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Abstract 
 

 

This thesis tackles the problem of data conversion in the Residue Number System (RNS). 

The RNS has been considered as an interesting theoretical topic for researchers in recent years. 

Its importance stems from the absence of carry propagation between its arithmetic units. This 

facilitates the realization of high-speed, low-power arithmetic. This advantage is of paramount 

importance in embedded processors, especially those found in portable devices, for which 

power consumption is the most critical aspect of the design. However, the overhead introduced 

by the data conversion circuits discourages the use of RNS at the applications. In this thesis, we 

aim at developing efficient schemes for the conversion from the conventional representation to 

the RNS representation and vice versa. The conventional representation can be in the form of 

an analog continuous-time signal or a digital signal represented in binary format. We present 

some of the currently available algorithms and schemes of conversion when the signal is in 

binary representation. As a contribution to this field of research, we propose three different 

schemes for direct conversion when interaction with the real analog world is required. We first 

develop two efficient schemes for direct analog-to-residue conversion. Another efficient 

scheme for direct residue-to-analog conversion is also proposed. The performance and the 

efficiency of theses converters are demonstrated and analyzed. The proposed schemes are 

aimed to encourage the utilization of RNS in various real-time and practical applications in the 

future. 
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Résumé 
 

Cette  thèse  aborde le problème de la conversion de données dans le système  numérique de 

résidus (Residue Number System - RNS). Le système RNS a été considéré comme un sujet 

intéressant par de nombreux chercheurs ces dernières années. Son importance découle de 

l'absence de la propagation de retenue entre ses unités de calcul. Ceci facilite la réalisation de 

circuits arithmétiques à grande vitesse et de faible puissance. Cet avantage est d'une importance 

primordiale dans les processeurs embarqués, en particulier ceux qu'on retrouve dans les 

appareils portables, pour lesquels la consummation d'énergie est l'aspect le plus critique de la 

conception. Cependant, le traitement supplémentaire introduit par les circuits de conversion de 

données décourage l'utilisation du RNS au niveau des applications. Dans cette thèse, nous 

cherchons des schémes efficaces pour la conversion de la représentation conventionnelle à la 

représentation RNS et vice-versa. La représentation conventionnelle peut être sous la forme d'un 

signal analogique en temps continu où d'un signal échantillonné numérique représenté en format 

binaire. Nous présentons quelques algorithmes actuellement disponibles et les systèmes de 

conversion associés lorsque le signal est sous une 

représentation binaire. Dans notre contribution à ce domaine de recherche, nous proposons trois 

astuces différentes pour la conversion lorsqu’une interaction avec le monde analogique réel est 

nécessaire. Nous dévelopons deux systèmes efficaces pour la conversion directe du domaine 

analogique à RNS. Un autre système efficace pour la conversion directe de RNS à analogique 

est également proposé. La performance et l'efficacité de ces convertisseurs sont mises en 

évidence et analysées. Les schémas proposés sont destinés à encourager l'utilisation du RNS 

dans diverses applications dans l'avenir. 
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Chapter 1 
 

 
 

Introduction 
 
 
 

 

A riddle posted in a book authored by a Chinese scholar called Sun Tzu in the first century 

was the first documented manifestation of Residue Number System (RNS) representation [1,2]. 

The riddle is described by the following statement: 

 

We have things of which we do not know the number: 

If we count them by threes, the remainder is 2. 

If we count them by fives, the remainder is 3. 

If we count them by sevens, the remainder is 2. 

How many things are there? 

The answer is 23. 

 

The mathematical procedure of obtaining the answer 23 in this example from the set of 

integers 2, 3, and 2 is what was later called the Chinese Remainder Theorem (CRT). The CRT 

provides an algorithmic solution of decoding the residue encoded number back into its 

conventional representation. This theorem is considered the cornerstone in realizing RNSs. 

Encoding a large number into a group of small numbers results in significant speed up of the 

overall data processing. This fact encourages the implementation of RNS in some applications 

where intensive processing is inevitable. 

In this chapter, we present the clear motivation of this thesis along with the main 

contributions. We also provide an introduction to RNS representation, properties, advantages, 

drawbacks, and applications.  
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1.1   Thesis Motivation 

A general structure of a typical RNS processor is shown in Figure 1.1. The RNS represented 

data is processed in parallel with no dependence or carry propagation between the processing 

units. The process of encoding the input data into RNS representation is called Forward 

Conversion, and the process of converting back the output data from RNS to conventional 

representation is called Reverse Conversion.  

Forward 

Conversion

Modulo m1

Modulo m2

Modulo mn

Reverse 

Conversion

Input Data

(Analog/Binary)

Output Data

(Analog/Binary)

Processing Units

 

Figure 1.1. General structure of an RNS-based processor 

 
 

The conversion stages are very critical in the evaluation of the performance of the overall 

RNS. Conversion circuitry can be very complex and may introduce latency that offsets the 

speed gained   by    the    RNS    processors. For a full RNS based system, the interaction with 

the analog world requires conversion from analog to residue and vice versa. Usually, this is 

done in two steps where conversion to binary is an intermediate stage. This makes the 

conversion stage inefficient due to their increased latency and complexity. To build an RNS 
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processor that can replace the digital processor in a certain application; we need to develop 

conversion circuits that perform as efficient as the analog-to-digital converter (ADC) and the 

digital-to-analog converter (DAC) in the digital binary-based systems. The reverse conversion 

process is based on the Chinese Remainder Theorem (CRT) or Mixed-Radix Conversion 

(MRC) techniques. Investigating new conversion schemes can lead to overcoming some 

obstacles in the RNS implementation of different applications. Thus, an analog-to-residue (A/R) 

converter and a residue-to-analog (R/A) converter are sought to eliminate the intermediate 

binary stage. 

 

1.2  Main Contributions of This Work 

The main contributions of this work are summarized as follows: 

1. Two architectures for direct analog-to-residue conversion are proposed. The first proposed 

architecture is based on the two-stage flash conversion principle, while the second 

architecture is based on the successive approximation principle. The two architectures 

obviate the need of an intermediate binary stage and expedite the conversion process. 

2. One architecture for direct residue-to-analog conversion is proposed. The proposed 

architecture is based on the CRT. The need for an intermediate binary stage is eliminated.  

Overall, the proposed architectures facilitate the implementation of RNS based processors by 

reducing the latency and complexity introduced by the binary stage. This makes it more possible 

and more practical to build effective RNS based processors. 

 

1.3 RNS Representation 

An RNS is defined by a set of relatively prime integers called the moduli. The moduli-set is 

denoted as {  ,   , …,   } where    is the     modulus. Each integer   can be represented 

as a set of smaller integers called the residues. The residue-set is denoted as {  ,   , …,   } 

where    is the     residue. The residue    is defined as the least positive remainder when   is 

divided by the modulus   . This relation can be notationally written based on the congruence: 

                                                                                       (1.1) 

The same congruence can be written in an alternative notation as: 

     
                                                                        (1.2) 
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The two notations will be used interchangeably throughout this thesis. 

The RNS is capable of uniquely representing all integers   that lie in its dynamic range. The 

dynamic range is determined by the moduli-set {  ,   , …,   } and denoted as   where: 

     
 
                                                                           (1.3) 

The RNS provides unique representation for all integers in the range between 0 and    . If 

the integer   is greater than    , the RNS representation repeats itself. Therefore, more than 

one integer might have the same residue representation.  

It is important to emphasize that the moduli have to be relatively prime to be able to exploit 

the full dynamic range   . 

To illustrate the preceding principles, we present a numerical example. 

 

Example 1.1. 

Consider two different residue number systems defined by the two moduli-sets { ,  ,  } and 

{ ,  ,  }. The representation of the numbers in residue format is shown in Table 1.1. for the 

two systems. 

Table 1.1. RNS representation for two different moduli-sets 

  
{ ,  ,  } { ,  ,  } 

2 3 5 2 3 4 

0 0 0 0 0 0 0 

1 1 1 1 1 1 1 

2 0 2 2 0 2 2 

3 1 0 3 1 0 3 

4 0 1 4 0 1 0 

5 1 2 0 1 2 1 

6 0 0 1 0 0 2 

7 1 1 2 1 1 3 

8 0 2 3 0 2 0 

9 1 0 4 1 0 1 

10 0 1 0 0 1 2 

11 1 2 1 1 2 3 

12 0 0 2 0 0 0 

13 1 1 3 1 1 1 
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14 0 2 4 0 2 2 

15 1 0 0 1 0 3 

16 0 1 1 0 1 0 

17 1 2 2 1 2 1 

18 0 0 3 0 0 2 

19 1 1 4 1 1 3 

20 0 2 0 0 2 0 

21 1 0 1 1 0 1 

22 0 1 2 0 1 2 

23 1 2 3 1 2 3 

24 0 0 4 0 0 0 

25 1 1 0 1 1 1 

26 0 2 1 0 2 2 

27 1 0 2 1 0 3 

28 0 1 3 0 1 0 

29 1 2 4 1 2 1 

30 0 0 0 0 0 2 

 

In the first RNS, the moduli in the moduli-set { ,  ,  } are relatively prime. The RNS 

representation is unique for all numbers in the range from 0 to 29. Beyond that range, the RNS 

representation repeats itself. For example, the RNS representation of 30 is the same as that of 0. 

In the second RNS, the moduli in the moduli-set { ,  ,  } are not relatively prime, since 2 and 

4 have a common divisor of 2. We notice that the RNS representation repeats itself at 12 

preventing the dynamic range from being fully exploited. Therefore, choosing relatively prime 

moduli for the RNS is necessary to ensure unique representation within the dynamic range.  

In the preceding discussion on RNS, we assumed dealing with unsigned numbers. However, 

some applications require representing negative numbers. To achieve that, we can partition the 

full range         into two approximately equal halves: the upper half represents the positive 

numbers, and the lower half represents the negative numbers. The numbers   that can be 

represented using the new convention have to satisfy the following relations [4]: 

 
   

 
   

   

 
      if   is odd                                         (1.4) 

    
 

 
   

 

 
     if   is even                                       (1.5) 
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If   {  ,   , …,   } represents a positive number in the appropriate range, then –   can be 

represented as {   ,    , …,    } where     is the   ’s complement of     , i.e.     satisfies the relation 

                 . In our discussion, we will assume that the numbers are unsigned unless 

otherwise it is mentioned. 

 

Example 1.2. 

Consider an RNS with the moduli-set { ,  ,  }. The number 18 is represented as { ,  ,  } 

while the number -18 is represented as { ,  ,  }. 

