

Data Conversion
in Residue Number System

Omar Abdelfattah

Department of Electrical & Computer Engineering

McGill University

Montreal, Canada

 January 2011

A thesis submitted to McGill University in partial ful fi l lment of the requirements for the

degree of Master of Engineering.

© 2011 Omar Abdelfattah

 2

Abstract

This thesis tackles the problem of data conversion in the Residue Number System (RNS).

The RNS has been considered as an interesting theoretical topic for researchers in recent years.

Its importance stems from the absence of carry propagation between its arithmetic units. This

facilitates the realization of high-speed, low-power arithmetic. This advantage is of paramount

importance in embedded processors, especially those found in portable devices, for which

power consumption is the most critical aspect of the design. However, the overhead introduced

by the data conversion circuits discourages the use of RNS at the applications. In this thesis, we

aim at developing efficient schemes for the conversion from the conventional representation to

the RNS representation and vice versa. The conventional representation can be in the form of

an analog continuous-time signal or a digital signal represented in binary format. We present

some of the currently available algorithms and schemes of conversion when the signal is in

binary representation. As a contribution to this field of research, we propose three different

schemes for direct conversion when interaction with the real analog world is required. We first

develop two efficient schemes for direct analog-to-residue conversion. Another efficient

scheme for direct residue-to-analog conversion is also proposed. The performance and the

efficiency of theses converters are demonstrated and analyzed. The proposed schemes are

aimed to encourage the utilization of RNS in various real-time and practical applications in the

future.

 3

Résumé

Cette thèse aborde le problème de la conversion de données dans le système numérique de

résidus (Residue Number System - RNS). Le système RNS a été considéré comme un sujet

intéressant par de nombreux chercheurs ces dernières années. Son importance découle de

l'absence de la propagation de retenue entre ses unités de calcul. Ceci facilite la réalisation de

circuits arithmétiques à grande vitesse et de faible puissance. Cet avantage est d'une importance

primordiale dans les processeurs embarqués, en particulier ceux qu'on retrouve dans les

appareils portables, pour lesquels la consummation d'énergie est l'aspect le plus critique de la

conception. Cependant, le traitement supplémentaire introduit par les circuits de conversion de

données décourage l'utilisation du RNS au niveau des applications. Dans cette thèse, nous

cherchons des schémes efficaces pour la conversion de la représentation conventionnelle à la

représentation RNS et vice-versa. La représentation conventionnelle peut être sous la forme d'un

signal analogique en temps continu où d'un signal échantillonné numérique représenté en format

binaire. Nous présentons quelques algorithmes actuellement disponibles et les systèmes de

conversion associés lorsque le signal est sous une

représentation binaire. Dans notre contribution à ce domaine de recherche, nous proposons trois

astuces diff®rentes pour la conversion lorsquôune interaction avec le monde analogique r®el est

nécessaire. Nous dévelopons deux systèmes efficaces pour la conversion directe du domaine

analogique à RNS. Un autre système efficace pour la conversion directe de RNS à analogique

est également proposé. La performance et l'efficacité de ces convertisseurs sont mises en

évidence et analysées. Les schémas proposés sont destinés à encourager l'utilisation du RNS

dans diverses applications dans l'avenir.

 4

Acknowledgements

I would like to express my gratitude to the following people who supported and encouraged

me during this work. First, I am grateful to my supervisors, Zeljko Zilic and Andraws Swidan,

for giving me full independence and trust till I reached to this research topic and then for their

unlimited assistance throughout my research toward my Master degree. Second, I would like to

thank all my talented friends in Integrated Microsystems Laboratory (IML) and

Microelectronics And Computer Systems (MACS) Laboratory for their help and guidance and

for providing the friendly atmosphere that encouraged me in my daily progress. I would like

also to thank all the professors who taught me in my undergraduate study in Kuwait University

and in my graduate career in McGill University. Special thanks go to my parents, the reason that

I exist, and to my sister who offered me all help and support during writing this thesis. I cannot

adequately express my gratitude to all those people who made this thesis possible.

 5

Contents

1 Introduction ... 13

1.1 Thesis Motivation ... 14

1.2 Main Contributions of This Work .. 15

1.3 RNS Representation ... 15

1.4 Mathematical Fundamentals.. 18

1.4.1 Basic Definitions and Congruences ... 18

1.4.2 Basic Algebraic Operations ... 19

1.5 Conversion between Conventional Representation and RNS Representation 23

1.6 Advantages of RNS Representation .. 24

1.7 Drawbacks of RNS Representation ... 25

1.8 Applications .. 26

2 Conversion between Binary and RNS Representations .. 27

2.1 Forward Conversion from Binary to RNS Representation .. 28

2.1.1 Arbitrary Moduli-Set Forward Converters .. 28

2.1.2 Special Moduli-Set Forward Converters ... 33

2.1.3 Modulo Addition .. 37

2.2 Reverse Conversion from RNS to Binary Representation .. 44

2.2.1 Chinese Remainder Theorem ... 44

2.2.2 Mixed-Radix Conversion .. 47

 6

3 Conversion between Analog and Binary Representations .. 51

3.1 Sampling ... 52

3.2 Quantization ... 53

3.3 Analog-to-Digital Converter Architectures .. 60

3.3.1 Flash (or parallel) ADC ... 60

3.3.2 Interpolating Flash ADC .. 62

3.3.3 Two-Stage Flash ADC ... 63

3.3.4 Multi -Stage Pipelined ADC ... 64

3.3.5 Time-Interleaved ADC .. 64

3.3.6 Folding ADC .. 65

3.3.7 Successive Approximation ADC ... 66

3.3.8 Summary Comparison ... 68

3.4 Digital-to-Analog Converter Architectures ... 69

3.4.1 Decoder-based DAC .. 69

3.4.2 Binary-scaled DAC ... 70

3.4.3 Thermometer-code DAC .. 71

4 Conversion between Analog and RNS Representations ... 73

4.1 Forward Conversion from Analog to RNS Representation .. 74

4.1.1 Flash A/R Converter .. 74

4.1.2 Successive Approximation A/R Converter .. 89

4.1.3 Folding A/R Converter .. 94

4.2 Reverse Conversion from RNS to Analog Representation ... 96

4.2.1 MRC based R/A Converter .. 96

4.2.2 CRT based R/A Converter ... 98

5 Conclusion and Future Work .. 102

 7

 References ... 106

 Appendix I ... 112

 8

List of Figures

1.1 General structure of an RNS processor ... 14

2.1 Serial forward converter .. 30

2.2 Modified structure for serial forward converter .. 30

2.3 Parallel forward converter ... 31

2.4 ς ρȟςȟς ρ forward converter .. 37

2.5 Modulo-ά adder .. 38

2.6 Modulo ς ρ adder ... 41

2.7 Modulo ς ρ adder ... 43

2.8 CRT based R/B converter ... 47

2.9 MRC based R/B converter (ὲ=5) .. 50

3.1 Periodic sampling process .. 52

3.2 Transfer function of a typical quantizer ... 53

3.3 Quantizer transfer function: (a) uniform (b) non-uniform ... 54

3.4 Quantizer transfer function: (a) midtread (b) midrise .. 55

3.5 Effect of offset error on quantizer transfer function ... 55

3.6 Effect of gain error on quantizer transfer function ... 56

3.7 Effect of linearity error on quantizer transfer function .. 57

3.8 Effect of missing codes on quantizer transfer function ... 57

3.9 Quantizer models: (a) non-linear (b) linear ... 58

3.10 Quantizer PDF ... 59

3.11 Flash ADC ... 61

3.12 A 3-bit interpolating flash ADC .. 62

 9

3.13 Two-stage flash ADC ... 63

3.14 Pipelined ADC architecture ... 64

3.15 A 3ὲ-bit three-channel time-interleaved ADC architecture .. 65

3.16 Folding ADC architecture ... 66

3.17 Successive Approximation ADC architecture .. 67

3.18 A 3-bit decoder-based DAC ... 69

3.19 An alternative implementation of decoder-based DAC .. 70

3.20 A 4-bit binary-weighted DAC ... 71

3.21 A 4-bit R-2R DAC .. 71

3.22 A 3-bit thermometer-code DAC .. 72

4.1 Conversion from thermometer code to residue ... 75

4.2 Iterative flash A/R converter ... 76

4.3 Modified flash A/R converter .. 77

4.4 Complexity vs. k of the proposed scheme compared to [37] ... 79

4.5 Simulink model of the two-stage flash A/R converter .. 80

4.6 Output response to a ramp input .. 81

4.7 The quantized output spectrum ... 82

4.8 The S/H circuit model ... 82

4.9 SNR vs. S/H input referred thermal noise ... 83

4.10 SNR vs. clock jitter ... 84

4.11 The second stage ADC block diagram .. 85

4.12 A 4-bit encoder: (a) thermometer to gray (b) gray to binary ... 86

4.13 The comparator model ... 87

4.14 SNR vs. comparator offset and thermal noise ... 88

4.15 SNR vs. DA gain ... 88

 10

4.16 The successive Approximation A/R converter in [38] and [40] ... 89

4.17 The proposed successive approximation A/R converter ... 89

4.18 Simulink model of the proposed successive approximation A/R converter 91

4.19 Output response to a ramp input .. 91

4.20 SNR vs. S/H thermal noise .. 92

4.21 SNR vs. clock jitter ... 92

4.22 SNR vs. comparator offset and thermal noise ... 93

4.23 SNR vs. the DAC bandwidth .. 93

4.24 SNR vs. the DAC slew rate ... 94

4.25 A three-moduli folding A/R converter architecture .. 94

4.26 Folding waveform with respect to modulus 4 ... 95

4.27 Output waveform of the folding circuit ... 95

4.28 MRC based R/A converter .. 97

4.29 CRT based R/A converter ... 98

4.30 Folded sawtooth waveform ... 99

4.31 Folding circuit ... 99

4.32 Folded triangle waveform ... 100

4.33 Folding region detector ... 101

 11

List o f Tables

1.1 RNS representation for two different moduli-sets ... 16

1.2 Multiplicative inverses with respect to two different moduli ... 22

2.1 Periodicity of ȿςȿ for different moduli ... 32

3.1 Comparison among the described ADC architectures .. 68

4.1 Number of comparators in [37] and in the proposed architecture .. 79

4.2 Conversion from thermometer code to gray code .. 86

4.3 Hardware complexity and latency comparison among different reverse conversion schemes

 ... 101

 12

List o f Acronyms

RNS Residue Number System

CRT Chinese Remainder Theorem

MRC Mixed-Radix Conversion

ADC Analog-to-Digital Converter

DAC Digital-to-Analog Converter

B/R Binary-to-Residue

R/B Residue-to-Binary

A/R Analog-to-Residue

R/A Residue-to-Analog

ROM Read Only Memory

LUT Look-Up Table

 13

Chapter 1

Introduction

A riddle posted in a book authored by a Chinese scholar called Sun Tzu in the first century

was the first documented manifestation of Residue Number System (RNS) representation [1,2].

The riddle is described by the following statement:

We have things of which we do not know the number:

If we count them by threes, the remainder is 2.

If we count them by fives, the remainder is 3.

If we count them by sevens, the remainder is 2.

How many things are there?

The answer is 23.

The mathematical procedure of obtaining the answer 23 in this example from the set of

integers 2, 3, and 2 is what was later called the Chinese Remainder Theorem (CRT). The CRT

provides an algorithmic solution of decoding the residue encoded number back into its

conventional representation. This theorem is considered the cornerstone in realizing RNSs.

Encoding a large number into a group of small numbers results in significant speed up of the

overall data processing. This fact encourages the implementation of RNS in some applications

where intensive processing is inevitable.

In this chapter, we present the clear motivation of this thesis along with the main

contributions. We also provide an introduction to RNS representation, properties, advantages,

drawbacks, and applications.

 14

1.1 Thesis Motivation

A general structure of a typical RNS processor is shown in Figure 1.1. The RNS represented

data is processed in parallel with no dependence or carry propagation between the processing

units. The process of encoding the input data into RNS representation is called Forward

Conversion, and the process of converting back the output data from RNS to conventional

representation is called Reverse Conversion.

Forward

Conversion

Modulo m1

Modulo m2

Modulo mn

Reverse

Conversion

Input Data

(Analog/Binary)

Output Data

(Analog/Binary)

Processing Units

Figure 1.1. General structure of an RNS-based processor

The conversion stages are very critical in the evaluation of the performance of the overall

RNS. Conversion circuitry can be very complex and may introduce latency that offsets the

speed gained by the RNS processors. For a full RNS based system, the interaction with

the analog world requires conversion from analog to residue and vice versa. Usually, this is

done in two steps where conversion to binary is an intermediate stage. This makes the

conversion stage inefficient due to their increased latency and complexity. To build an RNS

 15

processor that can replace the digital processor in a certain application; we need to develop

conversion circuits that perform as efficient as the analog-to-digital converter (ADC) and the

digital-to-analog converter (DAC) in the digital binary-based systems. The reverse conversion

process is based on the Chinese Remainder Theorem (CRT) or Mixed-Radix Conversion

(MRC) techniques. Investigating new conversion schemes can lead to overcoming some

obstacles in the RNS implementation of different applications. Thus, an analog-to-residue (A/R)

converter and a residue-to-analog (R/A) converter are sought to eliminate the intermediate

binary stage.

1.2 Main Contributions of This Work

The main contributions of this work are summarized as follows:

1. Two architectures for direct analog-to-residue conversion are proposed. The first proposed

architecture is based on the two-stage flash conversion principle, while the second

architecture is based on the successive approximation principle. The two architectures

obviate the need of an intermediate binary stage and expedite the conversion process.

2. One architecture for direct residue-to-analog conversion is proposed. The proposed

architecture is based on the CRT. The need for an intermediate binary stage is eliminated.

