ratio of current draw of the MCU to the transceiver 

is found to be approximately 1:4.5, seen in Table 13. In isolating the transceiver current-draw, the 
energy usage for receiving both compressed and uncompressed SBST programs can be seen in 
Table 14. The result is that the reception of compressed SBST programs over uncompressed ones 
yields an energy savings of 18.8%, 22.5%, and 23.9% for programs P1, P2, and P3, respectively. 
These energy savings are directly proportional to the achieved compression ratios seen in Table 
12. 
  



Component Average Current (mA) 

MCU operation 4.327 
Transceiver operation 20.970 

Table 13. Contribution of current-draw for components when transceiver is receiving data 
 

Energy Usage (mJ) 
Wireless Reception of SBST Program Type 

P1 P2 P3 

Uncompressed 14.727 0.779 9.420 
Compressed 11.955 0.603 7.167 

 Table 14. Energy Usage for Wireless Reception of three SBST Programs (denoted Pn) 
 
CONCLUSION 
In this chapter we present an infrastructure for the distribution and remote execution of SBST 
tests, as well as for the remitting of test responses. As part of the testing scenario, both self-testing 
and testing through helper nodes is used to verify the correct operation of node components. Once 
uncovered, failed and failing nodes can be repaired or replaced before they affect network 
availability. 
 

SBST programs are constructed with instructions requiring the least amount of cycles, while 
their operands are selected to contain the least Hamming distance and weight. This reduces test 
energy consumption, verified through experimental results collected from a current measurement 
circuit connected a WSN research platform. Further, a March-family algorithm is used to test 
embedded flash memory, where it is shown that the energy optimizations traditionally yielded by 
SBC addressing are not efficient in this case. The time interleaving of embedded flash memory 
tests with other components tests is used to reduce both test time and energy, while the use of 
helper nodes also enables the verification of RF module specifications.  
 

Finally, SBST program compression is explored through general-purpose algorithms in an 
effort of further reduce the energy consumption associated with the distribution of test programs. 
While most algorithms require more memory than is available on a typical node, the BSTW 
algorithm is found to suit such devices. A compression scheme involving the BSTW algorithm 
combined with the memory-less Rice coding is found to give the best overall compression ratio 
for devices with small amounts of memory.  
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KEY TERMS & DEFINITIONS 
 
Automatic test pattern generation (ATPG): An algorithm by which test vectors 
are automatically generated from a design specification. 
 
BSTW: An efficient, adaptive compression algorithm that requires little memory. 
 



Built-in self-test (BIST): A hardware module that generates test vectors, applies 
them to testable components, and constructs a test signature from the aggregated 
results. 
 
Energy-sensitive factors: the parameters of instructions that a microcontroller 
executes which affect its total energy consumption. 
 
Fault coverage: Based upon a fault model, the proportion of all possible faults 
that are tested against by a test program. 
 
Packet error rate (PER): The proportion of packets that have been received over a 
wireless link containing one of more errors. 
 
Perceived availability (of a network): The probability that a network is 
functioning correctly over a period of time, as seen by a user of that network. 
 
Rice coding: A form of static coding that allows for a degree of probability 
estimation to accommodate different source symbol probability densities. 
 
Software-based self-test (SBST) program: Software created to test the 
components of the microcontroller is it executing on, and/or attached peripherals. 