The justification for that is as follows: 

              

              

              

 

Therefore, the positive numbers are represented in the upper half of the dynamic range and 

the conversion to residue representation is straightforward, while the negative numbers are 

represented in the lower half of the dynamic range and the conversion to residue representation 

is interpreted as the conversion of the compliments of the residues with respect to the 

corresponding moduli. 

 

1.4   Mathematical Fundamentals 

In this section, we introduce the fundamentals of the RNS representation. The congruences 

are explained in details with their properties. These properties form a solid background to 

understand the process of conversion between the conventional system and the RNS. More 

advanced results and mathematical relations can be found in the subsequent chapters. Basic 

algebra related to RNS is introduced here. This includes finding the additive and the 

multiplicative inverses, and some properties of division and scaling which are not easy 

operations in RNS. 

 

1.4.1   Basic Definitions and Congruences 

Residue of a number 
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The basic relationship between numbers in conventional representation and RNS 

representation is the following congruence: 

                                                 (1.6) 

where     is the modulus, and     is the residue. The residue is defined as the least positive 

remainder when the number   is divided by the modulus    . 

 

Example 1.3. 

For     ,      , and      , we find the residues     and     with respect to the 

moduli     and    ,  respectively as follows: 

                                  

                                  

 

Definition of the base values 

With respect to modulus    , any number   can be represented as a combination of a base 

value     and a residue   : 

                                    (1.7) 

                                                                                   (1.8) 

where   is an integer that satisfies Equations (1.7) and (1.8). 

The definition of the base value will be exploited in Chapter 4 where these values will be 

generated to directly convert from analog to RNS representation. 

 

1.4.2   Basic Algebraic Operations 

Addition (or subtraction) 

We can add (or subtract) different numbers in the RNS representation by individually adding 

(or subtracting) the residues with respect to the corresponding moduli. 

Consider the moduli-set       ,   , …,    , and the numbers   and   are given in RNS 

representation: 

     ,   , …,        and         ,   , …,     

Then,  

         ,   , …,                                                (1.9) 

                                                      where                         
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This property can be applied to subtraction as well, where subtraction of    from   is 

considered as the addition of    . 

The modulo operation is distributive over addition (and subtraction): 

                                                                     (1.10) 

 

Multiplication 

In a similar way to addition, multiplication in RNS can be carried out by multiplying the 

individual residues with respect to the corresponding moduli. Consider the moduli-set      , 

  , …,    , and the numbers   and   are given in RNS representation: 

     ,   , …,        and         ,   , …,     

Then,  

         ,   , …,                                             (1.11) 

                                                   where                          

The modulo operation is distributive over multiplication: 

                                                                     (1.12) 

 

Additive Inverse 

The relation between the residue    and its additive inverse     is defined by the congruence: 

                                                                          (1.13) 

The additive inverse      can be obtained using the following operation: 

                                                                      (1.14) 

Subtraction is one application of this property, where subtraction is regarded as the addition 

of the additive inverse. 

Example 1.4. 

Given the moduli-set { ,  ,   , the dynamic range is     . The RNS can uniquely represent 

all numbers in the range       . Let          ,  ,    and         ,  ,   . To find    

, we need first to obtain   , and then find     .  First, 
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Then,           
                        

           
           which is the RNS 

representation of 4. 

 

Multiplicative Inverse 

The multiplicative inverse   
   of the residue    is defined by the congruence: 

       
                                                                      (1.15) 

where   
   exists only if     and     are relatively prime. 

 

Example 1.5. 

For the modulus    , we find the multiplicative inverse     of the residue     by 

applying Equation (1.15): 

                 

We notice that the modulo multiplication of 3 and 2 with respect to 5 results in 1. 

Thus,           

 

As illustrated in Example 1.5., there is no general method of obtaining the multiplicative 

inverse. The multiplicative inverse is usually obtained by brute-force search. Only when   is 

prime, we can utilize Fermat’s Theorem which can be useful in determining the multiplicative 

inverse. This topic is out of the scope of this thesis. Reference [4] provides more details about 

the theorem and its application in RNS. 

 

 

Example 1.6. 

This example shows that the multiplicative inverse exists only if    and   are relatively 

prime. In Table 1.2., the multiplicative inverse     is obtained, if exists, with respect to the 

modulus  . In the first column,     is always prime with respect to any integer. In the 

second column,     is not prime with respect to 2, 4, and 6. We notice that 2, 4, and 6 have 

no multiplicative inverse with respect to modulus 8. 
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Table 1.2. Multiplicative inverses with respect to two different moduli 

  
        

        

1 1 1 

2 4 - 

3 5 3 

4 2 - 

5 3 5 

6 6 - 

7  7 

 

Division 

Division is one of the main obstacles that discourage the use of RNS. In RNS representation, 

division is not a simple operation. The analogy between division in conventional representation 

and RNS representation does not hold. 

In conventional representation, we represent division as follows: 

                                                    
 

 
                                                                           (1.16) 

which can be rewritten as: 

                                                                                                                                     (1.17) 

where   is the quotient. 

In RNS, the analogous congruence is: 

                                                                                                                               (1.18) 

 

Multiplying both sides by the multiplicative inverse of   , we can write: 

                                                                                                                               (1.19) 

In Equation (1.19),   is equivalent to the quotient obtained from Equation (1.16) only if it 

has an integer value. Otherwise, multiplying by the multiplicative inverse in RNS representation 

will not be equivalent to division in conventional representation. 
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Example 1.7. 

Consider an RNS with     , we want to compute the following quotients:  

 a) 
 

 
          b) 

 

 
 

 

a) In the first case: 

 

 
   

           

              

            

    

which is equivalent to division in conventional representation. 

a) In the second case: 

We know that the quotient in conventional representation is 1, and the result of the 

division is a non-integer value. 

 

 
   

           

              

            

    

 

We notice in part (b) of Example 1.7. that division in RNS is not equivalent to that in 

conventional representation when the quotient is a non-integer value. Due to this fact, division 

in RNS is usually done by converting the residues to conventional representation, performing 

the division, and then converting back to RNS representation. Tedious and complex conversion 

steps result in undesired overhead. This is one of the main drawbacks of RNS representation. 

 

1.5  Conversion between Conventional Representation and RNS Representation 

To utilize the properties of the RNS and carry out the processing in the residue domain, we 

need to be able to convert smoothly between the conventional (binary or analog) representation 
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and the RNS representation. The process of conversion from conventional representation to 

RNS representation is called Forward Conversion. Conceptually, this process can be done by 

dividing the given conventional number by all the moduli and finding the remainders of the 

divisions. This is the most direct way that can be applied to any general moduli-set. However, 

we show in Chapter 2 that for some special moduli-sets this process can be further simplified. 

The simplification arises from the fact that division by a number, that is a power of two, is 

equivalent to shifting the digits to the right. This property can be utilized to expedite and 

simplify the forward conversion. The process of conversion from RNS representation to 

conventional representation is called Reverse Conversion. The reverse conversion process is 

more difficult and introduces more overhead in terms of speed and complexity. The algorithms 

of reverse conversion are based on Chinese Remainder Theorem (CRT) or Mixed-Radix 

Conversion (MRC). The use of the CRT allows parallelism in the conversion process 

implementation. The MRC is an inherently sequential approach. In general, the realization of a 

VLSI implementation of a reverse converter is complex and costly. More details about CRT and 

MRC are given in Chapter 2. 

 

1.6  Advantages of RNS Representation 

Implementing an algorithm using parallel distributed arithmetic with no dependence between 

the arithmetic blocks simplifies the overall design and reduces the complexity of the individual 

building blocks. The advantages of RNS representation can be summarized as follows [4,5,6]: 

High Speed: The absence of carry propagation between the arithmetic blocks results in high 

speed processing. In conventional digital processors, the critical path is associated with the 

propagation of the carry signal to the last bit (MSB) of the arithmetic unit. Using RNS 

representation, large words are encoded into small words, which results in critical path 

minimization. 

Reduced Power: Using small arithmetic units in realizing the RNS processor reduces the 

switching activities in each channel [7]. This results in reduction in the dynamic power, since 

the dynamic power is directly proportional to switching activities. 

Reduced Complexity: Because the RNS representation encodes large numbers into small 

residues, the complexity of the arithmetic units in each modulo channel is reduced. This 

facilitates and simplifies the overall design. 
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Error Detection and Correction: The RNS is a non-positional system with no dependence 

between its channels. Thus, an error in one channel does not propagate to other channels. 

Therefore, isolation of the faulty residues allows fault tolerance and facilitates error detection 

and correction. In fact, the RNS has some embedded error detection and correction features 

described in [8]. 

 

1.7  Drawbacks of RNS Representation 

We mentioned that RNS architectures result in great advantages, especially in terms of speed 

and power. This makes it very suitable to implement RNS in different applications. However, in 

spite of their great advantages, RNS processors did not find wide use but remained as an 

interesting theoretical topic. There are two main reasons behind the limited use of RNS in 

applications: 

First, although the RNS representation simplifies and expedites addition and multiplication 

compared to the conventional binary system, other operations such as division, square-root, 

sign detection, and comparison are difficult and costly operations in the residue domain. Thus, 

building an RNS based ALU that is capable of performing the basic arithmetic is not an easy 

job. 

Second, conversion circuitry can be complex and can introduce latency that offsets the speed 

gained by the RNS processor. Hence, the design of efficient conversion circuits is considered 

the bottleneck of a successful RNS. 

Nevertheless, RNS architectures are considered an interesting theoretical topic for 

researchers. Some applications that are computationally intensive and require mainly recursive 

addition and multiplication operations, such as FFT, FIR filters, and public-key cryptography 

are appealing to be implemented using RNS. Therefore, investigating new conversion schemes 

can lead to overcoming some obstacles in the RNS implementation of different applications by 

reducing the overhead of the conversion stages. 
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1.8  Applications 

As discussed in the last section, RNS is suitable for applications in which addition and 

multiplication are the predominant arithmetic operations. Due to its carry-free property, RNS 

has good potential in applications where speed and/or power consumption is very critical. In 

addition, the isolation between the modulo channels facilitates error detection and correction. 

Examples of these applications are digital signal processing (DSP) [9], digital image processing 

[10], RSA algorithms [11], communication receivers [12], and fault tolerance [8,13]. In most of 

these applications, intensive multiply-and-accumulate (MAC) operations are required.  

One possible application of RNS in DSP is the design of digital filters. Digital filters have 

different uses such as interpolation, decimation, equalization, noise reduction, and band splitting 

[4]. There are two basic types of digital filers: Finite Impulse Response (FIR) filters and Infinite 

Impulse Response (IIR) filters. Carrying out the required multiplication and addition operations 

in the residue domain results in speeding up the system and reducing the power consumption 

[14,15]. Another possible application of RNS in DSP is the Discrete Fourier Transform (DFT) 

which is a very common transform in various engineering applications. Again, the main 

operations involved here are addition and multiplication. Using RNS in implementing DFT 

algorithms results in faster operations due to the parallelism in the processing. In addition, the 

carry-free property of the RNS makes it potentially very useful in fault tolerant applications. 