Overall, the proposed architectures facilitate the implementation of RNS based processors by

reducing the latency and complexity introduced by the binary stage. This makes it more possible

and more practical to build effective RNS based processors.

1.3 RNS Representation

An RNS is defined by a set of relatively prime integers called the moduli. The moduli-set is

denoted as {ά , ά, é, ά } where ά is the Ὥ modulus. Each integer ὢ can be represented

as a set of smaller integers called the residues. The residue-set is denoted as {ὶ, ὶ, é, ὶ}

where ὶ is the Ὥ residue. The residue ὶ is defined as the least positive remainder when ὢ is

divided by the modulus ά . This relation can be notationally written based on the congruence:

ὢ άέὨ ά ὶ (1.1)

The same congruence can be written in an alternative notation as:

ȿὢȿ ὶ (1.2)

 16

The two notations will be used interchangeably throughout this thesis.

The RNS is capable of uniquely representing all integers ὢ that lie in its dynamic range. The

dynamic range is determined by the moduli-set {ά , ά, é, ά } and denoted as ὓ where:

ὓ Б ά (1.3)

The RNS provides unique representation for all integers in the range between 0 and ὓ ρ. If

the integer ὢ is greater than ὓ ρ, the RNS representation repeats itself. Therefore, more than

one integer might have the same residue representation.

It is important to emphasize that the moduli have to be relatively prime to be able to exploit

the full dynamic range ὓ.

To illustrate the preceding principles, we present a numerical example.

Example 1.1.

Consider two different residue number systems defined by the two moduli-sets {ς, σ, υ} and

{ς, σ, τ} . The representation of the numbers in residue format is shown in Table 1.1. for the

two systems.

Table 1.1. RNS representation for two different moduli-sets

╧
{ , , } { , , }

2 3 5 2 3 4

0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 0 2 2 0 2 2

3 1 0 3 1 0 3

4 0 1 4 0 1 0

5 1 2 0 1 2 1

6 0 0 1 0 0 2

7 1 1 2 1 1 3

8 0 2 3 0 2 0

9 1 0 4 1 0 1

10 0 1 0 0 1 2

11 1 2 1 1 2 3

12 0 0 2 0 0 0

13 1 1 3 1 1 1

 17

14 0 2 4 0 2 2

15 1 0 0 1 0 3

16 0 1 1 0 1 0

17 1 2 2 1 2 1

18 0 0 3 0 0 2

19 1 1 4 1 1 3

20 0 2 0 0 2 0

21 1 0 1 1 0 1

22 0 1 2 0 1 2

23 1 2 3 1 2 3

24 0 0 4 0 0 0

25 1 1 0 1 1 1

26 0 2 1 0 2 2

27 1 0 2 1 0 3

28 0 1 3 0 1 0

29 1 2 4 1 2 1

30 0 0 0 0 0 2

In the first RNS, the moduli in the moduli-set {ς, σ, υ} are relatively prime. The RNS

representation is unique for all numbers in the range from 0 to 29. Beyond that range, the RNS

representation repeats itself. For example, the RNS representation of 30 is the same as that of 0.

In the second RNS, the moduli in the moduli-set {ς, σ, τ} are not relatively prime, since 2 and

4 have a common divisor of 2. We notice that the RNS representation repeats itself at 12

preventing the dynamic range from being fully exploited. Therefore, choosing relatively prime

moduli for the RNS is necessary to ensure unique representation within the dynamic range.

In the preceding discussion on RNS, we assumed dealing with unsigned numbers. However,

some applications require representing negative numbers. To achieve that, we can partition the

full range πȡὓ ρ into two approximately equal halves: the upper half represents the positive

numbers, and the lower half represents the negative numbers. The numbers ὢ that can be

represented using the new convention have to satisfy the following relations [4]:

ὢ if ὓ is odd (1.4)

 ὢ ρ if ὓ is even (1.5)

 18

If ὢ {ὶ, ὶ, é, ὶ} represents a positive number in the appropriate range, then ɀὢ can be

represented as {ὶ, ὶ, é, ὶ} where ὶ is the άôs complement of ὶ , i.e. ὶ satisfies the relation

ὶ ὶάέὨ ά π. In our discussion, we will assume that the numbers are unsigned unless

otherwise it is mentioned.

Example 1.2.

Consider an RNS with the moduli-set {σ, τ, υ} . The number 18 is represented as {π, ς, σ}

while the number -18 is represented as {π, ς, ς} .

The justification for that is as follows:

π πάέὨ σ π

ς ςάέὨ τ π

σ ςάέὨ υ π

Therefore, the positive numbers are represented in the upper half of the dynamic range and

the conversion to residue representation is straightforward, while the negative numbers are

represented in the lower half of the dynamic range and the conversion to residue representation

is interpreted as the conversion of the compliments of the residues with respect to the

corresponding moduli.

1.4 Mathematical Fundamentals

In this section, we introduce the fundamentals of the RNS representation. The congruences

are explained in details with their properties. These properties form a solid background to

understand the process of conversion between the conventional system and the RNS. More

advanced results and mathematical relations can be found in the subsequent chapters. Basic

algebra related to RNS is introduced here. This includes finding the additive and the

multiplicative inverses, and some properties of division and scaling which are not easy

operations in RNS.

1.4.1 Basic Definitions and Congruences

Residue of a number

 19

The basic relationship between numbers in conventional representation and RNS

representation is the following congruence:

ὢ άέὨ ά ὶ (1.6)

where ά is the modulus, and ὶ is the residue. The residue is defined as the least positive

remainder when the number ὢ is divided by the modulus ά .

Example 1.3.

For ὢ υχ, ά τ, and ά υ, we find the residues ὶ and ὶ with respect to the

moduli ά and ά , respectively as follows:

υχ άέὨ τ ρ ίὭὲὧὩ υχ τ ρτ ρ

υχ άέὨ υ ς ίὭὲὧὩ υχ υ ρρ ς

Definition of the base values

With respect to modulus ά , any number ὢ can be represented as a combination of a base

value ὄ and a residue ὶ:

ὢ ὄ ὶ (1.7)

 ὥὲὨ ὄ Ὧ ά (1.8)

where Ὧ is an integer that satisfies Equations (1.7) and (1.8).

The definition of the base value will be exploited in Chapter 4 where these values will be

generated to directly convert from analog to RNS representation.

1.4.2 Basic Algebraic Operations

Addition (or subtraction)

We can add (or subtract) different numbers in the RNS representation by individually adding

(or subtracting) the residues with respect to the corresponding moduli.

Consider the moduli-set Ὓ ά , ά, é, ά , and the numbers ὢ and ὣ are given in RNS

representation:

ὢ ὼ, ὼ, é, ὼ and ὣ ώ, ώ, é, ώ

Then,

ὤ ὢ ὣ ᾀ, ᾀ, é, ᾀ (1.9)

 where ᾀ ὼ ώ άέὨ ά

 20

This property can be applied to subtraction as well, where subtraction of ὣ from ὢ is

considered as the addition of ὣ.

The modulo operation is distributive over addition (and subtraction):

ȿὢᶸὣȿ ȿȿὢȿᶸȿὣȿȿ (1.10)

Multiplication

In a similar way to addition, multiplication in RNS can be carried out by multiplying the

individual residues with respect to the corresponding moduli. Consider the moduli-set Ὓ ά ,

ά, é, ά , and the numbers ὢ and ὣ are given in RNS representation:

ὢ ὼ, ὼ, é, ὼ and ὣ ώ, ώ, é, ώ

Then,

ὤ ὢ ὣ ᾀ, ᾀ, é, ᾀ (1.11)

 where ᾀ ὼ ώ άέὨ ά

The modulo operation is distributive over multiplication:

ȿὢ ὣȿ ȿȿὢȿ ȿὣȿȿ (1.12)

Additive Inverse

The relation between the residue ὶ and its additive inverse ὶ is defined by the congruence:

ὶ ὶ άέὨ ά π (1.13)

The additive inverse ὶ can be obtained using the following operation:

ὶ ά ὶ άέὨ ά (1.14)

Subtraction is one application of this property, where subtraction is regarded as the addition

of the additive inverse.

Example 1.4.

Given the moduli-set {ς, σ, υ, the dynamic range is ὓ σπ. The RNS can uniquely represent

all numbers in the range πȡςω. Let ὢ ςψ ḯ π, ρ, σ and ὣ ςτ ḯ π, π, τ. To find ὣ

, we need first to obtain ὣ, and then find ὢ ὣ. First,

 ὣ ς π άέὨ ςȟσ π άέὨ σȟυ τ άέὨ υ πȟπȟρ

 21

Then, ὢ ὣ ὢ ὣ
π π άέὨ ςȟρ π άέὨ σȟ

σ ρ άέὨ υ
πȟρȟτ which is the RNS

representation of 4.

Multiplicative Inverse

The multiplicative inverse ὶ of the residue ὶ is defined by the congruence:

ὶ ὶ άέὨ ά ρ (1.15)

where ὶ exists only if ὶ and ά are relatively prime.

Example 1.5.

For the modulus ά υ, we find the multiplicative inverse ὶ of the residue ὶ σ by

applying Equation (1.15):

σ ὶ άέὨ υ ρ

We notice that the modulo multiplication of 3 and 2 with respect to 5 results in 1.

Thus, ὶ ς

As illustrated in Example 1.5., there is no general method of obtaining the multiplicative

inverse. The multiplicative inverse is usually obtained by brute-force search. Only when ά is

prime, we can utilize Fermatôs Theorem which can be useful in determining the multiplicative

inverse. This topic is out of the scope of this thesis. Reference [4] provides more details about

the theorem and its application in RNS.

Example 1.6.

This example shows that the multiplicative inverse exists only if ὶ and ά are relatively

prime. In Table 1.2., the multiplicative inverse ὶ is obtained, if exists, with respect to the

modulus ά. In the first column, ά χ is always prime with respect to any integer. In the

second column, ά ψ is not prime with respect to 2, 4, and 6. We notice that 2, 4, and 6 have

no multiplicative inverse with respect to modulus 8.

 22

Table 1.2. Multiplicative inverses with respect to two different moduli

►
□ □

► ►

1 1 1

2 4 -

3 5 3

4 2 -

5 3 5

6 6 -

7 7

Division

Division is one of the main obstacles that discourage the use of RNS. In RNS representation,

division is not a simple operation. The analogy between division in conventional representation

and RNS representation does not hold.

In conventional representation, we represent division as follows:

 ή (1.16)

which can be rewritten as:

 ώ ή ὼ (1.17)

where ή is the quotient.

In RNS, the analogous congruence is:

 ώ ή ὼ άέὨ ά (1.18)

Multiplying both sides by the multiplicative inverse of ώ, we can write:

 ή ὼ ώ άέὨ ά (1.19)

In Equation (1.19), ή is equivalent to the quotient obtained from Equation (1.16) only if it

has an integer value. Otherwise, multiplying by the multiplicative inverse in RNS representation

will not be equivalent to division in conventional representation.

 23

Example 1.7.

Consider an RNS with ά χ, we want to compute the following quotients:

 a) b)

a) In the first case:

φ

ς
ή

ςή φ άέὨ χ

ή φ ς άέὨ χ

ή φ τ άέὨ χ

ή σ

which is equivalent to division in conventional representation.

a) In the second case:

We know that the quotient in conventional representation is 1, and the result of the

division is a non-integer value.

φ

τ
ή

τή φ άέὨ χ

ή φ τ άέὨ χ

ή φ ς άέὨ χ

ή υ

We notice in part (b) of Example 1.7. that division in RNS is not equivalent to that in

conventional representation when the quotient is a non-integer value. Due to this fact, division

in RNS is usually done by converting the residues to conventional representation, performing

the division, and then converting back to RNS representation. Tedious and complex conversion

steps result in undesired overhead. This is one of the main drawbacks of RNS representation.

1.5 Conversion between Conventional Representation and RNS Representation

To utilize the properties of the RNS and carry out the processing in the residue domain, we

need to be able to convert smoothly between the conventional (binary or analog) representation

 24

and the RNS representation. The process of conversion from conventional representation to

RNS representation is called Forward Conversion. Conceptually, this process can be done by

dividing the given conventional number by all the moduli and finding the remainders of the

divisions. This is the most direct way that can be applied to any general moduli-set. However,

we show in Chapter 2 that for some special moduli-sets this process can be further simplified.

The simplification arises from the fact that division by a number, that is a power of two, is

equivalent to shifting the digits to the right. This property can be utilized to expedite and

simplify the forward conversion. The process of conversion from RNS representation to

conventional representation is called Reverse Conversion. The reverse conversion process is

more difficult and introduces more overhead in terms of speed and complexity. The algorithms

of reverse conversion are based on Chinese Remainder Theorem (CRT) or Mixed-Radix

Conversion (MRC). The use of the CRT allows parallelism in the conversion process

implementation. The MRC is an inherently sequential approach. In general, the realization of a

VLSI implementation of a reverse converter is complex and costly. More details about CRT and

MRC are given in Chapter 2.

1.6 Advantages of RNS Representation

Implementing an algorithm using parallel distributed arithmetic with no dependence between

the arithmetic blocks simplifies the overall design and reduces the complexity of the individual

building blocks. The advantages of RNS representation can be summarized as follows [4,5,6]:

High Speed: The absence of carry propagation between the arithmetic blocks results in high

speed processing. In conventional digital processors, the critical path is associated with the

propagation of the carry signal to the last bit (MSB) of the arithmetic unit. Using RNS

representation, large words are encoded into small words, which results in critical path

minimization.

Reduced Power: Using small arithmetic units in realizing the RNS processor reduces the

switching activities in each channel [7]. This results in reduction in the dynamic power, since

the dynamic power is directly proportional to switching activities.

Reduced Complexity: Because the RNS representation encodes large numbers into small

residues, the complexity of the arithmetic units in each modulo channel is reduced. This

facilitates and simplifies the overall design.

 25

Error Detection and Correction: The RNS is a non-positional system with no dependence

between its channels. Thus, an error in one channel does not propagate to other channels.

Therefore, isolation of the faulty residues allows fault tolerance and facilitates error detection

and correction. In fact, the RNS has some embedded error detection and correction features

described in [8].

1.7 Drawbacks of RNS Representation

We mentioned that RNS architectures result in great advantages, especially in terms of speed

and power. This makes it very suitable to implement RNS in different applications. However, in

spite of their great advantages, RNS processors did not find wide use but remained as an

interesting theoretical topic. There are two main reasons behind the limited use of RNS in

applications:

First, although the RNS representation simplifies and expedites addition and multiplication

compared to the conventional binary system, other operations such as division, square-root,

sign detection, and comparison are difficult and costly operations in the residue domain. Thus,

building an RNS based ALU that is capable of performing the basic arithmetic is not an easy

job.

Second, conversion circuitry can be complex and can introduce latency that offsets the speed

gained by the RNS processor. Hence, the design of efficient conversion circuits is considered

the bottleneck of a successful RNS.

Nevertheless, RNS architectures are considered an interesting theoretical topic for

researchers. Some applications that are computationally intensive and require mainly recursive

addition and multiplication operations, such as FFT, FIR filters, and public-key cryptography

are appealing to be implemented using RNS. Therefore, investigating new conversion schemes

can lead to overcoming some obstacles in the RNS implementation of different applications by

reducing the overhead of the conversion stages.

 26

1.8 Applications

As discussed in the last section, RNS is suitable for applications in which addition and

multiplication are the predominant arithmetic operations. Due to its carry-free property, RNS

has good potential in applications where speed and/or power consumption is very critical. In

addition, the isolation between the modulo channels facilitates error detection and correction.

Examples of these applications are digital signal processing (DSP) [9], digital image processing

[10], RSA algorithms [11], communication receivers [12], and fault tolerance [8,13]. In most of

these applications, intensive multiply-and-accumulate (MAC) operations are required.

One possible application of RNS in DSP is the design of digital filters. Digital filters have

different uses such as interpolation, decimation, equalization, noise reduction, and band splitting

[4]. There are two basic types of digital filers: Finite Impulse Response (FIR) filters and Infinite

Impulse Response (IIR) filters. Carrying out the required multiplication and addition operations

in the residue domain results in speeding up the system and reducing the power consumption

[14,15]. Another possible application of RNS in DSP is the Discrete Fourier Transform (DFT)

which is a very common transform in various engineering applications. Again, the main

operations involved here are addition and multiplication. Using RNS in implementing DFT

algorithms results in faster operations due to the parallelism in the processing. In addition, the

carry-free property of the RNS makes it potentially very useful in fault tolerant applications.

Nowadays, the integrated circuits are very dense, and full testing will no longer be possible. The

RNS has no weight information. Therefore, any error in one of the residues does not affect the

other modulo channels. Moreover, since ordering is not important in RNS representation, the

faulty residues can be discarded and corrected separately. In summary, RNS seems to be good

for many applications that are important in modern computing algorithms.

 27

Chapter 2

Conversion between

Binary and RNS Representations

In this chapter, we discuss the conversion between binary and RNS representations. To be

able to process the data in RNS, the data has to be first converted to RNS representation. The

process of converting the data from conventional representation (analog or binary) to RNS

representation is called Forward Conversion. Meanwhile, we shall assume that the initial inputs

are available in binary representation. We need to utilize efficient algorithms and schemes for

the forward conversion process. The forward converter has to be efficient in terms of area,

speed, and power. After the data is processed through the modulo processing units of the RNS,

they have to be converted back into the conventional representation. The process of converting

the data from RNS representation to conventional representation is called Reverse Conversion.

We present the basic theoretical foundations for the methods of reverse residue-to-binary (R/B)

conversion. In addition, we present some architectures for the implementation of these

methods. The overhead of the reverse conversion circuitry is the main impediment to build an

efficient RNS processor. Particularly, the design of the reverse converter is more important and

constitutes the bottleneck of any successful RNS. Therefore, developing efficient algorithms

and architectures for reverse conversion is a great challenge and it has received a considerable

deal of interest among researchers in the past few decades. In this chapter, we focus on the

methods of reverse conversion where the output is in binary representation. However, direct

conversion from RNS to analog representation is also based on the same methods. More details

about direct residue-to-analog conversion are provided in Chapter 4.

 28

2.1 Forward Conversion from Binary to RNS Representation

The forward conversion stage is of paramount importance as it is considered as an overhead

in the overall RNS. Choosing the most appropriate scheme depends heavily on the used moduli-

set. Forward converters are usually classified based on the used moduli into two categories. The

first category includes forward converters based on arbitrary moduli-sets. These converters are

usually built using look-up tables. The second category includes forward converters based on

special moduli-sets. The use of special moduli-sets simplifies the forward conversion algorithms

and architectures. The special moduli-set converters are usually realized using pure

combinational logic.

We present here some of the available architectures for forward conversion from binary to

RNS representation. First, we present forward converters based on arbitrary moduli-sets. Then,

we present forward conversion based on the special moduli-set ς ρȟςȟς ρ. We show

how the complexity of the overall design is minimized which reduces the overhead introduced

by the forward converter. Finally, we provide some architectures for implementing the modulo

addition that are used in the realization of all forward converters.

2.1.1 Arbitrary Moduli-Set Forward Converters

We present here some architectures for forward conversion from binary to RNS

representation using any arbitrary moduli-set. We mentioned earlier that using special moduli-

sets, such as ς ρȟςȟς ρ, makes the forward conversion process fast and simple. In

general, forward converters based on special moduli-sets are the most efficient available

converters. However, some applications require a very large dynamic range which cannot be

achieved efficiently using the special moduli-sets. For example, most of the employed moduli-

sets consist of three or four moduli. When the required dynamic range is very large, these

moduli have to be large, which results in lower performance of the arithmetic units in each

modulo channel. In that case, the best solution is to use many small moduli (five or more) to

represent the large dynamic range efficiently. The research on representing large dynamic

ranges has two main approaches. The first approach is to develop efficient algorithms and

schemes for arbitrary moduli-set forward converters. The second approach is to develop new

special moduli-sets with a large number of moduli to represent the large dynamic range

efficiently. In this approach, a special five-moduli-set ς ρȟςȟς ρȟς ρȟς ρ

 29

with its conversion circuits was proposed in [16]. The proposed moduli-set has a dynamic range

that can represent υὲ ρ bits while keeping the moduli small enough and the converters

efficient. Nevertheless, it is important and useful to keep the research open for both approaches.

Therefore, developing efficient schemes for forward conversion from binary to RNS

representation using arbitrary moduli-sets is also of great importance.

The implementation of arbitrary moduli-set forward conversion algorithms is either based

on look-up tables (typically ROMs), pure combinational logic, or a combination of both.

Implementation of these converters using combinational logic is tedious and requires complex

processing units. The all ROM implementation is preferred in this case. However, for a large

dynamic range, the ROM size grows dramatically and makes the overall conversion process

inefficient. A trade-off between the two implementations can be utilized using a combination of

ROM and combinational logic [17].

In this section, we provide some basic architectures for arbitrary moduli-set forward

converters. We aim at presenting the basic principle of each architecture. More advanced

algorithms and architectures are available in [4]. As the look-up table implementation is

preferred in the case of the arbitrary moduli-set, we shall focus on this implementation approach

and show different techniques to realize it.

The main idea in the look-up table implementation of forward converters is to store all the

residues and recall them based on the value of the binary input [18]. The binary input acts as an

address decoder input that points at the appropriate value in the look-up table.

To find the residue of a binary number ὢ with respect to a certain modulus ά, we utilize the

mathematical property of Equation (1.10) to obtain the residues of all required powers of two

with respect to modulus ά. To illustrate that, assume that ὢ is a binary number:

ὢ ὼ ὼ ȣ ὼὼ В ὼς (2.1)

The residue of ὢ is represented as:

ȿὢȿ В ὼς (2.2)

Using Equation (1.10), we can write:

ȿὢȿ В ὼς (2.3)

where ὼ is either 0 or 1.

 30

Serial Conversion

A direct implementation of Equation (2.3) is to store all the values ς in a look-up table.

The values are activated or deactivated (set to 0) based on whether ὼ is 0 or 1, respectively. A

modulo-ά adder with an accumulator is required to obtain the modulo addition of all activated

values in the table. A direct implementation of Equation (2.3) is shown in Figure 2.1.

Counter

0Čn-1
Look-up

Table

M
U

X

Modulo M

Adder

Accumulator

Register

ñ0ò

Xj

|X|m
|2j|m

Figure 2.1. Serial forward converter

Initially the accumulator is set to zero. The conversion process requires ὲ clock cycles,

where ὲ is the number of bits when ὢ is represented in binary. The value of each bit ὼ (either 0

or 1) instructs the multiplexer to accumulate the value ς or a zero. The counter counts from

0 to ὲ ρ to address the look-up table. The look-up table is typically implemented as a ROM of

size (ὲ ÌÏÇά) bits. The overall design is simple and only few components are required for

the implementation. However, the algorithm is completely sequential. This makes it slow and

inefficient for large dynamic range applications. Some modifications can be applied on the

structure to improve its efficiency. As shown in [4], processing the two values ὼς and

ὼ ς in each cycle doubles the conversion speed. The modified structure is shown in

Figure 2.2. Pipelining is also possible in these architectures to increase the throughput.

Counter

0Čn-1
Look-up

Table

M
U

X

Modulo M

Adder

Accumulator

Register

ñ0

ò

Xj

|X|m

|2j|m

Modulo M

Adder

Look-up

Table

M
U

X

ñ0

ò

|2j+1|m

Xj+1

Figure 2.2. Modified structure for serial forward converter

 31

Parallel Conversion

Another architecture for forward conversion from binary to RNS representation can be

obtained by manipulating Equation (2.3). Suppose ὢ is partitioned into Ὧ blocks, each of ὴ-bits

[19]. Let ὢ be partitioned into the blocks ὄ ὄ ȣ ὄὄ, then:

ὢ В ς ὄ (2.4)

ȿὢȿ В ς ὄ В ς ὄ (2.5)

Example 2.1.

Consider ὢ ςτυφ and ά ρω. We want to find ȿὢȿby partitioning ὢ into four 3-bit

blocks.

First, ὢ is a 12-bit number that has the binary representation: 100110011000.

The four blocks are: 100, 110, 011, and 000. By applying Equation (2.5):

 ȿςτυφȿ ȿȿς πȿ ȿς σȿ ȿς φȿ ȿς τȿȿ

 ȿπ υ τ ρυȿ

 υ

Equation (2.5) can be directly implemented by storing the values ς ὄ in Ὧ look-up

tables, where Ὧ is the number of partitioning blocks. The values of ὄ are used to address the

values ς ὄ in the look-up table (LUT). These values are then added using a multi-operand

modulo adder. A typical implementation of Equation (2.5) is shown in Figure 2.3.

B1

B0

Bk-1

LUT

LUT

LUT

Multi

Operand

Modulo m

Adder

|X|m

X

Figure 2.3. Parallel forward converter

 32

Each look-up table (LUT) is a ROM cell that has a size of (ὴ ÌÏÇά) bits, where ὴ is the

number of bits in each block, and ά is the modulus. Compared to serial forward converters, the

parallel forward converters are faster and more adequate for high speed applications. However,

the parallel converters require Ὧ look-up tables and a modulo adder that adds Ὧ operands with

respect to modulus ά.

In order to reduce the size of each look-up table and therefore enhance the performance of

the overall converter, a technique called periodic partitioning is utilized [20]. We know from

Equation (2.3) that obtaining ȿὢȿ requires storing all the residues ς . Careful investigation

of the residues of ς with respect to modulus ά shows that these residues repeat themselves in

a period ὰ less than ά ρ for some moduli. We refer to ά-1 as the basic period, and to ὰ as the

short period [4]. The periodicity of the residues ȿςȿ with respect to different moduli is shown

in Table 2.1.

Table 2.1. Periodicity of ȿςȿ for different moduli

ά ȿςȿ ά ρ ὰ Saving (%)

3 1,2,1,2,1, é 2 2 0 %

5 1,2,4,3,1,2, é 4 4 0 %

6 1,2,4,1,2,é 5 3 40 %

7 1,2,4,1,2,é 6 3 50 %

9 1,2,4,8,7,5,1,2, é 8 6 25 %

10 1,2,4,8,6,2,4,8, é 9 5 44.4 %

11 1,2,4,8,5,10,9,7,3,6,1,2, é 10 10 0 %

12 1,2,4,8,2,4,8,2, é 11 4 63.3 %

13 1,2,4,8,3,6,12,11, é 12 12 0 %

14 1,2,4,8,2,4,8, é 13 4 69.2 %

15 1,2,4,8,1,2,4, é 14 4 71.4 %

17 1,2,4,8,16,15,13,9, é 16 8 50 %

18 1,2,4,8,16,14,10,2,4,8, é 17 7 58.9 %

19 1,2,4,8,16,13,7,14,9,18, é 18 18 0 %

21 1,2,4,8,16,11,1,2,4, é 20 6 70 %

 33

Table 2.1. shows the great saving when we design look-up tables for some values of ά. For

example, for ά ρυ, we need to store only 4 values. These values can be used for higher

indices because of the periodicity of the residues. This results in saving of 71.4 % in the

memory size.