Nowadays, the integrated circuits are very dense, and full testing will no longer be possible. The 

RNS has no weight information. Therefore, any error in one of the residues does not affect the 

other modulo channels. Moreover, since ordering is not important in RNS representation, the 

faulty residues can be discarded and corrected separately. In summary, RNS seems to be good 

for many applications that are important in modern computing algorithms. 
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Chapter 2 
 

 
 

Conversion between 

Binary and RNS Representations 
 
 
 

 

In this chapter, we discuss the conversion between binary and RNS representations. To be 

able to process the data in RNS, the data has to be first converted to RNS representation. The 

process of converting the data from conventional representation (analog or binary) to RNS 

representation is called Forward Conversion. Meanwhile, we shall assume that the initial inputs 

are available in binary representation. We need to utilize efficient algorithms and schemes for 

the forward conversion process. The forward converter has to be efficient in terms of area, 

speed, and power. After the data is processed through the modulo processing units of the RNS, 

they have to be converted back into the conventional representation. The process of converting 

the data from RNS representation to conventional representation is called Reverse Conversion. 

We present the basic theoretical foundations for the methods of reverse residue-to-binary (R/B) 

conversion. In addition, we present some architectures for the implementation of these 

methods. The overhead of the reverse conversion circuitry is the main impediment to build an 

efficient RNS processor. Particularly, the design of the reverse converter is more important and 

constitutes the bottleneck of any successful RNS. Therefore, developing efficient algorithms 

and architectures for reverse conversion is a great challenge and it has received a considerable 

deal of interest among researchers in the past few decades. In this chapter, we focus on the 

methods of reverse conversion where the output is in binary representation. However, direct 

conversion from RNS to analog representation is also based on the same methods. More details 

about direct residue-to-analog conversion are provided in Chapter 4. 
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2.1  Forward Conversion from Binary to RNS Representation 

The forward conversion stage is of paramount importance as it is considered as an overhead 

in the overall RNS. Choosing the most appropriate scheme depends heavily on the used moduli-

set. Forward converters are usually classified based on the used moduli into two categories. The 

first category includes forward converters based on arbitrary moduli-sets. These converters are 

usually built using look-up tables. The second category includes forward converters based on 

special moduli-sets. The use of special moduli-sets simplifies the forward conversion algorithms 

and architectures. The special moduli-set converters are usually realized using pure 

combinational logic. 

We present here some of the available architectures for forward conversion from binary to 

RNS representation. First, we present forward converters based on arbitrary moduli-sets. Then, 

we present forward conversion based on the special moduli-set               . We show 

how the complexity of the overall design is minimized which reduces the overhead introduced 

by the forward converter. Finally, we provide some architectures for implementing the modulo 

addition that are used in the realization of all forward converters. 

 

2.1.1  Arbitrary Moduli-Set Forward Converters 

We present here some architectures for forward conversion from binary to RNS 

representation using any arbitrary moduli-set. We mentioned earlier that using special moduli-

sets, such as               , makes the forward conversion process fast and simple. In 

general, forward converters based on special moduli-sets are the most efficient available 

converters. However, some applications require a very large dynamic range which cannot be 

achieved efficiently using the special moduli-sets. For example, most of the employed moduli-

sets consist of three or four moduli. When the required dynamic range is very large, these 

moduli have to be large, which results in lower performance of the arithmetic units in each 

modulo channel. In that case, the best solution is to use many small moduli (five or more) to 

represent the large dynamic range efficiently. The research on representing large dynamic 

ranges has two main approaches. The first approach is to develop efficient algorithms and 

schemes for arbitrary moduli-set forward converters. The second approach is to develop new 

special moduli-sets with a large number of moduli to represent the large dynamic range 

efficiently. In this approach, a special five-moduli-set                              
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with its conversion circuits was proposed in [16]. The proposed moduli-set has a dynamic range 

that can represent        bits while keeping the moduli small enough and the converters 

efficient. Nevertheless, it is important and useful to keep the research open for both approaches. 

Therefore, developing efficient schemes for forward conversion from binary to RNS 

representation using arbitrary moduli-sets is also of great importance. 

The implementation of arbitrary moduli-set forward conversion algorithms is either based 

on look-up tables (typically ROMs), pure combinational logic, or a combination of both. 

Implementation of these converters using combinational logic is tedious and requires complex 

processing units. The all ROM implementation is preferred in this case. However, for a large 

dynamic range, the ROM size grows dramatically and makes the overall conversion process 

inefficient. A trade-off between the two implementations can be utilized using a combination of 

ROM and combinational logic [17]. 

In this section, we provide some basic architectures for arbitrary moduli-set forward 

converters.  We aim at presenting the basic principle of each architecture. More advanced 

algorithms and architectures are available in [4]. As the look-up table implementation is 

preferred in the case of the arbitrary moduli-set, we shall focus on this implementation approach 

and show different techniques to realize it. 

The main idea in the look-up table implementation of forward converters is to store all the 

residues and recall them based on the value of the binary input [18]. The binary input acts as an 

address decoder input that points at the appropriate value in the look-up table. 

To find the residue of a binary number   with respect to a certain modulus  , we utilize the 

mathematical property of Equation (1.10) to obtain the residues of all required powers of two 

with respect to modulus  . To illustrate that, assume that   is a binary number: 

                     
    

                                                      (2.1) 

The residue of   is represented as: 

          
    

    
 

                                                          (2.2) 

Using Equation (1.10), we can write: 

           
  

 

   
    

 
                                                          (2.3) 

where    is either 0 or 1. 
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Serial Conversion 

A direct implementation of Equation (2.3) is to store all the values     
 

in a look-up table. 

The values are activated or deactivated (set to 0) based on whether    is 0 or 1, respectively. A 

modulo-  adder with an accumulator is required to obtain the modulo addition of all activated 

values in the table. A direct implementation of Equation (2.3) is shown in Figure 2.1. 
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Table

M
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|X|m
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Figure 2.1. Serial forward converter 

 

Initially the accumulator is set to zero. The conversion process requires   clock cycles, 

where   is the number of bits when   is represented in binary. The value of each bit     (either 0 

or 1) instructs the multiplexer to accumulate the value     
 

 or a zero. The counter counts from 

0 to     to address the look-up table. The look-up table is typically implemented as a ROM of 

size (       ) bits. The overall design is simple and only few components are required for 

the implementation. However, the algorithm is completely sequential. This makes it slow and 

inefficient for large dynamic range applications. Some modifications can be applied on the 

structure to improve its efficiency. As shown in [4], processing the two values     
  

 
and 

      
    

 
in each cycle doubles the conversion speed. The modified structure is shown in 

Figure 2.2. Pipelining is also possible in these architectures to increase the throughput. 
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Figure 2.2. Modified structure for serial forward converter 
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Parallel Conversion 

Another architecture for forward conversion from binary to RNS representation can be 

obtained by manipulating Equation (2.3). Suppose   is partitioned into   blocks, each of  -bits 

[19]. Let   be partitioned into the blocks               , then: 

        
   
                                                             (2.4) 

            
   
    

 
           

   
    

 
                            (2.5)   

Example 2.1. 

Consider        and     . We want to find     by partitioning   into four 3-bit 

blocks. 

First,   is a 12-bit number that has the binary representation: 100110011000. 

The four blocks are: 100, 110, 011, and 000. By applying Equation (2.5): 

                                                                                               

               

                                                         

Equation (2.5) can be directly implemented by storing the values         in   look-up 

tables, where   is the number of partitioning blocks. The values of    are used to address the 

values         in the look-up table (LUT). These values are then added using a multi-operand 

modulo adder. A typical implementation of Equation (2.5) is shown in Figure 2.3. 
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LUT
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LUT
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Operand 

Modulo m 

Adder
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Figure 2.3. Parallel forward converter 
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Each look-up table (LUT) is a ROM cell that has a size of (       ) bits, where   is the 

number of bits in each block, and    is the modulus. Compared to serial forward converters, the 

parallel forward converters are faster and more adequate for high speed applications. However, 

the parallel converters require   look-up tables and a modulo adder that adds   operands with 

respect to modulus  . 

In order to reduce the size of each look-up table and therefore enhance the performance of 

the overall converter, a technique called periodic partitioning is utilized [20]. We know from 

Equation (2.3) that obtaining      requires storing all the residues     
 

. Careful investigation 

of the residues of    with respect to modulus   shows that these residues repeat themselves in 

a period   less than     for some moduli. We refer to  -1 as the basic period, and to   as the 

short period [4]. The periodicity of the residues       with respect to different moduli is shown 

in Table 2.1. 

Table 2.1. Periodicity of       for different moduli 

              Saving (%) 

3 1,2,1,2,1, … 2 2 0 % 

5 1,2,4,3,1,2, … 4 4 0 % 

6 1,2,4,1,2,… 5 3 40 % 

7 1,2,4,1,2,… 6 3 50 % 

9 1,2,4,8,7,5,1,2, … 8 6 25 % 

10 1,2,4,8,6,2,4,8, … 9 5 44.4 % 

11 1,2,4,8,5,10,9,7,3,6,1,2, … 10 10 0 % 

12 1,2,4,8,2,4,8,2, … 11 4 63.3 % 

13 1,2,4,8,3,6,12,11, … 12 12 0 % 

14 1,2,4,8,2,4,8, … 13 4 69.2 % 

15 1,2,4,8,1,2,4, … 14 4 71.4 % 

17 1,2,4,8,16,15,13,9, … 16 8 50 % 

18 1,2,4,8,16,14,10,2,4,8, … 17 7 58.9 % 

19 1,2,4,8,16,13,7,14,9,18, … 18 18 0 % 

21 1,2,4,8,16,11,1,2,4, … 20 6 70 % 
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Table 2.1. shows the great saving when we design look-up tables for some values of  . For 

example, for     , we need to store only 4 values. These values can be used for higher 

indices because of the periodicity of the residues. This results in saving of 71.4 % in the 

memory size. 

 

2.1.2  Special Moduli-Set Forward Converters 

Choosing a special moduli-set is the preferred choice to facilitate and expedite the 

conversion stages. The special moduli-set forward converters are the most efficient available 

converters in terms of speed, area, and power. Usually, the special moduli-sets are referred to as 

low-cost moduli-sets. In this section, we will focus on the special moduli-set             

   as it is the most commonly used moduli-set. 