2.1.2 Special Moduli-Set Forward Converters

Choosing a special moduli-set is the preferred choice to facilitate and expedite the

conversion stages. The special moduli-set forward converters are the most efficient available

converters in terms of speed, area, and power. Usually, the special moduli-sets are referred to as

low-cost moduli-sets. In this section, we will focus on the special moduli-set ς ρȟςȟς

ρ as it is the most commonly used moduli-set.

In contrast to arbitrary moduli-set forward converters, the special moduli-set converters are

usually implemented using pure combinational logic. To compute the residue of a number ὢ (in

binary representation) with respect to modulus ά, we utilize the same principle of Equation

(2.3), i.e. evaluate the values ς . The only difference here is that ά is restricted to ς,

ς ρ, and ς ρ. We shall derive simple formulas that facilitate the algorithm used to obtain

the residues. We show how the residues with respect to the special moduli can be obtained with

reduced complexity algorithms and architectures.

Modulus ς

Obtaining the residue of ὢ with respect to modulus ς is the easiest operation. To understand

that, recall that the basic principle in residue computation is division. When the divisor is a

power of two (ς), the division is further simplified to ὲ-bit right shifting. Thus, the residue of

ὢ with respect to ς is simply the first ὲ least significant bits of the binary representation of ὢ.

Example 2.2.

Let ὢ ςτυφ which has the 12-bit binary representation: 100110011000. We want to find

the residue of ὢ with respect to modulus ά ς ρφȢ

The residue is simply the first four least significant bits of ὢ:

ȿὢȿ ρπππ ψ

 34

Modulus ς ρ

The computation of the residue with respect to modulus ς ρ is also easy to implement.

The only extra overhead is the need for adding an end-around carry in some cases. Many

architectures are available to compute the residue with respect to ς ρ [4,5].

In order to understand the operation of evaluating ȿὢȿ , we notice that:

ȿςȿ ȿς ρ ρȿ ȿȿς ρȿ ȿρȿ ȿ ȿπ ρȿ 1 (2.6)

where ὲ ρ

The same concept can be applied to ȿς ȿ where ή is an integer:

ȿς ȿ Б ȿςȿ ρ (2.7)

Thus, for ά ὲ, the residue of ς with respect to ς ρ can be determined as follows:

ȿςȿ ȿς ȿ ȿȿς ȿ ȿςȿ ȿ ȿςȿ (2.8)

where ὶ is the remainder from the division of ά by ὲȢ

Example 2.3.

Consider ὢ ς, and ά ς ρ. We want to find the residue of ὢ with respect to άȢ

Here: ὲ τ, ά ω, ή ς, and ὶ ρ.

ȿςȿ ȿȿς ȿ ȿςȿ ȿ ς

Modulus ς ρ

In a similar procedure to modulus ς ρ, we obtain the residue of ὢ with respect to

modulus ς ρ as follows:

First, we notice that:

ȿςȿ ȿς ρ ρȿ ȿȿς ρȿ ȿρȿ ȿ ρ (2.9)

Equation (2.9) can be extended for ά ὲ and ά ήὲ ὶ, where ή is an integer, and ὶ is

the remainder from the division of ά by ὲ:

ȿς ȿ ȿȿς ȿ ȿςȿ ȿ
 ς Ḋή Ὥί ὩὺὩὲ
ς ρ ςḊή Ὥί έὨὨ

 (2.10)

The need for adding ς ρ where ή is odd comes from the fact that ȿς ȿ ρ for odd

values of ή. Therefore, to make the residue positive, we need to add ς ρ.

 35

Example 2.4.

Consider ὢ ς, and ά ς ρ. We want to find the residue of ὢ with respect to άȢ

Here: ὲ τ, ά ω, ή ς (even), and ὶ ρ.

ȿςȿ ȿȿς ȿ ȿςȿ ȿ ς

Example 2.5.

Let ὢ ς , and ά ς ρ. We want to find the residue of ὢ with respect to άȢ

Here: ὲ τ, ά ρσ, ή σ (odd), and ὶ ρ.

ȿς ȿ ȿȿς ȿ ȿςȿ ȿ ς ρ ς ρυ

The Special Moduli-Set ς ρȟςȟς ρ

By making use of the mathematical principles explained above, a general algorithm is

presented to convert ὢ (in binary representation) into RNS representation with respect to the

special moduli-set ς ρȟςȟς ρ [4,21,22]. We first partition ὢ into 3 blocks, each of ὲ

bits: ὄ, ὄ, and ὄ, where these blocks can be represented as follows:

ὄ В ὼς (2.11)

ὄ В ὼς (2.12)

ὄ В ὼς (2.13)

Thus,

ὢ ὄς ὄς ὄ (2.14)

The residue ὶ is simply the first ὲ least significant bits, and can be obtained by right

shifting ὢ by ὲ-bits.

The residue ὶ is obtained as follows:

ὶ ȿὢȿ ȿὄς ὄς ὄȿ

 ȿȿὄς ȿ ȿὄςȿ ȿὄȿ ȿ (2.15)

We notice that:

ȿὄς ȿ ȿȿὄȿ ȿς ȿ ȿ (2.16)

ȿὄςȿ ȿȿὄȿ ȿςȿ ȿ (2.17)

ὄ ÁÎÄ ὄ are ὲ-bit numbers. Therefore ὄ ÁÎÄ ὄ are always less than ς ρ. The values

 36

ȿὢȿ are obtained as follows:

ȿς ȿ ȿȿς ρ ρȿ ȿς ρ ρȿ ȿ ρ ρ ρ (2.18)

The value ȿς ȿ is obtained as follows:

ȿςȿ ȿς ρ ρȿ ȿȿς ρȿ ȿρȿ ȿ ȿπ ρȿ 1 (2.19)

Thus,

ὶ ȿὄ ὄ ὄȿ (2.20)

In a similar way, the residue ὶis obtained as follows:

ὶ ȿὢȿ ȿὄς ὄς ὄȿ

 ȿȿὄς ȿ ȿὄςȿ ȿὄȿ ȿ (2.21)

We notice that:

ȿὄς ȿ ȿȿὄȿ ȿς ȿ ȿ (2.22)

ȿὄςȿ ȿȿὄȿ ȿςȿ ȿ (2.23)

The values ȿὢȿ are obtained as follows:

ȿς ȿ ȿȿς ρ ρȿ ȿς ρ ρȿ ȿ ρ ρ ρ (2.24)

The value ȿς ȿ is obtained as follows:

ȿςȿ ȿς ρ ρȿ ȿȿς ρȿ ȿρȿ ȿ ȿπ ρȿ 1 (2.25)

Thus,

ὶ ȿὄ ὄ ὄȿ (2.26)

Example 2.6.

Consider the moduli-set ρυȟρφȟρχ, and ὢ ςτυφρππρρππρρπππ. We want to find

the residues ὶ, ὶ, and ὶȢ

First, we need to obtain the blocks ὄ, ὄ, and ὄ as follows:

ὄ ρππρ ω

ὄ ρππρ ω

ὄ ρπππ ψ

Then, we obtain the residues as follows:

ὶ ὄ ρπππ ψ

ὶ ȿω ω ψȿ ρρ

ὶ ȿω ω ψȿ ψ

 37

Therefore, the RNS representation of ὢ ςτυφ with respect to the moduli-set ρυȟρφȟρχ

is ρρȟψȟψ.

A typical architecture for the implementation of a forward converter from binary to RNS

representation for the special moduli-set ς ρȟςȟς ρ is shown in Figure 2.4. The

design of modulo adders is briefly described in the next section.

Modulo 2n-1

Adder

Modulo 2n+1

Adder

Modulo 2n-1

Adder

Modulo 2n+1

Adder

B3

B2

B1

r3

r1

r2

Figure 2.4. ς ρȟςȟς ρ forward converter

2.1.3 Modulo Addition

In Sections 2.1 and 2.2, we presented some available architectures for the implementation of

forward converters from binary to RNS representation. All these architectures, whether they are

based on arbitrary moduli or special moduli, require modulo addition in the conversion process.

The modulo adder is one of the basic arithmetic units in RNS operations and converters. The

performance of the modulo adder is very critical in the design of forward converters from

binary to RNS representation. In this section, we provide a brief introduction to the modulo

addition operation. We focus on the high-level design of modulo adders. However, the design of

the underlying adder is very important in determining the overall performance of the modulo

adder. The underlying adder is a conventional binary adder that can have different forms such

as ripple-carry adder (RCA), carry-save adder (CSA), carry-lookahead adder (CLA), parallel

prefix adder, and so on. Different modulo adders based on different conventional adder

topologies are explained in [4] for more advanced details. Here, we restrict ourselves to the

basic architectures.

 38

Modulo Adder for an Arbitrary Modulus

For the same word length, a modulo adder is, in general, slower and less efficient than a

conventional adder. The basic idea of modulo addition of any two numbers ὢ and ὣ with

respect to an arbitrary modulus ά is based on the following relation:

ȿὢ ὣȿ
ὢ ὣ Ḋὢ ὣ ά
ὢ ὣ ά Ḋὢ ὣ ά

 (2.27)

where π ὢȟὣ ά.

A typical straightforward implementation of Equation (2.27) is shown in Figure 2.5. The

addition of ὢ and ὣ is performed using a conventional adder. This results in an intermediate

value Ὓ. Another intermediate value Ὓ ά is computed using another conventional adder.

Subtracting ά is performed easily by adding άôs compliment (ά). In binary representation, ά

also represents the value ς ά. If ὢ ὣ ά, then ὢ ὣ ά ς, and the carry-out

(Cout) is equal to 0. If ὢ ὣ ά, then ὢ ὣ ά ὢ ὣ ά ς, and since ὢ ὣ

ά π, a carry-out propagates in this case. The value of Cout instructs the multiplexer (MUX) to

select the proper value between Ὓ and Ὓ ά.

Adder

Adder
M

U
XX

Y

S

Cout

|X+Y|m

←m

S-m

Figure 2.5. Modulo-ά adder

Modulo Adder for Special Moduli

The use of some special moduli instead of arbitrary moduli simplifies the design of the

modulo adder and makes it more efficient. Here, we present the modulo addition operation for

the special moduli: ς, ς ρ, and ς+1. We show some available architectures in the

literature for the special moduli modulo adders.

 39

Modulo ς Adder

Modulo ς addition is the easiest modulo addition operation in the residue domain because it

does not require any extra overhead compared to the conventional addition. Modulo ς addition

of any two numbers ὢ and ὣ, each of ὲ bits, is done by adding the two numbers using a

conventional adder. The result is an ὲ ρ bit output, where the most significant bit is the carry-

out. The residue is the first ὲ lowest significant bits, and the final carry-out is neglected.

Therefore, modulo ς addition is the most efficient modulo addition operation in the residue

domain.

Example 2.7.

We want to compute the following modulo additions:

a) σ τάέὨ ψ

b) υ φάέὨ ψ

Since ψ ς, the result is simply the least three significant bits of the conventional addition,

and the final carry-out is neglected.

a) σ τάέὨ ψ is computed as follows:

 0 1 1

 1 0 0 +

π 1 1 1 = 7

b) υ φάέὨ ψ is computed as follows:

 1 0 1

 1 1 0 +

ρ 0 1 1 = 3

Modulo ς ρ Adder

The modulo ς ρ adder is an important arithmetic unit in RNS because ς ρ is a

commonly used modulus in most special moduli-sets, e.g. ς ρȟςȟς ρ. Some

architectures to implement the ς ρ modulo addition are available in the literature. Here, we

shall present the basic idea behind these algorithms and architectures.

To understand the operation of modulo ς ρ addition of any two numbers ὢ and ὣ, where

 40

π ὢȟὣ ά, we need to distinguish between three different cases:

a) π ὢ ὣ ς 1

b) ὢ ὣ ς ρ

c) ς ρ ὢ ὣ ς ς

In the first case, the result of the conventional addition is less than the upper limit ς 1 and

no carry-out (Cout) is generated at the most significant bit. In this case, the modulo addition of ὢ

and ὣ is equivalent to the conventional addition. In the second case, the result is equal to ς 1

(i.e. all 1ôs in binary representation). However, from RNS definition, the result has to be less

than ς 1. In this case, the result should be zero. This case can be detected when all bits of the

resulting number are ones (i.e. all ὖ ὼṥώ are ones). Correction is done simply in this case

by adding a one and neglecting the carry-out. In the third case, the result of the conventional

addition exceeds ς 1 and a carry-out is generated at the most significant bit. This case is

easily detected by the carry-out. Correction is done by ignoring the carry-out (equivalent to

subtracting ς) and adding 1 to produce the correct result.

Example 2.8.

We want to find the following modulo ς 1 addition operations. Let ὲ υ, and so the

modulus is 31.

a) χ ρςάέὨ σρ

b) ρυρφάέὨ σρ

c) ρυρψάέὨ σρ

In part (a): χ ρς ρω σρ, therefore no correction needed, and the residue is obtained as

follows:

 0 0 1 1 1

 0 1 1 0 0 +

π 1 0 0 1 1 = 19

In part (b): ρυ ρφ σρ, then:

 0 1 1 1 1

 1 0 0 0 0 +

π 1 1 1 1 1 = 31

 41

Since ὖ ὼṥώ ρ for all all Ὥôs, we need to add 1 to the answer and ignore the final

carry-out to obtain the desired value.

 1 1 1 1 1

 0 0 0 0 1 +

ρ 0 0 0 0 0 = 0

In part (c): ρυ ρψ σσ σρ, then:

 0 1 1 1 1

 1 0 0 1 0 +

ρ 0 0 0 0 1 = 33

A carry-out is generated which indicates that the result exceeds 31. To correct the result, we

ignore the final carry-out and add 1 to the result.

 0 0 0 0 1

 0 0 0 0 1 +

π 0 0 0 1 0 = 2

A possible implementation of modulo ς ρ adder using ripple-carry adder (RCA) principle

is shown in Figure 2.6. Correction is done by feeding 1 into the carry-in (Cin) of the first full-

adder (FA) if one of the following two cases is detected:

a) ὖ ὼṥώ ρ for all all Ὥôs

b) Cout=1

FA FA FA
CinCout

Pn-1

Sn-1

P0Pn-2

Sn-2 S0

Figure 2.6. Modulo ς ρ adder

 42

In practice, the architecture in Figure 2.6. suffers from race condition because of the

feedback. To avoid that, the operation can be done in two cycles where the intermediate output

is latched in the first cycle.

Modulo ς ρ Adder

The modulo ς ρ adder is the bottleneck of the design of a forward converter from binary

to RNS representation for the special moduli-set ς ρȟςȟς ρ. Its importance arises

from the fact that designing an efficient modulo ς ρ adder is more difficult than that of the

other two moduli. This is due to difficulties in detecting when the result is equal to ς ρ and

when it exceeds ς ρ.

In a similar way to that used in modulo ς ρ addition, three cases have to be distinguished

[4]. First, we define ὤ as follows:

ὤ ὢ ὣ ς ρ) (2.28)

Then, we define the three cases as follows:

a) ὢ ὣ ς ρ ὭȢὩȢὤ π

b) ὢ ὣ ς ὭȢὩȢὤ ρ

c) ὢ ὣ ς ρ ὥὲὨ ὢ ὣ ς ὭȢὩȢὤ π ὦόὸ ὤ ρ

In the first case, ὢ ὣάέὨς ρ is simply equal to ὤ. In the second case, ὢ

ὣάέὨς ρ is obtained from ὤ by setting the most significant bit of ὤ to 1 and adding 1 to

the result. In the third case, ὤ is negative, and ὢ ὣάέὨς ρ is obtained from ὤ by

setting the most significant bit to 0 and adding 1 to the result. In summary:

ȿὢ ὣȿ
ὤ Ḋὤ π
ς ȿὤ ρȿ Ḋὤ ρ

 ȿὤ ρȿ ḊέὸὬὩὶύὭίὩ
 (2.29)

Example 2.9.

We want to compute the following modulo ς ρ addition operations. Let ὲ τ and so the

modulus is ς ρ ρχ.

a) χ ρτάέὨρχ

b) ρπ φάέὨρχ

c) χ τάέὨρχ

 43

In part (a): ὤ χ ρτ ρχ τ π, then χ ρτάέὨρχ τ

In part (b): ὤ ρπφ ρχ ρ ρρρρρ

We set the most significant bit to 1, and add 1 to the result:

 1 1 1 1 1

 0 0 0 0 1 +

ρ 0 0 0 0 0 = 0

In part (c): ὤ χ τ ρφ φ ρρπρπȟὤ π ὥὲὨ ὤ ρ

We set the most significant bit to 0: πρπρπ, and add 1 to the result:

 0 1 0 1 0

 0 0 0 0 1 +

π 0 1 0 1 1 = 11

A possible architecture for implementing a modulo ς ρ adder is proposed in [4]. The

architecture is shown in Figure 2.7. A carry-save adder (CSA) reduces the three inputs ὢ, ὣ,

and ς ρ to two: partial sum (Ὓ) and partial carry (ὅ). The two values Ὓ and ὅ are then

processed using a parallel-prefix adder. Case (b) is detected if ὖ ὖὖȣ ὖ ρ. Then, the

correction is done by adding ὖ as an end-around carry and setting Ὓ ὖ . Case (c) is

detected if ὅ and therefore ὅ is 0. The correction is done in this case by adding the inverse

of the end-around carry ὅ and setting Ὓ to zero.

CSA

Prefix Tree

Xn-1 Yn-1 ←mn-1 X1 Y1 ←m1 X0 Y0 ←m0

Ġn-1 Ļn-1 Ġ1 Ļ1 Ġ0 Ļ0

Sn-1Sn S0S1

P0
n

←Cn

P1G1 P0G0Pn-1Gn-1

Figure 2.7. Moduloς ρ adder

 44

2.2 Reverse Conversion from RNS to Binary Representation

Reverse conversion algorithms in the literature are all based on either Chinese Remainder

Theorem (CRT) or Mixed-Radix Conversion (MRC). The MRC is an inherently sequential

approach. On the other hand, the CRT can be implemented in parallel. The main drawback of

the CRT based R/B reverse converter, is the need of a large modulo adder in the last stage. All

the converters proposed in the literature have this problem. The reverse conversion is one of the

most difficult RNS operations and has been a major, if not the major, limiting factor to a wider

use of RNS [4]. In general, the realization of a VLSI implementation of R/B converters is still

complex and costly. Here, we derive the mathematical foundations of the CRT and the MRC,

and then we present possible implementations of these methods in reverse conversion.

2.2.1 Chinese Remainder Theorem

The statement of the Chinese Remainder Theorem (CRT) is as follows [4]:

Given a set of pair-wise relatively prime moduli άȟάȟȣȟά and a residue

representation ὶȟὶȟȣȟὶ in that system of some number ὢ, i.e. ὶ ȿὢȿ , that number and

its residues are related by the equation:

ȿὢȿ В ὶὓ ὓ (2.30)

where ὓ is the product of the άôs, and ὓ ὓȾά . If the values involved are constrained so

that the final value of ὢ is within the dynamic range, then the modular reduction on the left-

hand side can be omitted.

To understand the formulation of Equation (2.30), we rewrite ὢ as:

 ὢḯ ὶȟὶȟȣȟὶ

 ḯ ὶȟπȟȣȟπ πȟὶȟȣȟπ ȣ πȟπȟȣȟὶ

 ḯὢ ὢ ȣ ὢ

Hence, the reverse conversion process requires finding ὢôs. The operation of obtaining each

ὢ is a reverse conversion process by itself. However, it is much easier than obtaining ὢ.

Consider now that we want to obtain ὢ from πȟπȟȣȟὶȟȣȟπȟπ. Since the residues of ὢ are

zeros except for ὶ. This dictates that ὢ is a multiple of ά where Ὦ Ὥ. Therefore, ὢ can be

expressed as:

ὢḯὶ πȟπȟȣȟρȟȣȟπȟπḯὶ ὢ

 45

where ὢ is found such that ὢ ρ. We recall from Equation (1.15) that the relation

between the number ὶ and its inverse ὶ is as follows:

 ὶ ὶ άέὨ ά ρ

We define ὓ as ὓȾά , where ὓ Б ά . Then:

ὓ ὓ ρ

Since all ά,ôs are relatively prime, the inverses exist:

ὢ ὓ ὓ

and

ὢ ὶὢ ὶὓ ὓ

ὢ ὢ ὶὓ ὓ

To ensure that the final value is within the dynamic range, modulo reduction has to be added

to both sides of the equation. The result is Equation (2.30).

Example 4.1.

Consider the moduli-set σȟτȟυ. To find the conventional representation of the residue-set

ςȟσȟρ with respect to the given moduli-set using the CRT, we first determine ὓôs:

ὓ
ὓ

ά

σ τ υ

σ

 ςπ

ὓ
ὓ

ά

σ τ υ

τ

 ρυ

ὓ
ὓ

ά

σ τ υ

υ

 46

 ρς

and their inverses:

ȿὓ ὓ ȿ ρ

ȿςπὓ ȿ ρ

ὓ ς

Similarly:

ȿὓ ὓ ȿ ρ

ȿρυὓ ȿ ρ

ὓ σ

and:

ȿὓ ὓ ȿ ρ

ȿρςὓ ȿ ρ

ὓ σ

Using Equation (2.30):

ὢ ὶὓ ὓ

 ȿς ςπς σ ρυσ ρ ρςσȿ

ρρ

We notice from Equation (2.30) that implementing the CRT requires three main steps:

¶ Obtaining ὓôs and their inverses ὓ ôs.

¶ Multiply-and-Accumulate operations

¶ Modular reduction

Since there is no general method to obtain ὓ using Equation (1.15), the best way to

implement it is to save the constants ὢ ὓ ὓ in a ROM. These constants are then

multiplied with the residues (ὶ) and added using a modulo ὓ adder. This is a straightforward

implementation of Equation (2.30). The resulting architecture has two main drawbacks when

the dynamic range is large: one, large or many multipliers are required to multiply the constants

ὢ by the residues; two, a large modulo ὓ adder is required at the final stage. One possible

 47

remedy to obviate the delay and the cost of large or many multipliers is to replace them with

ROMs (look-up tables). All possible values of ὶὢ are stored in the ROMs. This solves one of

the drawbacks mentioned above. However, the need for a multi-operand modulo ὓ adder at the

final stage is inevitable.

The modulo ὓ adder can be realized using ROMs [23], pure combinational logic, or a

combination of both. When the dynamic range is large, the speed and the complexity of the

multi-operand modulo ὓ adder becomes the bottleneck of the design of the R/B converter.

Most of the available CRT based R/B converters have the general high-level block diagram

shown in Figure 2.8.

ROM

ROM

r1

r2

rn

ROM
|r1 |M1

-1|m1M1|M

|r2 |M2
-1|m2M2|M

|rn |Mn
-1|mnMn|M

Modulo M

Adder

X

(in binary)

Figure 2.8. CRT based R/B converter

2.2.2 Mixed-Radix Conversion

Given a set of pair-wise relatively prime moduli άȟάȟȣȟά and a residue

representation ὶȟὶȟȣȟὶ in that system of some number ὢ, i.e. ὶ ȿὢȿ , that number ὢ

can be uniquely represented in mixed-radix form as [4,24]:

ὢ ᾀȟᾀȟȣȟᾀ

where

ὢ ᾀ ᾀά ᾀάά Ȣ Ȣ Ȣᾀά ά ȣά (2.31)

and π ᾀ ὶ.

 48

The Mixed-Radix Conversion (MRC) establishes an association between the unweighted,

non-positional RNS and a weighted, positional mixed-radix system. All what is required to

perform the reverse conversion is to obtain the values ᾀ.

The first value ᾀ is obtained by applying modulo ά reduction on both sides of Equation

(2.31):

ȿὢȿ ᾀ ὶ

The value ᾀ is obtained by rewriting Equation (2.31) as follows:

ὢ ᾀ ᾀά Ȣ Ȣ Ȣᾀά ά ȣά

and then applying modulo ά reduction on both sides:

ȿὢ ᾀȿ ȿᾀάȿ

Multiplying both sides by ȿά ȿ yields:

ȿά ȿ ὢ ᾀ ȿᾀȿ ᾀ

but:

ȿὢ ᾀȿ ȿὢȿ ȿᾀȿ ȿὶ ᾀȿ

Therefore,

ᾀ ȿά ȿ ὶ ᾀ

The value ᾀ is obtained in a similar way:

ᾀ ȿάά ȿ ὶ ᾀά ᾀ

In general:

ᾀ ȿά ȣ άά ȿ ὶ ὶ ά ȣᾀά ᾀ

We notice from the above equations that the MRC is an inherently sequential approach,

where obtaining ᾀ requires generating ᾀ first. This is the main drawback of the MRC

approach. On the other hand, the CRT allows parallel computation of the partial sums ὢôs

which results in faster conversion.

Example 4.2.

Consider the moduli-set σȟτȟυ. To find the conventional representation of the residue-set

ςȟσȟρ with respect to the given moduli-set using MRC, we determine the required inverses:

First, we determine ȿά ȿ as follows:

 49

ȿά ȿ ά ρ

ȿά ȿ σ ρ

ȿά ȿ σ

Similarly, we determine ȿάά ȿ :

ȿάά ȿ άά ρ

ȿάά ȿ ρς ρ

ȿάά ȿ σ

The values ᾀ, ᾀ, and ᾀ are obtained as follows:

 ᾀ ὶ ς

 ᾀ ȿά ȿ ὶ ᾀ

 ȿσ σ ςȿ

 σ

 ᾀ ȿάά ȿ ὶ ᾀά ᾀ

 σ ρ σ σ ς

 π

Therefore, the number ὢ has the mixed-radix representation:

ὢḯ ςȟσȟπ

To obtain ὢ in conventional form, we apply Equation (2.31):

ὢ ᾀ ᾀά ᾀάά

 ς σ σ π τ σ

ρρ

Figure 2.9. shows one possible implementation of an MRC based R/B converter [4]. Two

types of ROMs are used in this realization. The sum addressable ROMs are used to generate the

product of the differences and the inverses [4]. The ordinary ROMs are used to generate the

products of the moduli and the ᾀôs. The summation in Equation (2.31) is implemented using

carry-save adders (CSAs).

 50

ROM ROM ROM ROM

ROM ROM ROM ROM

ROM ROM ROM

ROM ROM

ROM

CSA

CSA

CSA

CSA

r1r2r3r4r5

z2

z3

z4

z5

z2m1

z3m2m1

z4m3m2m1

z5m4m3m2m1

X

Figure 2.9. MRC based R/B converter (ὲ=5)

 51

Chapter 3

Conversion between

Analog and Binary Representations

In a typical signal processing system, the analog signal is transformed into digital data

represented in binary form. This is done by an analog-to-binary converter, or more often called

analog-to-digital converter (ADC). The binary represented data is then processed by the DSP

core. The binary output data can be reconverted into analog form using a binary-to-analog

converter, or more often called digital-to-analog converter (DAC). To perform the same

processing after replacing the DSP core in the system with an RNS based DSP core, we need

first to convert the analog signal into binary form using an ADC, and then convert the binary

data into RNS representation. In Chapter 4, we show various schemes that overcome this extra

overhead and directly convert the analog signal into RNS representation. However, all these

schemes adopt similar algorithms and schemes of the available ADCs. Therefore, it is very

useful to understand the ADC techniques and architectures. In addition, the DAC is a basic

element in the realization of direct reverse converters from RNS to analog representation as

shown in Chapter 4. Also, it is used in some ADC architectures. A brief introduction to the

available DAC architectures is presented.