In contrast to arbitrary moduli-set forward converters, the special moduli-set converters are 

usually implemented using pure combinational logic. To compute the residue of a number   (in 

binary representation) with respect to modulus  , we utilize the same principle of Equation 

(2.3), i.e. evaluate the values     
 

 . The only difference here is that   is restricted to   , 

    , and     . We shall derive simple formulas that facilitate the algorithm used to obtain 

the residues. We show how the residues with respect to the special moduli can be obtained with 

reduced complexity algorithms and architectures. 

 

Modulus    

Obtaining the residue of   with respect to modulus    is the easiest operation. To understand 

that, recall that the basic principle in residue computation is division. When the divisor is a 

power of two (  ), the division is further simplified to  -bit right shifting. Thus, the residue of 

  with respect to    is simply the first   least significant bits of the binary representation of  . 

 

Example 2.2. 

Let        which has the 12-bit binary representation: 100110011000. We want to find 

the residue of   with respect to modulus          

The residue is simply the first four least significant bits of  : 
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Modulus      

The computation of the residue with respect to modulus      is also easy to implement. 

The only extra overhead is the need for adding an end-around carry in some cases. Many 

architectures are available to compute the residue with respect to      [4,5]. 

In order to understand the operation of evaluating        , we notice that: 

                                                           1     (2.6) 

where     

The same concept can be applied to           where   is an integer: 

                    
 
    

    
                                                  (2.7) 

Thus, for    , the residue of    with respect to      can be determined as follows: 

                                                             (2.8) 

where   is the remainder from the division of   by    

 

Example 2.3. 

Consider     , and       . We want to find the residue of   with respect to    

Here:    ,    ,    , and    . 

                                      

 

Modulus      

In a similar procedure to modulus     , we obtain the residue of   with respect to 

modulus      as follows: 

First, we notice that: 

                                                            (2.9) 

Equation (2.9) can be extended for     and       , where   is an integer, and   is 

the remainder from the division of   by  : 

                                      
                                          

                
        (2.10) 

The need for adding      where   is odd comes from the fact that              for odd 

values of  . Therefore, to make the residue positive, we need to add     . 
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Example 2.4. 

Consider     , and       . We want to find the residue of   with respect to    

Here:    ,    ,     (even), and    . 

                                      

 

Example 2.5. 

Let      , and       . We want to find the residue of   with respect to    

Here:    ,     ,     (odd), and    . 

                                               

 

The Special Moduli-Set                

By making use of the mathematical principles explained above, a general algorithm is 

presented to convert   (in binary representation) into RNS representation with respect to the 

special moduli-set                [4,21,22]. We first partition   into 3 blocks, each of   

bits:   ,   , and   , where these blocks can be represented as follows: 

       
        

                                                                (2.11) 

       
       

                                                                 (2.12) 

       
              

                                                             (2.13) 

Thus, 

     
      

                                                            (2.14) 

 

The residue     is simply the first   least significant bits, and can be obtained by right 

shifting   by  -bits. 

The residue     is obtained as follows: 

               
      

          

                                                                        
            

                          (2.15) 

We notice that: 

    
                                                                  (2.16) 

    
                                                                  (2.17) 

          are  -bit numbers. Therefore           are always less than     . The values 
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        are obtained as follows: 

                                                         (2.18) 

The value           is obtained as follows: 

                                                            1 (2.19) 

Thus, 

                                                                                              (2.20) 

In a similar way, the residue    is obtained as follows: 

               
      

          

                                                                          
            

                          (2.21)  

We notice that: 

    
                                                                  (2.22) 

    
                                                                  (2.23) 

The values         are obtained as follows: 

                                                       (2.24) 

The value           is obtained as follows: 

                                                           1 (2.25) 

Thus, 

                                                                                              (2.26) 

 

Example 2.6. 

Consider the moduli-set           , and                       . We want to find 

the residues   ,   , and     

First, we need to obtain the blocks   ,   , and    as follows: 

             

             

             

Then, we obtain the residues as follows: 
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Therefore, the RNS representation of        with respect to the moduli-set            

is         . 

 

A typical architecture for the implementation of a forward converter from binary to RNS 

representation for the special moduli-set                is shown in Figure 2.4. The 

design of modulo adders is briefly described in the next section. 

Modulo 2n-1

Adder

Modulo 2n+1

Adder

Modulo 2n-1

Adder

Modulo 2n+1

Adder

B3

B2

B1

r3

r1

r2

 

Figure 2.4.                forward converter 

  

2.1.3  Modulo Addition 

In Sections 2.1 and 2.2, we presented some available architectures for the implementation of 

forward converters from binary to RNS representation. All these architectures, whether they are 

based on arbitrary moduli or special moduli, require modulo addition in the conversion process. 

The modulo adder is one of the basic arithmetic units in RNS operations and converters. The 

performance of the modulo adder is very critical in the design of forward converters from 

binary to RNS representation. In this section, we provide a brief introduction to the modulo 

addition operation. We focus on the high-level design of modulo adders. However, the design of 

the underlying adder is very important in determining the overall performance of the modulo 

adder. The underlying adder is a conventional binary adder that can have different forms such 

as ripple-carry adder (RCA), carry-save adder (CSA), carry-lookahead adder (CLA), parallel 

prefix adder, and so on. Different modulo adders based on different conventional adder 

topologies are explained in [4] for more advanced details. Here, we restrict ourselves to the 

basic architectures. 
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Modulo Adder for an Arbitrary Modulus 

For the same word length, a modulo adder is, in general, slower and less efficient than a 

conventional adder. The basic idea of modulo addition of any two numbers   and   with 

respect to an arbitrary modulus   is based on the following relation: 

        
                   
            

                                                   (2.27) 

where        . 

A typical straightforward implementation of Equation (2.27) is shown in Figure 2.5. The 

addition of   and   is performed using a conventional adder. This results in an intermediate 

value  . Another intermediate value     is computed using another conventional adder. 

Subtracting   is performed easily by adding  ’s compliment ( ). In binary representation,   

also represents the value     . If      , then          , and the carry-out 

(Cout) is equal to 0. If      , then                 , and since     

   , a carry-out propagates in this case. The value of Cout instructs the multiplexer (MUX) to 

select the proper value between    and     . 

Adder

Adder
M

U
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|X+Y|m

 m

S-m

 
Figure 2.5. Modulo-  adder 

 

Modulo Adder for Special Moduli 

The use of some special moduli instead of arbitrary moduli simplifies the design of the 

modulo adder and makes it more efficient. Here, we present the modulo addition operation for 

the special moduli:   ,     , and   +1. We show some available architectures in the 

literature for the special moduli modulo adders. 
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Modulo    Adder 

Modulo    addition is the easiest modulo addition operation in the residue domain because it 

does not require any extra overhead compared to the conventional addition. Modulo    addition 

of any two numbers   and  , each of   bits, is done by adding the two numbers using a 

conventional adder. The result is an     bit output, where the most significant bit is the carry-

out. The residue is the first   lowest significant bits, and the final carry-out is neglected. 

Therefore, modulo    addition is the most efficient modulo addition operation in the residue 

domain. 

 

Example 2.7. 

We want to compute the following modulo additions: 

a)              

b)              

 

Since     , the result is simply the least three significant bits of the conventional addition, 

and the final carry-out is neglected. 

a)              is computed as follows: 

 0 1 1  

 1 0 0 + 

  1 1 1 =  7 

b)              is computed as follows: 

 1 0 1  

 1 1 0 + 

  0 1 1 = 3 

 

Modulo      Adder 

The modulo      adder is an important arithmetic unit in RNS because      is a 

commonly used modulus in most special moduli-sets, e.g.               . Some 

architectures to implement the      modulo addition are available in the literature. Here, we 

shall present the basic idea behind these algorithms and architectures. 

To understand the operation of modulo      addition of any two numbers   and  , where 
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       , we need to distinguish between three different cases: 

a)          1 

b)          

c)                 

In the first case, the result of the conventional addition is less than the upper limit    1 and 

no carry-out (Cout) is generated at the most significant bit. In this case, the modulo addition of   

and   is equivalent to the conventional addition. In the second case, the result is equal to    1 

(i.e. all 1’s in binary representation). However, from RNS definition, the result has to be less 

than    1. In this case, the result should be zero. This case can be detected when all bits of the 

resulting number are ones (i.e. all          are ones). Correction is done simply in this case 

by adding a one and neglecting the carry-out. In the third case, the result of the conventional 

addition exceeds    1 and a carry-out is generated at the most significant bit. This case is 

easily detected by the carry-out. Correction is done by ignoring the carry-out (equivalent to 

subtracting   ) and adding 1 to produce the correct result. 

 

Example 2.8. 

We want to find the following modulo    1 addition operations. Let    , and so the 

modulus is 31. 

a)                

b)                 

c)                 

 

In part (a):           , therefore no correction needed, and the residue is obtained as 

follows: 

 0 0 1 1 1  

 0 1 1 0 0 + 

  1 0 0 1 1 =  19 

 

In part (b):         , then: 

 0 1 1 1 1  

 1 0 0 0 0 + 

  1 1 1 1 1 =  31 
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Since            for all all  ’s, we need to add 1 to the answer and ignore the final 

carry-out to obtain the desired value. 

 1 1 1 1 1  

 0 0 0 0 1 + 

  0 0 0 0 0 =  0 

 

In part (c):            , then: 

 0 1 1 1 1  

 1 0 0 1 0 + 

  0 0 0 0 1 =  33 

 

A carry-out is generated which indicates that the result exceeds 31. To correct the result, we 

ignore the final carry-out and add 1 to the result. 

 0 0 0 0 1  

 0 0 0 0 1 + 

  0 0 0 1 0 =  2 

 

A possible implementation of modulo      adder using ripple-carry adder (RCA) principle 

is shown in Figure 2.6. Correction is done by feeding 1 into the carry-in (Cin) of the first full-

adder (FA) if one of the following two cases is detected: 

a)            for all all  ’s 

b) Cout=1 

FA FA FA
CinCout

Pn-1

Sn-1

P0Pn-2

Sn-2 S0

 
Figure 2.6. Modulo      adder 
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In practice, the architecture in Figure 2.6. suffers from race condition because of the 

feedback. To avoid that, the operation can be done in two cycles where the intermediate output 

is latched in the first cycle. 

 

Modulo      Adder 

The modulo      adder is the bottleneck of the design of a forward converter from binary 

to RNS representation for the special moduli-set               . Its importance arises 

from the fact that designing an efficient modulo      adder is more difficult than that of the 

other two moduli. This is due to difficulties in detecting when the result is equal to      and 

when it exceeds     . 

In a similar way to that used in modulo      addition, three cases have to be distinguished 

[4]. First, we define   as follows: 

            )                                                   (2.28) 

Then, we define the three cases as follows: 

a)                       

b)                   

c)                                        

In the first case,                is simply equal to  . In the second case,    

            is obtained from   by setting the most significant bit of    to 1 and adding 1 to 

the result. In the third case,   is negative, and                is obtained from   by 

setting the most significant bit to 0 and adding 1 to the result. In summary: 

           

                                 
               

                                 

                                 (2.29) 

 

Example 2.9. 

We want to compute the following modulo      addition operations. Let     and so the 

modulus is        . 

a)               

b)               

c)              
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In part (a):              , then                                         

In part (b):                       

We set the most significant bit to 1, and add 1 to the result: 

 1 1 1 1 1  

 0 0 0 0 1 + 

  0 0 0 0 0 =  0 

In part (c):                                   

We set the most significant bit to 0:         , and add 1 to the result: 

 0 1 0 1 0  

 0 0 0 0 1 + 

  0 1 0 1 1 =  11 

 

A possible architecture for implementing a modulo      adder is proposed in [4]. The 

architecture is shown in Figure 2.7. A carry-save adder (CSA) reduces the three inputs  ,  , 

and          to two: partial sum  (  ) and partial carry (  ). The two values    and    are then 

processed using a parallel-prefix adder. Case (b) is detected if    
            . Then, the 

correction is done by adding    
  as an end-around carry and setting       

 . Case (c) is 

detected if      and therefore    is 0. The correction is done in this case by adding the inverse 

of the end-around carry   
    and setting    to zero. 

CSA

Prefix Tree

Xn-1 Yn-1  mn-1 X1 Y1  m1 X0 Y0  m0

Šn-1 Čn-1 Š1 Č1 Š0 Č0

Sn-1Sn S0S1

P0
n

 Cn

P1G1 P0G0Pn-1Gn-1

 

Figure 2.7. Modulo     adder 
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2.2  Reverse Conversion from RNS to Binary Representation 

Reverse conversion algorithms in the literature are all based on either Chinese Remainder 

Theorem (CRT) or Mixed-Radix Conversion (MRC). The MRC is an inherently sequential 

approach. On the other hand, the CRT can be implemented in parallel. The main drawback of 

the CRT based R/B reverse converter, is the need of a large modulo adder in the last stage. All 

the converters proposed in the literature have this problem. The reverse conversion is one of the 

most difficult RNS operations and has been a major, if not the major, limiting factor to a wider 

use of RNS [4]. In general, the realization of a VLSI implementation of R/B converters is still 

complex and costly. Here, we derive the mathematical foundations of the CRT and the MRC, 

and then we present possible implementations of these methods in reverse conversion. 

 

2.2.1  Chinese Remainder Theorem 

The statement of the Chinese Remainder Theorem (CRT) is as follows [4]: 

Given a set of pair-wise relatively prime moduli              and a residue 

representation              in that system of some number  , i.e.         
, that number and 

its residues are related by the equation: 

            
   

  
  

 
    

 
                                                   (2.30) 

where   is the product of the   ’s, and         . If the values involved are constrained so 

that the final value of   is within the dynamic range, then the modular reduction on the left-

hand side can be omitted. 

To understand the formulation of Equation (2.30), we rewrite   as: 

                                            

                                                                       

                                                

Hence, the reverse conversion process requires finding   ’s. The operation of obtaining each 

   is a reverse conversion process by itself. However, it is much easier than obtaining  .  

Consider now that we want to obtain    from                 . Since the residues of    are 

zeros except for    . This dictates that    is a multiple of    where    . Therefore,     can be 

expressed as: 
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where   
  is found such that    

   
  

  . We recall from Equation (1.15) that the relation 

between the number    and its inverse   
   is as follows: 

            
                     

We define    as     , where      
 
   . Then: 

    
   

  
   

  

   

Since all   ,’s are relatively prime, the inverses exist: 

  
     

   
  

   

and 

       
       

   
  

   

      

 

   

      
   

  
  

 

   

 

To ensure that the final value is within the dynamic range, modulo reduction has to be added 

to both sides of the equation. The result is Equation (2.30). 

 

Example 4.1. 

Consider the moduli-set        . To find the conventional representation of the residue-set 

        with respect to the given moduli-set using the CRT, we first determine   ’s: 
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and their inverses: 

      
       

      
       

  
     

Similarly: 

      
       

      
       

  
     

and: 

      
       

      
       

  
     

Using Equation (2.30): 

         
   

  
  

 

   

 

  

 

                                                                                              

          

 

We notice from Equation (2.30) that implementing the CRT requires three main steps: 

 Obtaining   ’s and their inverses   
  ’s. 

 Multiply-and-Accumulate operations 

 Modular reduction 

 

Since there is no general method to obtain   
   using Equation (1.15), the best way to 

implement it is to save the constants        
   

  
   in a ROM. These constants are then 

multiplied with the residues (  ) and added using a modulo   adder. This is a straightforward 

implementation of Equation (2.30). The resulting architecture has two main drawbacks when 

the dynamic range is large: one, large or many multipliers are required to multiply the constants 

   by the residues; two, a large modulo   adder is required at the final stage. One possible 
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remedy to obviate the delay and the cost of large or many multipliers is to replace them with 

ROMs (look-up tables). All possible values of      are stored in the ROMs. This solves one of 

the drawbacks mentioned above. However, the need for a multi-operand modulo   adder at the 

final stage is inevitable. 

The modulo   adder can be realized using ROMs [23], pure combinational logic, or a 

combination of both. When the dynamic range is large, the speed and the complexity of the 

multi-operand modulo   adder becomes the bottleneck of the design of the R/B converter. 

Most of the available CRT based R/B converters have the general high-level block diagram 

shown in Figure 2.8. 

ROM

ROM
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rn

ROM
|r1 |M1

-1|m1M1|M

|r2 |M2
-1|m2M2|M
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-1|mnMn|M

Modulo M 

Adder
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(in binary)

 

Figure 2.8. CRT based R/B converter 

 

2.2.2  Mixed-Radix Conversion 

Given a set of pair-wise relatively prime moduli              and a residue 

representation              in that system of some number  , i.e.         
, that number   

can be uniquely represented in mixed-radix form as [4,24]: 

               

where 

                                                                             (2.31) 

and        . 
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The Mixed-Radix Conversion (MRC) establishes an association between the unweighted, 

non-positional RNS and a weighted, positional mixed-radix system. All what is required to 

perform the reverse conversion is to obtain the values   . 

The first value    is obtained by applying modulo     reduction on both sides of Equation 

(2.31): 

     
       

The value    is obtained by rewriting Equation (2.31) as follows: 

                                  

and then applying modulo    reduction on both sides: 

        
         

 

Multiplying both sides by    
     

 yields: 

    
     

          
       

    

but: 

        
       

       
 
  

          
 

Therefore, 

       
     

          
 

The value    is obtained in a similar way: 

           
     

                 
 

In general: 

               
     

                          
 

We notice from the above equations that the MRC is an inherently sequential approach, 

where obtaining    requires generating     first. This is the main drawback of the MRC 

approach. On the other hand, the CRT allows parallel computation of the partial sums   ’s 

which results in faster conversion. 

 

Example 4.2. 

Consider the moduli-set        . To find the conventional representation of the residue-set 

        with respect to the given moduli-set using MRC, we determine the required inverses: 

First, we determine    
     

 as follows: 
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Similarly, we determine        
     

: 

        
     

         
   

        
     

    
 

   

       
     

   

The values   ,   , and    are obtained as follows: 

                                                                 

                                                                
     

          
 

                                                                          

                                                                 

                                                                    
     

                 
                                   

                                                                  
 
 

                                                     

 

Therefore, the number   has the mixed-radix representation: 

          

 

To obtain   in conventional form, we apply Equation (2.31): 

                 

                

                                    

Figure 2.9. shows one possible implementation of an MRC based R/B converter [4]. Two 

types of ROMs are used in this realization. The sum addressable ROMs are used to generate the 

product of the differences and the inverses [4]. The ordinary ROMs are used to generate the 

products of the moduli and the   ’s. The summation in Equation (2.31) is implemented using 

carry-save adders (CSAs). 
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Figure 2.9. MRC based R/B converter ( =5) 
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Chapter 3 
 

 
 

Conversion between 

Analog and Binary Representations 
 
 
 

 

In a typical signal processing system, the analog signal is transformed into digital data 

represented in binary form. This is done by an analog-to-binary converter, or more often called 

analog-to-digital converter (ADC). The binary represented data is then processed by the DSP 

core. The binary output data can be reconverted into analog form using a binary-to-analog 

converter, or more often called digital-to-analog converter (DAC). To perform the same 

processing after replacing the DSP core in the system with an RNS based DSP core, we need 

first to convert the analog signal into binary form using an ADC, and then convert the binary 

data into RNS representation. In Chapter 4, we show various schemes that overcome this extra 

overhead and directly convert the analog signal into RNS representation. However, all these 

schemes adopt similar algorithms and schemes of the available ADCs. Therefore, it is very 

useful to understand the ADC techniques and architectures. In addition, the DAC is a basic 

element in the realization of direct reverse converters from RNS to analog representation as 

shown in Chapter 4. Also, it is used in some ADC architectures. A brief introduction to the 

available DAC architectures is presented. 

Before proceeding to ADC architectures, it is useful to cover the essentials of sampling and 

quantization processes. A brief introduction to sample/hold (S/H) circuits and quantizers is 

presented in the next two sections. In the third section, we present some available architectures 

for real-life quantizers (ADCs). In the fourth section, some available architectures for the 

implementation of the DAC are presented.  
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 3.1  Sampling 

Sampling is the process of obtaining values from a continuous-time signal at fixed intervals. 

The concept of sampling is illustrated in Figure 3.1. A sample-and-hold (S/H) circuit is used to 

sample the analog input signal and hold it for quantization by a subsequent circuit. The switch 

shown turns on and off periodically in a very short time. When the switch is on, the output 

tracks the input, and when it turns off, the sampled input is stored in the output capacitor. The 

switch can be implemented as a MOS transmission gate. Practical issues that arise in the 

implementation of S/H circuits such as delay, glitches, and charge injection are out of the scope 

of this thesis.  

VIN C

VOUT

Clock VIN

VOUT

Clock

 
Figure 3.1.  Periodic sampling process 

The minimum sampling frequency    is determined by the Nyquist-Shannon sampling 

theorem [25]. The theorem states that the minimum sampling frequency required to perfectly 

reconstruct a bandlimited signal from its samples is          , where          is the highest 

frequency component in the spectrum of the bandlimited signal. If this condition is not satisfied, 

some information will be lost due to aliasing. In practice, most of ADCs operate at 3 to 20 times 

the input signal bandwidth to facilitate the realization of antialiasing and reconstruction fillers 

[26]. These ADCs are usually referred to as Nyquist-rate ADCs. The other category includes 

ADCs that operate much faster than the Nyquist-rate          (typically 20 to 512 times faster). 