Before proceeding to ADC architectures, it is useful to cover the essentials of sampling and

quantization processes. A brief introduction to sample/hold (S/H) circuits and quantizers is

presented in the next two sections. In the third section, we present some available architectures

for real-life quantizers (ADCs). In the fourth section, some available architectures for the

implementation of the DAC are presented.

 52

 3.1 Sampling

Sampling is the process of obtaining values from a continuous-time signal at fixed intervals.

The concept of sampling is illustrated in Figure 3.1. A sample-and-hold (S/H) circuit is used to

sample the analog input signal and hold it for quantization by a subsequent circuit. The switch

shown turns on and off periodically in a very short time. When the switch is on, the output

tracks the input, and when it turns off, the sampled input is stored in the output capacitor. The

switch can be implemented as a MOS transmission gate. Practical issues that arise in the

implementation of S/H circuits such as delay, glitches, and charge injection are out of the scope

of this thesis.

VIN C

VOUT

Clock VIN

VOUT

Clock

Figure 3.1. Periodic sampling process

The minimum sampling frequency Ὢ is determined by the Nyquist-Shannon sampling

theorem [25]. The theorem states that the minimum sampling frequency required to perfectly

reconstruct a bandlimited signal from its samples is ςὪȟ , where Ὢȟ is the highest

frequency component in the spectrum of the bandlimited signal. If this condition is not satisfied,

some information will be lost due to aliasing. In practice, most of ADCs operate at 3 to 20 times

the input signal bandwidth to facilitate the realization of antialiasing and reconstruction fillers

[26]. These ADCs are usually referred to as Nyquist-rate ADCs. The other category includes

ADCs that operate much faster than the Nyquist-rate ςὪȟ (typically 20 to 512 times faster).

These ADCs are referred to as oversampling ADCs. In our discussion, we will focus on

Nyquist-rate ADCs since they can provide adequate speed for RNS applications compared to

oversampling converters.

 53

3.2 Quantization

Quantization is a non-linear process that transforms a continuous range of input samples into

a finite set of digital code words. Conceptually, the process of analog-to-digital conversion

comprises both sampling and quantization processes. A conventional ADC performs both

sampling and quantization. However, the terms quantizer and ADC are often used

interchangeably. A quantizer is fully described by its transfer function. The transfer function of

a typical quantizer is shown in Figure 3.2. The horizontal axis includes the threshold levels with

which the sampled input is compared. The vertical axis includes the digital code representation

associated with each output state.

Input

Quantized

Output

ȹ

ȹ_
2

_
2

3ȹ
2

5ȹ_
2

7ȹ_
2

-3ȹ
2

-5ȹ
2

-7ȹ
2

-ȹ____
2

-9ȹ_

2ȹ

3ȹ

-ȹ

-2ȹ

-3ȹ

-4ȹ

Full Scale (FS)

Figure 3.2. Transfer function of a typical quantizer

The analog input voltage has to be within the allowed range of voltages. The allowed voltage

range is referred to as the full scale (ὊὛ). If the analog input exceeds the full scale, the quantizer

goes into saturation. The difference between the threshold levels is called the step size (Ў) and it

determines the resolution of the quantizer. The step size of the converter is related to the full

scale (ὊὛ) and the number of representing bits (ὲ) by the equation:

Ў (3.1)

 54

This means that the output digital code changes each time the analog input changes by Ў. The

quantizer is a non-linear system. A straight line that represents the relationship between the

input and the output in a linear system is replaced by a staircase-like transfer function. The

quantizer shown in Figure 3.2 is classified as a midtread uniform quantizer. The quantizers can

be divided into two categories based on the locations of the threshold levels: uniform and non-

uniform (Figure 3.3). In uniform quantizers, the threshold levels are evenly distributed, while

the thresholds in non-uniform quantizers are non-evenly distributed. Instead, they follow the

probability density function (PDF) of the input signal. In our discussion, we will restrict

ourselves to uniform quantizers. Based on the existence of an output zero level, the quantizers

can be divided into two categories: midtread and midrise (Figure 3.4). Midtread quantizers

include one zero output level. On the other hand, midrise quantizers do not include a zero

output level. The transfer function of both midtread and midrise quantizers is odd symmetric

about the vertical axis.

.

Input

Quantized

Output

Input

Quantized

Output

(a) (b)

 (a) (b)

Figure 3.3. Quantizer transfer function: (a) uniform (b) non-uniform

All quantizers covered so far are assumed to be ideal. However, real quantizers deviate from

the ideal transfer function because of the imperfections in the manufacturing process. These

imperfections cause the threshold levels to deviate from their correct locations. In this context,

we need to define the commonly used terms to describe some of the performance limitations:

 55

Input

Quantized

Output

ȹ

ȹ_
2

_
2

3ȹ
2

5ȹ_
2

7ȹ_
2

-3ȹ
2

-5ȹ
2

-7ȹ
2

-ȹ____
2

-9ȹ_

2ȹ

3ȹ

-ȹ

-2ȹ

-3ȹ

-4ȹ

Input

Quantized

Output

ȹ

ȹ_
2

_
2

3ȹ
2

5ȹ

_

2
7ȹ_

2
-3ȹ

2
-5ȹ

2

-7ȹ

_

_

_

2

4ȹ

_

3ȹ-ȹ-2ȹ-3ȹ-4ȹ -ȹ 2ȹ

(a) (b)

Figure 3.4. Quantizer transfer function: (a) midtread (b) midrise

Offset error

The error that causes all threshold levels to shift from their ideal positions by an equal

amount is called an offset error (Figure 3.5). The offset error is the deviation of the actual

analog voltage, that ideally corresponds to the level ππȣπρ , from Ў, or in units of Ў:

Ὡ ȣ

Ў
 (3.2)

Input

Quantized

Output

ȹ

ȹ_
2

_
2

3ȹ
2

5ȹ_
2

7ȹ_
2

-3ȹ
2

-5ȹ
2

-7ȹ
2

-ȹ____
2

-9ȹ_

2ȹ

3ȹ

-ȹ

-2ȹ

-3ȹ

-4ȹ

Figure 3.5. Effect of offset error on quantizer transfer function

 56

Gain error

The gain error Ὡ is the difference between the actual and the ideal quantizer transfer

functions at the full scale after the offset error is removed (Figure 3.6). The gain error of an ὲ-

bit ADC in units of Ў is given by:

Ὡ ȣ ȣ

Ў
ς ς (3.3)

Input

Quantized

Output

ȹ

ȹ_
2

_
2

3ȹ
2

5ȹ_
2

7ȹ_
2

-3ȹ
2

-5ȹ
2

-7ȹ
2

-ȹ____
2

-9ȹ_

2ȹ

3ȹ

-ȹ

-2ȹ

-3ȹ

-4ȹGain error

Figure 3.6. Effect of gain error on quantizer transfer function

Non-linearity errors

Non-linearity errors refer to the deviation of the actual transfer function from the straight line

after the offset error and the gain error are removed. This is called the integral non-linearity

(INL) error.

Another term that is used to characterize the non-linearity of the quantizer is the differential

non-linearity (DNL) error. In an ideal quantizer, the threshold levels are exactly one step size

(Ў) apart. DNL is the deviation of the analog step size away from the ideal value (Ў), after the

offset error and the gain error are removed. Linearity error effect on the quantizer transfer

function is depicted in Figure 3.7.

 57

Input

Quantized

Output

ȹ

ȹ_
2

_
2

3ȹ
2

5ȹ_
2

7ȹ_
2

-3ȹ
2

-5ȹ
2

-7ȹ
2

-ȹ____
2

-9ȹ_

2ȹ

3ȹ

-ȹ

-2ȹ

-3ȹ

-4ȹ
Threshold

errors

Figure 3.7. Effect of linearity error on quantizer transfer function

Missing codes

Missing codes result when a valid output code never occurs because of excessive non-

linearity errors. The phenomenon is graphically illustrated in Figure 3.8. An ADC is guaranteed

to be missing code free if INL < Ў or DNL < Ў.

Input

Quantized

Output

ȹ

ȹ_
2

_
2

3ȹ
2

5ȹ_
2

7ȹ_
2

-3ȹ
2

-5ȹ
2

-7ȹ
2

-ȹ____
2

-9ȹ_

2ȹ

3ȹ

-ȹ

-2ȹ

-3ȹ

-4ȹ

Missing

codes

Missing

codes

Figure 3.8. Effect of missing codes on quantizer transfer function

 58

Quantization Noise

As mentioned earlier, the quantizer is a non-linear system that assigns a representation level

to the sampled input based on its location within the threshold intervals. The quantized value

ήὼ is, in general, different from the input value ὢ. The difference between the two values is

referred to as the quantization error Ὡὼ, where:

Ὡὼ ήὼ ὼ (3.4)

If the analog input is guaranteed to be within the full scale, then the quantization error will be

in the range:

Ў
Ὡὼ

Ў
 (3.5)

A simplified statistical model that approximates the quantization error as a random noise

component is often used. The statistical representation is based on the following assumptions

[25]:

¶ The quantization error is a sequence of a stationary random process.

¶ The quantization error is uncorrelated with the sampled input.

¶ The elements of the quantization error are uncorrelated (white noise process).

¶ The probability density function (PDF) is uniform over the range [
Ў
 ,
Ў
].

(a)

ễ

(b)

x

x

q(x)

q(x)

e(x)

Figure 3.9. Quantizer models: (a) non-linear (b) linear

 59

These constraints lead to simple and effective analysis of the quantizer performance, where

the quantization error is considered as an additive white noise source (Figure 3.9) with

uniformly distributed PDF. The probability density function (PDF) of the quantization error

based on the above mentioned assumptions is shown in Figure 3.10. The PDF is uniformly

distributed over the range [
Ў
 ,
Ў
]. Therefore, the output noise power ὖ is equivalent to the

variance of ὼ :

ὖ „ ᷿ Ὡ
Ў
 ὨὩ

Ў

Ў

Ў (3.6)

The power of a full swing sinusoidal input ὼὸ ÓÉÎ ς“Ὢὸ is given by:

ὖ
Ѝ

Ў
 (3.7)

The performance of the quantizer is usually characterized by the ratio between the output

signal power (ὖ) and the output noise power (ὖ). This ratio is called signal-to-noise-ratio

(ὛὔὙ) and often evaluated in decibels. The quantizer ὛὔὙ is therefore given by:

ὛὔὙρπÌÏÇ
ȢЎȾ

ЎȾ
φȢπςὲ ρȢχφ Ὠὄ (3.8)

e

Pe

ȹ
_1

ȹ_
2

ȹ_
2

-

Figure 3.10. Quantizer PDF

The ὛὔὙ obtained from Equation (3.8) is used to predict the performance of the quantizer.

The obtained value represents the maximum ὛὔὙ of an ὲ-bit quantizer. Usually, the

performance of the quantizer is compared to the ideal one by rewriting Equation (3.8). The

maximum ὛὔὙ is replaced by the actual ὛὔὙ, and Equation (3.8) is solved for the equivalent

 60

resolution (ὲ). The result is called the Equivalent-Number-Of-Bits (Ὁὔὕὄ) and it is commonly

used as a figure of merit to evaluate the performance of the quantizer:

Ὁὔὕὄ
Ȣ

Ȣ
 (3.9)

In practice, ADCs have different achievable maximum ὛὔὙ when different inputs are

applied in different conditions. It is important here to emphasize that the ὛὔὙ is evaluated in

the above calculations with respect to quantization noise, and other noise sources (such as

thermal noise, jitter, etc.) are isolated.

3.3 Analog-to-Digital Converter Architectures

We need to develop efficient architectures for direct conversion from analog to RNS

representation. However, we should keep in mind that the residue representation is in digital

form. Therefore, investigating some conventional analog-to-binary, or more often called analog-

to-digital, conversion schemes and extending their concepts to analog-to-residue conversion is a

very interesting approach. In fact, most of the available architectures of direct analog-to-residue

converters are based on similar ADC architectures.

In this section, we present a brief comparison among some ADC architectures that are

suitable for RNS implementation. The RNS implementation requires high conversion speed and

high enough resolution to be partitioned into small residues. Because speed is one of the main

objectives of RNS implementation, we shall restrict ourselves to ADCs which have medium-to-

high speed.

3.3.1 Flash (or parallel) ADC

Flash ADC is considered the fastest among all analog-to-digital converters. A general

architecture of a flash ADC is shown in Figure 3.11. A typical ὲ-bit flash ADC requires ς

resistors, ς ρ comparators, and (ς ρ to ὲ) encoder. Each comparator is connected with

one input to the analog sampled input and with the other input to the resistor ladder. The

comparators compare the analog input with the threshold levels. The voltages that correspond to

the threshold levels are generated using a resistor ladder that contains ς resistors. The digital

output of the comparator bank is called a thermometer code, because as the analog input

increases, the comparators turn more outputs into one in a monotonic way (like a mercury-filled

 61

thermometer). The thermometer-coded output is converted into digital binary code using a

(ς ρ to ὲ) digital encoder.