These ADCs are referred to as oversampling ADCs. In our discussion, we will focus on 

Nyquist-rate ADCs since they can provide adequate speed for RNS applications compared to 

oversampling converters. 
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3.2  Quantization 

Quantization is a non-linear process that transforms a continuous range of input samples into 

a finite set of digital code words. Conceptually, the process of analog-to-digital conversion 

comprises both sampling and quantization processes. A conventional ADC performs both 

sampling and quantization. However, the terms quantizer and ADC are often used 

interchangeably. A quantizer is fully described by its transfer function. The transfer function of 

a typical quantizer is shown in Figure 3.2. The horizontal axis includes the threshold levels with 

which the sampled input is compared. The vertical axis includes the digital code representation 

associated with each output state. 
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Figure 3.2. Transfer function of a typical quantizer 

 

The analog input voltage has to be within the allowed range of voltages. The allowed voltage 

range is referred to as the full scale (  ). If the analog input exceeds the full scale, the quantizer 

goes into saturation. The difference between the threshold levels is called the step size ( ) and it 

determines the resolution of the quantizer. The step size of the converter is related to the full 

scale (  ) and the number of representing bits ( ) by the equation: 

  
  

  
                                                                 (3.1) 
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This means that the output digital code changes each time the analog input changes by  . The 

quantizer is a non-linear system. A straight line that represents the relationship between the 

input and the output in a linear system is replaced by a staircase-like transfer function. The 

quantizer shown in Figure 3.2 is classified as a midtread uniform quantizer. The quantizers can 

be divided into two categories based on the locations of the threshold levels: uniform and non-

uniform (Figure 3.3). In uniform quantizers, the threshold levels are evenly distributed, while 

the thresholds in non-uniform quantizers are non-evenly distributed. Instead, they follow the 

probability density function (PDF) of the input signal. In our discussion, we will restrict 

ourselves to uniform quantizers. Based on the existence of an output zero level, the quantizers 

can be divided into two categories: midtread and midrise (Figure 3.4). Midtread quantizers 

include one zero output level. On the other hand, midrise quantizers do not include a zero 

output level. The transfer function of both midtread and midrise quantizers is odd symmetric 

about the vertical axis. 

. 

Input

Quantized 

Output

Input

Quantized 

Output

(a) (b)

    (a)                                                                                          (b)  

Figure 3.3. Quantizer transfer function: (a) uniform (b) non-uniform 

 

All quantizers covered so far are assumed to be ideal. However, real quantizers deviate from 

the ideal transfer function because of the imperfections in the manufacturing process. These 

imperfections cause the threshold levels to deviate from their correct locations. In this context, 

we need to define the commonly used terms to describe some of the performance limitations: 
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Figure 3.4. Quantizer transfer function: (a) midtread (b) midrise 

 

Offset error 

The error that causes all threshold levels to shift from their ideal positions by an equal 

amount is called an offset error (Figure 3.5). The offset error is the deviation of the actual 

analog voltage, that ideally corresponds to the level       , from 
 

 
 , or in units of  : 

        
      

  
                                                   (3.2) 
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Figure 3.5. Effect of offset error on quantizer transfer function 
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Gain error  

The gain error       is the difference between the actual and the ideal quantizer transfer 

functions at the full scale after the offset error is removed (Figure 3.6). The gain error of an  -

bit ADC in units of   is given by: 

      
             

  
                                                          (3.3) 
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Figure 3.6. Effect of gain error on quantizer transfer function 

 

Non-linearity errors 

Non-linearity errors refer to the deviation of the actual transfer function from the straight line 

after the offset error and the gain error are removed. This is called the integral non-linearity 

(INL) error. 

Another term that is used to characterize the non-linearity of the quantizer is the differential 

non-linearity (DNL) error. In an ideal quantizer, the threshold levels are exactly one step size 

( ) apart. DNL is the deviation of the analog step size away from the ideal value ( ), after the 

offset error and the gain error are removed. Linearity error effect on the quantizer transfer 

function is depicted in Figure 3.7. 
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Figure 3.7. Effect of linearity error on quantizer transfer function 

 

Missing codes  

Missing codes result when a valid output code never occurs because of excessive non-

linearity errors. The phenomenon is graphically illustrated in Figure 3.8. An ADC is guaranteed 

to be missing code free if INL <  
 

 
   or DNL <  . 

  

Input

Quantized 

Output

Δ

Δ_
2

_
2

3Δ
2

5Δ_
2

7Δ_
2

-3Δ
2

-5Δ
2

-7Δ
2

-Δ____
2

-9Δ_

2Δ

3Δ

-Δ

-2Δ

-3Δ

-4Δ

Missing 

codes

Missing 

codes

 

Figure 3.8. Effect of missing codes on quantizer transfer function 
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Quantization Noise 

As mentioned earlier, the quantizer is a non-linear system that assigns a representation level 

to the sampled input based on its location within the threshold intervals. The quantized value 

     is, in general, different from the input value  . The difference between the two values is 

referred to as the quantization error     , where: 

                                                                             (3.4) 

If the analog input is guaranteed to be within the full scale, then the quantization error will be 

in the range: 

 
 

 
      

 

 
                                                                        (3.5) 

A simplified statistical model that approximates the quantization error as a random noise 

component is often used. The statistical representation is based on the following assumptions 

[25]: 

 The quantization error is a sequence of a stationary random process.  

 The quantization error is uncorrelated with the sampled input. 

 The elements of the quantization error are uncorrelated (white noise process). 

 The probability density function (PDF) is uniform over the range [ 
 

 
 , 

 

 
]. 
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Figure 3.9. Quantizer models: (a) non-linear  (b) linear 
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These constraints lead to simple and effective analysis of the quantizer performance, where 

the quantization error is considered as an additive white noise source (Figure 3.9) with 

uniformly distributed PDF. The probability density function (PDF) of the quantization error 

based on the above mentioned assumptions is shown in Figure 3.10. The PDF is uniformly 

distributed over the range [ 
 

 
 , 

 

 
]. Therefore, the output noise power    is equivalent to the 

variance of     : 

     
      

 
    

  

  
                                                             

 

 

 
 

 

(3.6) 

The power of a full swing sinusoidal input      
  

 
             is given by: 

    
  

   
 

 

 
   

 
 

      

 
                                                             (3.7) 

The performance of the quantizer is usually characterized by the ratio between the output 

signal power (  ) and the output noise power (  ). This ratio is called signal-to-noise-ratio 

(   ) and often evaluated in decibels. The quantizer     is therefore given by: 

          
        

     
                                                     (3.8) 
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Figure 3.10. Quantizer PDF 

 

The     obtained from Equation (3.8) is used to predict the performance of the quantizer. 

The obtained value represents the maximum     of an  -bit quantizer. Usually, the 

performance of the quantizer is compared to the ideal one by rewriting Equation (3.8). The 

maximum     is replaced by the actual    , and Equation (3.8) is solved for the equivalent 
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resolution ( ). The result is called the Equivalent-Number-Of-Bits (    ) and it is commonly 

used as a figure of merit to evaluate the performance of the quantizer: 

     
         

    
                                                       (3.9) 

In practice, ADCs have different achievable maximum     when different inputs are 

applied in different conditions. It is important here to emphasize that the     is evaluated in 

the above calculations with respect to quantization noise, and other noise sources (such as 

thermal noise, jitter, etc.) are isolated. 

 

3.3  Analog-to-Digital Converter Architectures 

We need to develop efficient architectures for direct conversion from analog to RNS 

representation. However, we should keep in mind that the residue representation is in digital 

form. Therefore, investigating some conventional analog-to-binary, or more often called analog-

to-digital, conversion schemes and extending their concepts to analog-to-residue conversion is a 

very interesting approach. In fact, most of the available architectures of direct analog-to-residue 

converters are based on similar ADC architectures. 

In this section, we present a brief comparison among some ADC architectures that are 

suitable for RNS implementation. The RNS implementation requires high conversion speed and 

high enough resolution to be partitioned into small residues. Because speed is one of the main 

objectives of RNS implementation, we shall restrict ourselves to ADCs which have medium-to-

high speed. 

 

3.3.1 Flash (or parallel) ADC 

Flash ADC is considered the fastest among all analog-to-digital converters. A general 

architecture of a flash ADC is shown in Figure 3.11. A typical  -bit flash ADC requires    

resistors,       comparators, and (     to  ) encoder. Each comparator is connected with 

one input to the analog sampled input and with the other input to the resistor ladder. The 

comparators compare the analog input with the threshold levels. The voltages that correspond to 

the threshold levels are generated using a resistor ladder that contains    resistors. The digital 

output of the comparator bank is called a thermometer code, because as the analog input 

increases, the comparators turn more outputs into one in a monotonic way (like a mercury-filled 
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thermometer). The thermometer-coded output is converted into digital binary code using a 

(     to  ) digital encoder. 

As mentioned above, the flash ADC is the best choice when high conversion speed is 

required. The high speed of the flash ADC is due to the fact that it compares the input with all 

threshold levels simultaneously (in parallel) and produces a digital output. However, flash 

ADCs suffer from many practical limitations. First, the hardware complexity and, more 

importantly, the power consumption increase exponentially (     ) with resolution.  Every 

additional bit doubles both the area and the power consumption. The second drawback is that 

the large number of comparators connected to the input results in a large capacitive load at the 

input node [26].  Indeed, this limits the speed of the converter when the targeted resolution is 

high. The requirement of small comparator offset is another limitation that is difficult to achieve 

in modern technologies due to process variations. It is very important to maintain the 

comparator offset less than half a step size to ensure monotonicity of the converter. When high 

resolution is required, the step size is very small. Usually, an additional circuit is added before 

the encoder to detect bubble errors and ensure monotonicity. In general, flash ADCs are the 

optimum for very high speed applications, but the resolution cannot be very high as many 

limitations make the implementation impractical [27]. Flash topology is very effective for low 

resolution up to 8 bits [28]. 
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Figure 3.11. Flash ADC 
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 3.3.2 Interpolating Flash ADC 

Interpolation is a common technique used to reduce the hardware complexity and improve 

the performance of flash ADCs. Usually, this technique is used along with folding technique. 

However, interpolation was used effectively by itself [29]. A 3-bit interpolating flash ADC is 

shown in Figure 3.12. The main idea behind interpolation is to use the pre-amplifiers as linear 

amplifiers near the threshold voltages. The inputs to the latches are generated using a resistor 

ladder. The main advantage of interpolation is the reduction of the number of preamplifiers 

which results in reduction in the input capacitance. This solves a practical problem in flash 

ADCs, and slightly reduces the power consumption. 
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Figure 3.12. A 3-bit interpolating flash ADC 

 

Interpolation can be realized using a resistive ladder as shown in Figure 3.11. Other 

techniques such as current mirrors [30] and capacitors [31] can be utilized to implement the 

interpolating technique. 
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3.3.3 Two-Stage Flash ADC 

The two-stage architecture is one of the most popular approaches for high speed, medium 

resolution ADCs. Figure 3.13. shows the basic architecture of an  -bit two-stage ADC. The S/H 

circuit samples the analog input. The sampled input is fed to the first   -bit flash ADC to obtain 

the most significant bits (MSBs). The first flash ADC is usually referred to as the coarse 

converter. The output of the coarse converter is converted back into analog using an   -bit 

DAC. This value is subtracted from the sampled input. The residue obtained from subtraction is 

amplified and quantized using a second   -bit flash ADC to obtain the lowest significant bits 

(LSB). The second flash ADC is referred to as the fine converter. The S/H output is held until 

the completion of the conversion in the fine converter. The overall resolution is   bits where   

=    +   . 

n1-bit

Coarse ADC

n1-bit 

DAC

n2-bit

Fine ADCƩ 2n1

+_Vin

n1 MSBs n2 LSBs
Figure 3.13. Two-stage flash ADC 

 

The two-stage ADC reduces the number of comparators from      to (     ) + (    

 ). For example, an 8-bit (   =    = 4) two-stage flash ADC requires 30 comparators, which is 

much less than 255 comparators required by an 8-bit full flash ADC. As a result, both the area 

and the power consumption are reduced. In addition, the input capacitive loading is reduced.  

However, there are some drawbacks of the two-stage ADC architecture compared to the flash 

ADC. First, the two-stage ADC has larger delay due to the additional stage. The second 

drawback of the  -bit two-stage ADC is the requirement of a DAC whose linearity is better 

than   bits. In addition, a difference amplifier is required to obtain the residue and amplify it. 

This difference amplifier also adds to the overall latency of the two-stage ADC. In general, two-

stage ADCs have good performance in terms of speed, and medium resolution (10-12 bits) [32, 

33]. 
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3.3.4 Multi-Stage Pipelined ADC 

The concept of the two-stage ADC can be extended to multi–stage, where a single bit is 

obtained in each stage. Direct implementation of this concept will suffer from very large delay. 

Using a sample-and-hold (S/H) circuit in each stage allows pipelining and increases the 

throughput. A general structure of a pipelined ADC is illustrated in Figure 3.14. The pipelined 

ADC does not have to wait till the residues ripple through the entire converter. After each stage 

completes the conversion, it does not sit idle but immediately starts converting the next sample.  

The pipelining architecture severely reduces the complexity. The complexity is proportional 

to   instead of    (as in flash ADC), because each stage needs only 1-bit ADC. However, the 

gain accuracy of the first residue amplifier becomes more stringent, because the accuracy of 

conversion for the remaining bits is dependent on the first residue. Nevertheless, very high 

resolution with high throughput can be achieved by adding a digital-error correction circuit and 

utilizing trimming or calibration. In summary, pipelined ADCs are very suitable for applications 

in which high resolution and high throughput are required, while the latency is not critical [34].   
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Figure 3.14. Pipelined ADC architecture 

 

3.3.5 Time-Interleaved ADC 

The main idea of time-interleaved ADCs is the utilization of parallelism in the conversion 

process. The general architecture of a three-channel time-interleaved   -bit ADC is shown in 

Figure 3.15. The three ADCs operate in parallel fashion and time-interleaving manner [26]. The 

first channel samples the input while the other channels are evaluating the previous samples. 

The clock    samples the input three times faster than   ,   ,  and   . In addition,   ,   , and 

    are delayed with respect to each other by a period   . Theoretically, the speed of the overall 
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three-channel time-interleaved converter is three times the speed of the individual converters. 

This is a great advantage because the overall speed can be increased by increasing the number 

of channels, while the area and the power consumption will increase linearly. However, it is 

very difficult to achieve well matched delayed clocks in practice because of mismatches in the 

layout of the clock distribution as well as some other noise effects on the clock. Mismatches 

produce tones at 
 

 
 the sampling frequency, where   is the number of channels. This distorts the 

output spectrum and degrades the performance of the converter.  
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Figure 3.15. A 3 -bit three-channel time-interleaved ADC architecture 

 

3.3.6 Folding ADC 

As mentioned earlier, interpolating is used to reduce the number of preamplifiers and 

consequently the input capacitive loading. This results in slight reduction in hardware 

complexity and power consumption. However, the number of latches and the size of the 

encoder are still proportional to   ,  where   is the number of bits. 

Folding is a technique that significantly reduces the number of latches and the size of the 

encoder along with the number of preamplifiers. Folding and interpolating are often used 

concurrently for significant reduction in the complexity of the overall architecture. Folding was 

first introduced by Arbel and Kurz [35] in 1975. 
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The operation of a folding ADC is similar to that of a two-stage ADC where a coarse 

converter is used to obtain the MSBs and the remaining LSBs are obtained after the signal is 

folded. The folding ADC obviates the need for an accurate DAC. Instead, the analog input has 

to undergo an analog preprocessing stage to fold the signal. A general structure that illustrates 

the concept of folding is shown in Figure 3.16. The architecture uses a (     )-bit coarse 

converter and a (       )-bit fine converter, where   is the folding factor. The folding factor 

  is defined as the number of folding segments in the transfer function of the folding block. 
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Figure 3.16. Folding ADC architecture 

 

The complexity of the folding ADC depends on  . The complexity of the coarse quantizer 

and the folding circuit is proportional to  , while the complexity of the fine quantizer is 

proportional to     .  

 

3.3.7 Successive Approximation ADC 

The successive approximation ADC is widely used in many applications. Its popularity stems 

from the good ratio of speed/power and the fact that the converter is very compact making it an 

inexpensive device [36]. The successive approximation ADC has reasonable speed with very 

good resolution and reduces the complexity and the power consumption of the circuit. A block 

diagram of a typical successive approximation ADC is shown in Figure 3.17. The basic idea 

behind the successive approximation is the binary search algorithm. The analog input   is 
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sampled. A timing control system known as the successive approximation register (SAR) is 

used to control the voltages generated by the DAC. The SAR sets the most significant bit 

(MSB) to 1 while the remaining bits are maintained at 0. The DAC converts the SAR value into 

analog and compares it to the analog input. If the analog input voltage is higher than the DAC 

output, the comparator output is set to 1; if not, the comparator output is set to 0.  The SAR 

retains the MSB bit and proceeds with the next significant bit. The procedure is repeated until 

the output voltage of the DAC converges to the analog input within a specified accuracy 

determined by the size of the SAR. The algorithm requires one clock cycle to sample the analog 

input and one clock cycle to determine each bit. In total, the conversion requires      clock 

cycles where   is the size of the SAR which is equivalent to the required resolution. The main 

drawback of the successive approximation technique is its sequential nature which limits the 

speed when high resolution is also required. 
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Figure 3.17. Successive approximation ADC architecture 
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3.3.8 Summary Comparison 

Table 3.1. Comparison among the described ADC architectures  

Architecture Advantages Disadvantages 

Flash 

- Very fast. 

- No DAC required.  

- Low resolution (8 bits). 

- Complexity and power increase 

exponentially with resolution. 

- High input capacitive loading. 

- Small comparator offset required.  

Interpolating 

- Very fast. 

- No DAC required. 

- Reduced input capacitive 

loading. 

- Low resolution. 

- Complexity and power increase 

exponentially with resolution. 

Folding 

- Fast. 

- No DAC required. 

- Reduced area, power, and 

input capacitive loading.  

- Limited resolution. 

- Non-idealities in the folding 

circuits. 

Two -Stage 

- Reduced area, power, and 

input capacitive loading.  

- Possible error correction. 

- Moderate speed. 

- Resolution limited to (10 –12 

bits).   

Pipelined 

- High throughput. 

- Possible error correction. 

- Reduced input capacitive 

loading. 

- Latency is proportional to the 

number of stages. 

- Multiple S/H circuits required.  

Time-

Interleaved 

-  High throughput. - Clock mismatches degrade the 

performance.  

Successive 

Approximation 

- High resolution. 

- Low input capacitance. 

-Very low complexity and 

power consumption.  

- Low speed (   cycles) compared 

to flash ADC. 

- Accurate DAC required. 
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3.4  Digital-to-Analog Converter Architectures 

We present here some available architectures for the implementation of the DAC. In general, 

there are three main types of DACs: decoder-based, binary-weighted, and thermometer-code 

converters. Other hybrid architectures can be realized using any combination of these three 

types. However, we shall restrict our discussion to the three main types. 

The general characteristic equation of an  -bit DAC is given by: 

             
      

                                                    (3.10) 

 

3.4.1 Decoder-based DAC 

The decoder-based DAC is a straightforward implementation of Equation (3.10). In this 

approach, an  -bit DAC has    reference signals at its input. Depending on the digital input, 

only one low impedance path is created, and the corresponding signal passes to the output. 

Figure 3.18. shows a 3-bit decoder-based DAC. The switches can be implemented using pass 

transistors or transmission gates. 
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Figure 3.18. A 3-bit decoder-based DAC 
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Since the voltage at any intermediate node in the resistor ladder must have a lower voltage 

than all upper nodes, the DAC is guaranteed to be monotonic. Matching between the resistors in 

the ladder is the most important factor in determining the resolution of the resulting DAC. In 

terms of speed, the delay through the resistors is a major limitation of the speed. An alternative 

implementation of the decoder-based DAC for high speed applications is shown in Figure 3.19., 

where a digital decoder is used to provide a single bus at the input switches. However, the price 

is larger area and larger capacitive loading at the bus nodes [26]. 
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Figure 3.19. An alternative implementation of decoder based DAC 

 

3.4.2 Binary-scaled DAC 

The basic idea behind the binary-scaled DAC is to create an array of signals that are scaled in 

a binary fashion. One possible implementation is the architecture shown in Figure 3.20. where 

the resistors, and so the currents, are scaled by order of   . However, when   is large, the 

resistors and the currents can be large which limits the performance. This architecture is not 

adequate for high speed applications because of the glitches at the output and non guaranteed 

monotonicity. 
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Figure 3.20. A 4-bit binary-weighted DAC 

 

A better implementation of the binary-scaled DAC is the R-2R ladder architecture. The 

architecture is shown in Figure 3.21. In this architecture, the currents are scaled in a binary 

fashion while maintaining small values of the resistors. The resulting DAC has better accuracy 

and smaller size compared to the architecture shown in Figure 3.20. In addition, matching the 

resistors is easier in this case, since only two resistor values are required (R and 2R). 
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Figure 3.21. A 4-bit R-2R DAC 

 
 
3.4.3 Thermometer-code DAC 

An  -bit thermometer-code DAC requires    input switches to fully represent the input data. 