As mentioned above, the flash ADC is the best choice when high conversion speed is

required. The high speed of the flash ADC is due to the fact that it compares the input with all

threshold levels simultaneously (in parallel) and produces a digital output. However, flash

ADCs suffer from many practical limitations. First, the hardware complexity and, more

importantly, the power consumption increase exponentially (ς) with resolution. Every

additional bit doubles both the area and the power consumption. The second drawback is that

the large number of comparators connected to the input results in a large capacitive load at the

input node [26]. Indeed, this limits the speed of the converter when the targeted resolution is

high. The requirement of small comparator offset is another limitation that is difficult to achieve

in modern technologies due to process variations. It is very important to maintain the

comparator offset less than half a step size to ensure monotonicity of the converter. When high

resolution is required, the step size is very small. Usually, an additional circuit is added before

the encoder to detect bubble errors and ensure monotonicity. In general, flash ADCs are the

optimum for very high speed applications, but the resolution cannot be very high as many

limitations make the implementation impractical [27]. Flash topology is very effective for low

resolution up to 8 bits [28].

Latch
-

+

Latch
-

+

Latch
-

+

Latch
-

+

Latch
-

+

Latch
-

+

VREF VIN

Encoder
n-bit

digital output

Preamplifiers

Comparators

Figure 3.11. Flash ADC

 62

 3.3.2 Interpolating Flash ADC

Interpolation is a common technique used to reduce the hardware complexity and improve

the performance of flash ADCs. Usually, this technique is used along with folding technique.

However, interpolation was used effectively by itself [29]. A 3-bit interpolating flash ADC is

shown in Figure 3.12. The main idea behind interpolation is to use the pre-amplifiers as linear

amplifiers near the threshold voltages. The inputs to the latches are generated using a resistor

ladder. The main advantage of interpolation is the reduction of the number of preamplifiers

which results in reduction in the input capacitance. This solves a practical problem in flash

ADCs, and slightly reduces the power consumption.

Latch

Latch
-

+

Latch
-

+

Latch

Latch
-

+

Latch
-

+

VREF
VIN

Encoder
3-bit

digital output

Preamplifiers

Latch

Figure 3.12. A 3-bit interpolating flash ADC

Interpolation can be realized using a resistive ladder as shown in Figure 3.11. Other

techniques such as current mirrors [30] and capacitors [31] can be utilized to implement the

interpolating technique.

 63

3.3.3 Two-Stage Flash ADC

The two-stage architecture is one of the most popular approaches for high speed, medium

resolution ADCs. Figure 3.13. shows the basic architecture of an ὲ-bit two-stage ADC. The S/H

circuit samples the analog input. The sampled input is fed to the first ὲ-bit flash ADC to obtain

the most significant bits (MSBs). The first flash ADC is usually referred to as the coarse

converter. The output of the coarse converter is converted back into analog using an ὲ-bit

DAC. This value is subtracted from the sampled input. The residue obtained from subtraction is

amplified and quantized using a second ὲ-bit flash ADC to obtain the lowest significant bits

(LSB). The second flash ADC is referred to as the fine converter. The S/H output is held until

the completion of the conversion in the fine converter. The overall resolution is ὲ bits where ὲ

= ὲ + ὲ.

n1-bit

Coarse ADC

n1-bit

DAC

n2-bit

Fine ADCễ 2n1

+_Vin

n1 MSBs n2 LSBs
Figure 3.13. Two-stage flash ADC

The two-stage ADC reduces the number of comparators from ς ρ to (ς ρ) + (ς

ρ). For example, an 8-bit (ὲ = ὲ = 4) two-stage flash ADC requires 30 comparators, which is

much less than 255 comparators required by an 8-bit full flash ADC. As a result, both the area

and the power consumption are reduced. In addition, the input capacitive loading is reduced.

However, there are some drawbacks of the two-stage ADC architecture compared to the flash

ADC. First, the two-stage ADC has larger delay due to the additional stage. The second

drawback of the ὲ-bit two-stage ADC is the requirement of a DAC whose linearity is better

than ὲ bits. In addition, a difference amplifier is required to obtain the residue and amplify it.

This difference amplifier also adds to the overall latency of the two-stage ADC. In general, two-

stage ADCs have good performance in terms of speed, and medium resolution (10-12 bits) [32,

33].

 64

3.3.4 Multi-Stage Pipelined ADC

The concept of the two-stage ADC can be extended to multiïstage, where a single bit is

obtained in each stage. Direct implementation of this concept will suffer from very large delay.

Using a sample-and-hold (S/H) circuit in each stage allows pipelining and increases the

throughput. A general structure of a pipelined ADC is illustrated in Figure 3.14. The pipelined

ADC does not have to wait till the residues ripple through the entire converter. After each stage

completes the conversion, it does not sit idle but immediately starts converting the next sample.

The pipelining architecture severely reduces the complexity. The complexity is proportional

to ὲ instead of ς (as in flash ADC), because each stage needs only 1-bit ADC. However, the

gain accuracy of the first residue amplifier becomes more stringent, because the accuracy of

conversion for the remaining bits is dependent on the first residue. Nevertheless, very high

resolution with high throughput can be achieved by adding a digital-error correction circuit and

utilizing trimming or calibration. In summary, pipelined ADCs are very suitable for applications

in which high resolution and high throughput are required, while the latency is not critical [34].

1-bit

ADC

1-bit

DAC ễ x2
+_Vin S/H

1-bit

ADC

1-bit

DAC ễ x2
+_

S/H
1-bit

ADC
S/Hx2

bn-1

(MSB)

b0

(LSB)

bn-2

Figure 3.14. Pipelined ADC architecture

3.3.5 Time-Interleaved ADC

The main idea of time-interleaved ADCs is the utilization of parallelism in the conversion

process. The general architecture of a three-channel time-interleaved σὲ-bit ADC is shown in

Figure 3.15. The three ADCs operate in parallel fashion and time-interleaving manner [26]. The

first channel samples the input while the other channels are evaluating the previous samples.

The clock ɲ samples the input three times faster than ᶮ, ᶮ, and ɲ . In addition, ɲ , ᶮ, and

ᶮ are delayed with respect to each other by a period ᶮ. Theoretically, the speed of the overall

 65

three-channel time-interleaved converter is three times the speed of the individual converters.

This is a great advantage because the overall speed can be increased by increasing the number

of channels, while the area and the power consumption will increase linearly. However, it is

very difficult to achieve well matched delayed clocks in practice because of mismatches in the

layout of the clock distribution as well as some other noise effects on the clock. Mismatches

produce tones at the sampling frequency, where ὔ is the number of channels. This distorts the

output spectrum and degrades the performance of the converter.

n-bit ADC
Digital

Multiplexer

Vin S/H

n-bit ADC

n-bit ADCS/H

S/H

S/H

Ø0

Ø1

Ø2

Ø3

3n-bit

digital output

Figure 3.15. A 3ὲ-bit three-channel time-interleaved ADC architecture

3.3.6 Folding ADC

As mentioned earlier, interpolating is used to reduce the number of preamplifiers and

consequently the input capacitive loading. This results in slight reduction in hardware

complexity and power consumption. However, the number of latches and the size of the

encoder are still proportional to ς, where ὲ is the number of bits.

Folding is a technique that significantly reduces the number of latches and the size of the

encoder along with the number of preamplifiers. Folding and interpolating are often used

concurrently for significant reduction in the complexity of the overall architecture. Folding was

first introduced by Arbel and Kurz [35] in 1975.

 66

The operation of a folding ADC is similar to that of a two-stage ADC where a coarse

converter is used to obtain the MSBs and the remaining LSBs are obtained after the signal is

folded. The folding ADC obviates the need for an accurate DAC. Instead, the analog input has

to undergo an analog preprocessing stage to fold the signal. A general structure that illustrates

the concept of folding is shown in Figure 3.16. The architecture uses a (ÌÏÇὊ)-bit coarse

converter and a (. ÌÏÇὊ)-bit fine converter, where Ὂ is the folding factor. The folding factor

Ὂ is defined as the number of folding segments in the transfer function of the folding block.

(log2F)-bit

ADC

(N-log2F)-bit

ADC
cycle

 1

cycle

2

cycle

 3

cycle

 F-1

cycle

 F

Vin

MSB

LSB

Analog Folding

Figure 3.16. Folding ADC architecture

The complexity of the folding ADC depends on Ὂ. The complexity of the coarse quantizer

and the folding circuit is proportional to Ὂ, while the complexity of the fine quantizer is

proportional to ς Ὂϳ .

3.3.7 Successive Approximation ADC

The successive approximation ADC is widely used in many applications. Its popularity stems

from the good ratio of speed/power and the fact that the converter is very compact making it an

inexpensive device [36]. The successive approximation ADC has reasonable speed with very

good resolution and reduces the complexity and the power consumption of the circuit. A block

diagram of a typical successive approximation ADC is shown in Figure 3.17. The basic idea

behind the successive approximation is the binary search algorithm. The analog input ὢ is

 67

sampled. A timing control system known as the successive approximation register (SAR) is

used to control the voltages generated by the DAC. The SAR sets the most significant bit

(MSB) to 1 while the remaining bits are maintained at 0. The DAC converts the SAR value into

analog and compares it to the analog input. If the analog input voltage is higher than the DAC

output, the comparator output is set to 1; if not, the comparator output is set to 0. The SAR

retains the MSB bit and proceeds with the next significant bit. The procedure is repeated until

the output voltage of the DAC converges to the analog input within a specified accuracy

determined by the size of the SAR. The algorithm requires one clock cycle to sample the analog

input and one clock cycle to determine each bit. In total, the conversion requires ὄ ρ clock

cycles where ὄ is the size of the SAR which is equivalent to the required resolution. The main

drawback of the successive approximation technique is its sequential nature which limits the

speed when high resolution is also required.

+

-

Comparator

S/H

SAR

DAC

N-bit

digital output

VIN

Figure 3.17. Successive approximation ADC architecture

 68

3.3.8 Summary Comparison

Table 3.1. Comparison among the described ADC architectures

Architecture Advantages Disadvantages

Flash

- Very fast.

- No DAC required.

- Low resolution (8 bits).

- Complexity and power increase

exponentially with resolution.

- High input capacitive loading.

- Small comparator offset required.

Interpolating

- Very fast.

- No DAC required.

- Reduced input capacitive

loading.

- Low resolution.

- Complexity and power increase

exponentially with resolution.

Folding

- Fast.

- No DAC required.

- Reduced area, power, and

input capacitive loading.

- Limited resolution.

- Non-idealities in the folding

circuits.

Two -Stage

- Reduced area, power, and

input capacitive loading.

- Possible error correction.

- Moderate speed.

- Resolution limited to (10 ï12

bits).

Pipelined

- High throughput.

- Possible error correction.

- Reduced input capacitive

loading.

- Latency is proportional to the

number of stages.

- Multiple S/H circuits required.

Time-

Interleaved

- High throughput. - Clock mismatches degrade the

performance.

Successive

Approximation

- High resolution.

- Low input capacitance.

-Very low complexity and

power consumption.

- Low speed (ὲ cycles) compared

to flash ADC.

- Accurate DAC required.

 69

3.4 Digital-to-Analog Converter Architectures

We present here some available architectures for the implementation of the DAC. In general,

there are three main types of DACs: decoder-based, binary-weighted, and thermometer-code

converters. Other hybrid architectures can be realized using any combination of these three

types. However, we shall restrict our discussion to the three main types.

The general characteristic equation of an ὲ-bit DAC is given by:

ὠ ὠ ὦς ὦς Ȣ Ȣ Ȣ ὦς (3.10)

3.4.1 Decoder-based DAC

The decoder-based DAC is a straightforward implementation of Equation (3.10). In this

approach, an ὲ-bit DAC has ς reference signals at its input. Depending on the digital input,

only one low impedance path is created, and the corresponding signal passes to the output.

Figure 3.18. shows a 3-bit decoder-based DAC. The switches can be implemented using pass

transistors or transmission gates.

-

+

Buffer

R

R

R

R

R

R

R

R

Vref

b1

b2

b3

b3

b3

b3

b3

b3

b3

b3

b2

b2

b2

b1

Vout

Figure 3.18. A 3-bit decoder-based DAC

 70

Since the voltage at any intermediate node in the resistor ladder must have a lower voltage

than all upper nodes, the DAC is guaranteed to be monotonic. Matching between the resistors in

the ladder is the most important factor in determining the resolution of the resulting DAC. In

terms of speed, the delay through the resistors is a major limitation of the speed. An alternative

implementation of the decoder-based DAC for high speed applications is shown in Figure 3.19.,

where a digital decoder is used to provide a single bus at the input switches. However, the price

is larger area and larger capacitive loading at the bus nodes [26].

-

+

Buffer

R

R

R

R

R

R

R

R

Vref

b2

Vout

3 t 8

decoder

b1

b3

Figure 3.19. An alternative implementation of decoder based DAC

3.4.2 Binary-scaled DAC

The basic idea behind the binary-scaled DAC is to create an array of signals that are scaled in

a binary fashion. One possible implementation is the architecture shown in Figure 3.20. where

the resistors, and so the currents, are scaled by order of ς. However, when ὲ is large, the

resistors and the currents can be large which limits the performance. This architecture is not

adequate for high speed applications because of the glitches at the output and non guaranteed

monotonicity.

 71

-

+

Buffer

16R

b2
Vout

b1 b3

8R4R2R

RF

-Vref

b4

Figure 3.20. A 4-bit binary-weighted DAC

A better implementation of the binary-scaled DAC is the R-2R ladder architecture. The

architecture is shown in Figure 3.21. In this architecture, the currents are scaled in a binary

fashion while maintaining small values of the resistors. The resulting DAC has better accuracy

and smaller size compared to the architecture shown in Figure 3.20. In addition, matching the

resistors is easier in this case, since only two resistor values are required (R and 2R).

-

+

Buffer

b2
Vout

b1 b3

2R

RF

-Vref

b4

2R 2R 2R

RRR 2R

I I/2 I/4 I/8

Figure 3.21. A 4-bit R-2R DAC

3.4.3 Thermometer-code DAC

An ὲ-bit thermometer-code DAC requires ς input switches to fully represent the input data.

This is done by encoding the binary input into thermometer-code using a conversion circuit.

The area of the resulting circuit can be large. However, the thermometer-code DAC has better

linearity performance and reduces the glitches at the output. A 3-bit thermometer-code DAC

architecture is shown in Figure 3.22.

 72

-

+

Buffer

d2
Vout

d1 d3

R

RF

-Vref

d4

 R R R

d6d5 d7

R

d8

 R R R

Binary-to-thermometer code conversion circuit

d8d7d6d5d4d3d2d1

b1 b2 b3

Figure 3.22. A 3-bit thermometer-code DAC

 73

Chapter 4

Conversion between

Analog and RNS Representations

In this chapter, we discuss the direct conversion between analog representation and RNS

representation. In Chapter 2, we assumed that the available data is already sampled, quantized,

and in binary format. However, in real-time applications, the interaction with the real analog

world requires converting the continuous-time analog signal into residue representation and vice

versa. Usually, this is done in two stages. For example, to convert an analog signal into residue

form, the analog signal is first sampled and quantized using an ADC. Next, the binary

represented data is converted into residue representation using one of the proposed B/R forward

conversion schemes in Chapter 2. This makes the conversion inefficient due to the increased

latency and complexity. In order to utilize an RNS-based processor (Figure 1.1.) in a certain

application, we need to develop conversion circuits that perform as efficient as the analog-to-

digital converter (ADC) and the digital-to-analog converter (DAC) in digital binary systems.

Thus, direct conversion from analog-to-residue (A/R) and from residue-to-analog (A/R) is

sought to eliminate the intermediate binary stage delay and improve the efficiency of the overall

RNS.

This chapter consists of two main sections. In the first section, we discuss the process of

direct A/R conversion and present some proposed schemes and architectures. In the second

section, we discuss the process of direct R/A conversion and present possible implementations

of the available algorithms.

 74

4.1. Forward Conversion from Analog to RNS Representation

In this section, in addition to the literature review of some proposed direct analog-to-residue

(A/R) conversion schemes, we present two schemes proposed by us. The A/R conversion is

necessary when interaction with the real analog world is required. Some researchers have

worked on that problem and proposed various architectures [37-42]. The proposed architectures

extend the principles of the conventional ADCs to A/R converters. Therefore, we shall refer to

Section 3.3. whenever further explanation is needed. Explanation and analysis to demonstrate

the efficiency of the proposed schemes are provided. The proposed architectures are compared

to both their analog-to-digital counterpart converters and to their similar A/R architectures

proposed in previous work. The main A/R converters types are the following:

4.1.1 Flash A/R Converter

The flash principle described in Section 3.3. can be applied to A/R converters. The flash A/R

converter described in [37] and [38] uses the same number of comparators and resistors. The

proposed ὲ-bit flash A/R converter requires ς ρ comparators and ς resistors. The only

modification is that the thermometer code is converted into residue representation instead of

binary representation. To do that, we invoke to the base value definition described in Section

1.2. The dynamic range ὓ is partitioned into groups of ά integer numbers, where ά is the

largest modulus. The (ς ρ to ὲ) encoder in an ὲ-bit flash ADC is replaced with the encoder

shown in Figure 4.1. The proposed encoder converts the thermometer-coded output of the

comparator bank into residue form. The first step of the conversion process is to obtain the base

value that corresponds to the sampled input ὢ. The function Ὁ is defined as:

Ὁ Ὃ ὋṥὋ (4.1)

where

Ὃ
ρ Ḋὢ ὄ

 π ḊέὸὬὩὶύὭίὩ
 (4.2)

Equation (4.1) can be implemented using XOR gates. This array of XOR gates enables the

buffer that corresponds to the base value (ὄ). The residue is obtained using a set of ὓȾά

buffers. Since the XOR gate output will be zero for ὢ π, a NAND gate is used for the first

buffer enable. For any input ὢᶰὓ, only one XOR output will be asserted and the function Ὁ

will enable only the buffer that corresponds to the base value of X. Thus, the residue of ὢ with

 75

respect to ά is the number of 1's beyond the base value, i.e. ȿὢȿ ὢ ɀ ὄ. The output of

the buffer that corresponds to the base value drives a PLA of size ά ÌÏÇά ρ bits,

whose output is the digital binary representation of ȿὢȿ [38].

To obtain all the residues with respect to different moduli, we notice that any number ὢ has

unique representation in its range. Therefore, the knowledge of the base value (ὄ) along with

the residueȿὢȿ is sufficient to uniquely identify the other residues. The PLA size, in this case,

has to be modified to ά ὰ В ổÌÏÇά ρỖ bits, where ὰ ổÌÏÇά ρỖ

represents the extra bits to be added [39].

Thermometer

Code

Range

codes
3-state

buffers

(mr+1) bit

bus

Latch PLA

E0

E1

E2

EM/m-1

G0

G1

G2

residues

Figure 4.1. Conversion from thermometer code to residue

 76

The latency of the proposed flash A/R converter is:

ὸȾ ὸ ὸ ὸ ὸ (4.3)

On the other hand, a similar flash ADC will have a latency given by:

ὸ ὸ ὸ (4.4)

where ὸ is the delay of the ROM encoder used to convert the thermometer code into binary

code in a flash ADC.

For large dynamic ranges: ὸ ὸ ὸ Ḻὸ . Therefore, a flash A/R converter

can be even faster than its ADC counterpart. However, the proposed converter does not solve

any of the practical limitations of flash converters discussed in Section 3.3. The resolution of

the proposed converter is limited due to the exponential increase in hardware complexity and

power consumption. In addition, the input capacitance is large for high resolution, and offset

mismatches are inevitable.

An iterative technique applied to flash principle has been reported in [39] and [40] to reduce

its hardware complexity. The proposed architecture consists of two stages, where the first stage

generates the base value, and the second stage generates the residue. The proposed architecture

is shown in Figure 4.2.

Analog

MUX
FC1 DEMUX

DAC

D
A

2 i m

FC2

Quotient

Residue

X

VIN =X

Figure 4.2. Iterative flash A/R converter

 77

The analog input ὢ is sampled and fed to the input of the first flash converter (FC1). The first

converter obtains the ά most significant bits (MSBs) of the quotient which will be stored in the

(MSBs) of the first register (R1) using a digital demultiplexer (DEMUX). This value is

converted back into analog using a DAC with gain ά and fed to a difference amplifier (DA).

The output of the DA is the remaining quotient and the residue. This value is amplified by a

gain ς , where Ὥ is the number of iteration, and the next ά bits of the quotient are obtained

again by the first flash converter. The process is repeated for Ὧ cycles where:

Ὧ (4.5)

After Ὧ cycles, the quotient which represents the base value will be stored in R1. The output

of the DA represents the residues. This value is fed to the second flash converter (FC2) to

obtain the digital representation of the residue [39,40].

The proposed architecture reduces the hardware complexity and thereafter the power

consumption. In addition, it reduces the capacitive loading at the input, and improves the

performance of the overall A/R converter. Digital correction circuit can be added for further

improvement as proposed in [39]. However, these advantages are at the price of increasing the

latency, where Ὧ ρ cycles are required to perform the conversion. Moreover, the circuit is

not very simple and requires an accurate variable gain amplifier.

In our approach [41], we propose an A/R conversion scheme based on the same flash

principle. The complexity is significantly reduced while preserving most of the advantages of

the flash converter. The proposed architecture is shown in Figure 4.3. Consider the analog input

ὢ is in the dynamic range πȡὓ ρ. We compare the analog input with the base values of

modulus ά which are produced by the resistor ladder. This requires ρ comparators in the

first stage instead of ὓ comparators to compare with all levels as in [37] and [38]. The outputs

of the comparators are converted from thermometer code to binary code using an encoder. The

digital output is the binary representation of the base value with respect to modulus ά . The

base value is converted into analog and subtracted from the analog input using a difference

amplifier (DA). The difference amplifier has a gain of to maintain the same ὠ for both

ladders in the two stages. The output of the difference amplifier represents the residue. The

 78

output residue is converted into digital format using another flash ADC with ά ρ

comparators. By knowing the base value and the residue of the input ὢ with respect to one of

the moduli, we can determine the other residues with respect to their moduli as shown in [37]

and [38].

The total number of comparators in the proposed architecture is ρ ά ρ. This

number can be used to estimate the overall area size since it is proportional to the number of

latches and the size of the encoders. The power consumption is also directly proportional to the

number of comparators. To illustrate the great saving in the proposed converter, consider the

moduli-set {15, 16, 17} where ὓ ς represents a 12-bit converter. Using the architecture in

[37], we need ὓ ρ τπχω comparators. Using our proposed architecture, we need only ςυυ

comparators.

Latch
-

+

Latch
-

+

Latch
-

+

Latch
-

+

Latch
-

+

Latch
-

+

VREF VIN

Encoder DAC

+

-

DA

VIN

Latch
-

+

Latch
-

+

Latch
-

+

Encoder

VREF VIN

Figure 4.3. Modified flash A/R converter

For the widely used moduli-set ς ρȟςȟς ρ, the dynamic range is given by ς

ς ς for Ὧḻσ, and the resolution is ὲ σὯ bits. Table 4.1. shows the total number of

comparators required to implement the architecture proposed in [37] and the one proposed here

 79

for different resolutions. Figure 4.4. shows the great advantage gained by reducing the

complexity (in terms of number of comparators) versus Ὧ. The figure shows that the complexity

of the scheme proposed in [37] grows exponentially with the resolution, while the proposed

scheme allows using much higher resolution without highly increasing the complexity. Further

reduction in the number of comparators can be achieved using interpolating and folding

techniques.

Table 4.1. Number of comparators in [37] and in the proposed architecture

Resolution
Number of comparators

In [37] This work

9 503 63

12 4,079 255

15 32,735 1023

18 262,079 4095

21 2,097,023 16,383

Figure 4.4. Complexity vs. k of the proposed scheme compared to [37]

Reducing the number of comparators in each stage relaxes the requirement of small

comparator offsets, and improves the monotonicity of the conversion stages.

3 3.5 4 4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6

7
x 10

4

k

N
o.

 o
f C

om
pa

ra
to

rs

This work

Proposed in [37]

 80

In terms of speed, the proposed architecture introduces an additional conversion stage and

needs digital-to-analog conversion. At first glance, the proposed architecture seems to be much

slower than the one proposed in [37]. However, reducing the number of comparators reduces

the input capacitive loading which solves a practical problem in flash converters and reduces

the delay. In addition, the two stage configuration allows pipelining the input data into two

stages. The first stage is to obtain the base value, and the second is to obtain the residue. This

pipelining increases the throughput by a factor of 2 approximately.

A Simulink model is built to simulate the behavior of the proposed A/R converter. The high-

level block diagram of a 9-bit two-stage flash A/R converter is shown in Figure 4.5. The used

moduli-set here is { 7, 8, 9} . At first, the components are assumed to be ideal.

Figure 4.5. Simulink model of the two-stage flash A/R converter

A ramp is applied at the input, and the residue with respect to modulus ά ω is obtained

at the output. The scaled input and output are shown in Figure 4.6. The other two residues can

be obtained in parallel using two additional converters. However, this will increase both the

area and the power consumption of the A/R converter by a factor of 3. Another way to obtain

the remaining residues is to use a ROM look-up table. The ROM inputs are the base value and

Sample /Hold

In1 Out1

Residue 3

In1

In2

In3

In4

Residue 2

In1

In2

In3

Residue 1

In1

In2

In3

ROM

In1

In2

In3

In4

In5

In6

In7

In8

In9

In10

Out1

Out2

Out3

Out4

Out5

Out6

DAC

In1

In2

In3

In4

In5

In6

Out1

DA

In1

In2

Out1

Analog Input

t

ADC 2

In1

Out1

Out2

Out3

Out4

ADC 1

In1

Out1

Out2

Out3

Out4

Out5

Out6

Base Value 3

Base Value 3

 81

the residue with respect to modulus ά . Knowledge of these two values is sufficient to obtain

the other two residues. This approach maintains the area and the power consumption at

minimum, but extra delay through the ROM is inevitable.

Figure 4.6. Output response to a ramp input

The maximum SNR is calculated by applying a single tone input within the specified range

of frequency. In our case, the sampling frequency Ὢ is chosen at 1 GHz. Consequently, to

satisfy Nyquist-Shannon theorem, the bandwidth has to be at maximum 500 MHz. The input

frequency Ὢ is chosen at 519 KHz, and it satisfies the coherency requirement to avoid

spectrum leakage:

Ὢ Ὢ (4.6)

where ὓ and ὔ are relatively prime. In our case, ὓ ρχ and ὔ ς . The quantized output

has 504 quantization levels. This is equivalent to ÌÏÇυπτψȢωψ bits.

The SNR is calculated from the output spectrum shown in Figure 4.7. The bin (ὓ ρ ρψ)

corresponds to Ὢ . The SNR is obtained over the range 0 ï 500 MHz. The obtained value from

the simulation is 55.8 dB. This is consistent with the value obtained from Equation (3.8) where:

ὛὔὙφȢπςψȢωψ ρȢχφ υυȢψ Ὠὄ

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Input

O
u

tp
u

t
R

e
s
id

u
e

 82

Figure 4.7. The quantized output spectrum

Non-idealities of the components degrade the performance of the converter and reduce the

SNR. The S/H circuit suffers from two main non-ideality sources: thermal noise and clock jitter.

The S/H circuit model is shown in Figure 4.8. The S/H circuit is mainly an RC circuit which has

an RMS input referred noise voltage ὺ ȟ given by [26]:

ὺ ȟ (4.7)

where Ὧ is Boltzmann constant, Ὕ is the absolute temperature, and ὅ is the sampling capacitor.

Figure 4.8. The S/H circuit model