This is done by encoding the binary input into thermometer-code using a conversion circuit. 

The area of the resulting circuit can be large. However, the thermometer-code DAC has better 

linearity performance and reduces the glitches at the output. A 3-bit thermometer-code DAC 

architecture is shown in Figure 3.22. 
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Chapter 4 
 

 
 

Conversion between  

Analog and RNS Representations 
 
 
 

 

In this chapter, we discuss the direct conversion between analog representation and RNS 

representation. In Chapter 2, we assumed that the available data is already sampled, quantized, 

and in binary format. However, in real-time applications, the interaction with the real analog 

world requires converting the continuous-time analog signal into residue representation and vice 

versa. Usually, this is done in two stages. For example, to convert an analog signal into residue 

form, the analog signal is first sampled and quantized using an ADC. Next, the binary 

represented data is converted into residue representation using one of the proposed B/R forward 

conversion schemes in Chapter 2. This makes the conversion inefficient due to the increased 

latency and complexity. In order to utilize an RNS-based processor (Figure 1.1.) in a certain 

application, we need to develop conversion circuits that perform as efficient as the analog-to-

digital converter (ADC) and the digital-to-analog converter (DAC) in digital binary systems. 

Thus, direct conversion from analog-to-residue (A/R) and from residue-to-analog (A/R) is 

sought to eliminate the intermediate binary stage delay and improve the efficiency of the overall 

RNS. 

This chapter consists of two main sections. In the first section, we discuss the process of 

direct A/R conversion and present some proposed schemes and architectures. In the second 

section, we discuss the process of direct R/A conversion and present possible implementations 

of the available algorithms.  
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4.1. Forward Conversion from Analog to RNS Representation 

In this section, in addition to the literature review of some proposed direct analog-to-residue 

(A/R) conversion schemes, we present two schemes proposed by us. The A/R conversion is 

necessary when interaction with the real analog world is required. Some researchers have 

worked on that problem and proposed various architectures [37-42]. The proposed architectures 

extend the principles of the conventional ADCs to A/R converters. Therefore, we shall refer to 

Section 3.3. whenever further explanation is needed. Explanation and analysis to demonstrate 

the efficiency of the proposed schemes are provided. The proposed architectures are compared 

to both their analog-to-digital counterpart converters and to their similar A/R architectures 

proposed in previous work. The main A/R converters types are the following:  

 

4.1.1 Flash A/R Converter 

The flash principle described in Section 3.3. can be applied to A/R converters. The flash A/R 

converter described in [37] and [38] uses the same number of comparators and resistors. The 

proposed  -bit flash A/R converter requires      comparators and    resistors. The only 

modification is that the thermometer code is converted into residue representation instead of 

binary representation. To do that, we invoke to the base value definition described in Section 

1.2. The dynamic range   is partitioned into groups of     integer numbers, where      is the 

largest modulus. The (     to  ) encoder in an  -bit flash ADC is replaced with the encoder 

shown in Figure 4.1. The proposed encoder converts the thermometer-coded output of the 

comparator bank into residue form. The first step of the conversion process is to obtain the base 

value that corresponds to the sampled input  . The function    is defined as: 

                                                                   (4.1) 

where 

    
            

                        
                                           (4.2) 

 

Equation (4.1) can be implemented using XOR gates. This array of XOR gates enables the 

buffer that corresponds to the base value (  ). The residue is obtained using a set of       

buffers. Since the XOR gate output will be zero for    , a NAND gate is used for the first 

buffer enable. For any input    , only one XOR output will be asserted and the function    

will enable only the buffer that corresponds to the base value of X. Thus, the residue of   with 
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respect to     is the number of 1's beyond the base value, i.e.      
    –   . The output of 

the buffer that corresponds to the base value drives a PLA of size                   bits, 

whose output is the digital binary representation of      
 [38].  

To obtain all the residues with respect to different moduli, we notice that any number   has 

unique representation in its range.  Therefore, the knowledge of the base value  (  )  along with 

the residue     
 is sufficient to uniquely identify the other residues. The PLA size, in this case, 

has to be modified to                        
    bits, where                  

represents the extra bits to be added [39]. 
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Figure 4.1. Conversion from thermometer code to residue 
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The latency of the proposed flash A/R converter is: 

                                                                         (4.3) 

On the other hand, a similar flash ADC will have a latency given by: 

                                                                          (4.4) 

where      is the delay of the ROM encoder used to convert the thermometer code into binary 

code in a flash ADC. 

For large dynamic ranges:                       . Therefore, a flash A/R converter 

can be even faster than its ADC counterpart. However, the proposed converter does not solve 

any of the practical limitations of flash converters discussed in Section 3.3. The resolution of 

the proposed converter is limited due to the exponential increase in hardware complexity and 

power consumption. In addition, the input capacitance is large for high resolution, and offset 

mismatches are inevitable. 

An iterative technique applied to flash principle has been reported in [39] and [40] to reduce 

its hardware complexity. The proposed architecture consists of two stages, where the first stage 

generates the base value, and the second stage generates the residue. The proposed architecture 

is shown in Figure 4.2. 
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Figure 4.2. Iterative flash A/R converter 
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The analog input   is sampled and fed to the input of the first flash converter (FC1). The first 

converter obtains the   most significant bits (MSBs) of the quotient which will be stored in the 

(MSBs) of the first register (R1) using a digital demultiplexer (DEMUX). This value is 

converted back into analog using a DAC with gain    and fed to a difference amplifier (DA). 

The output of the DA is the remaining quotient and the residue. This value is amplified by a 

gain    , where   is the number of iteration, and the next   bits of the quotient are obtained 

again by the first flash converter. The process is repeated for   cycles where: 

   
      

    

  
  

 
                                                                       (4.5) 

After   cycles, the quotient which represents the base value will be stored in R1. The output 

of the DA represents the residues. This value is fed to the second flash converter (FC2) to 

obtain the digital representation of the residue [39,40].  

The proposed architecture reduces the hardware complexity and thereafter the power 

consumption. In addition, it reduces the capacitive loading at the input, and improves the 

performance of the overall A/R converter. Digital correction circuit can be added for further 

improvement as proposed in [39]. However, these advantages are at the price of increasing the 

latency, where       cycles are required to perform the conversion. Moreover, the circuit is 

not very simple and requires an accurate variable gain amplifier. 

In our approach [41], we propose an A/R conversion scheme based on the same flash 

principle. The complexity is significantly reduced while preserving most of the advantages of 

the flash converter. The proposed architecture is shown in Figure 4.3. Consider the analog input 

  is in the dynamic range        . We compare the analog input with the base values of 

modulus    which are produced by the resistor ladder. This requires 
 

  
   comparators in the 

first stage instead of   comparators to compare with all levels as in [37] and [38]. The outputs 

of the comparators are converted from thermometer code to binary code using an encoder. The 

digital output is the binary representation of the base value with respect to modulus    . The 

base value is converted into analog and subtracted from the analog input using a difference 

amplifier (DA). The difference amplifier has a gain of 
 

  
 to maintain the same      for both 

ladders in the two stages. The output of the difference amplifier represents the residue. The 
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output residue is converted into digital format using another flash ADC with       

comparators. By knowing the base value and the residue of the input   with respect to one of 

the moduli, we can determine the other residues with respect to their moduli as shown in [37] 

and [38].  

The total number of comparators in the proposed architecture is   
 

  
          . This 

number can be used to estimate the overall area size since it is proportional to the number of 

latches and the size of the encoders.  The power consumption is also directly proportional to the 

number of comparators. To illustrate the great saving in the proposed converter, consider the 

moduli-set {15, 16, 17} where       represents a 12-bit converter. Using the architecture in 

[37], we need          comparators. Using our proposed architecture, we need only     

comparators. 
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Figure 4.3.  Modified flash A/R converter 

 

For the widely used moduli-set               , the dynamic range is given by     

        for     , and the resolution is      bits. Table 4.1. shows the total number of 

comparators required to implement the architecture proposed in [37] and the one proposed here 
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for different resolutions. Figure 4.4. shows the great advantage gained by reducing the 

complexity (in terms of number of comparators) versus  . The figure shows that the complexity 

of the scheme proposed in [37] grows exponentially with the resolution, while the proposed 

scheme allows using much higher resolution without highly increasing the complexity. Further 

reduction in the number of comparators can be achieved using interpolating and folding 

techniques. 

Table 4.1. Number of comparators in [37] and in the proposed architecture 

Resolution 
Number of comparators 

In [37] This work 

9 503 63 

12 4,079 255 

15 32,735 1023 

18 262,079 4095 

21 2,097,023 16,383 

 

 

Figure 4.4.  Complexity vs. k of the proposed scheme compared to [37] 

 

Reducing the number of comparators in each stage relaxes the requirement of small 

comparator offsets, and improves the monotonicity of the conversion stages. 
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In terms of speed, the proposed architecture introduces an additional conversion stage and 

needs digital-to-analog conversion. At first glance, the proposed architecture seems to be much 

slower than the one proposed in [37]. However, reducing the number of comparators reduces 

the input capacitive loading which solves a practical problem in flash converters and reduces 

the delay. In addition, the two stage configuration allows pipelining the input data into two 

stages. The first stage is to obtain the base value, and the second is to obtain the residue. This 

pipelining increases the throughput by a factor of 2 approximately. 

A Simulink model is built to simulate the behavior of the proposed A/R converter. The high-

level block diagram of a 9-bit two-stage flash A/R converter is shown in Figure 4.5. The used 

moduli-set here is {7, 8, 9}. At first, the components are assumed to be ideal. 

 

Figure 4.5. Simulink model of the two-stage flash A/R converter 

 

A ramp is applied at the input, and the residue with respect to modulus       is obtained 

at the output. The scaled input and output are shown in Figure 4.6. The other two residues can 

be obtained in parallel using two additional converters. However, this will increase both the 

area and the power consumption of the A/R converter by a factor of 3. Another way to obtain 

the remaining residues is to use a ROM look-up table. The ROM inputs are the base value and 
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the residue with respect to modulus   . Knowledge of these two values is sufficient to obtain 

the other two residues. This approach maintains the area and the power consumption at 

minimum, but extra delay through the ROM is inevitable.  

 

Figure 4.6. Output response to a ramp input 

 

The maximum SNR is calculated by applying a single tone input within the specified range 

of frequency. In our case, the sampling frequency    is chosen at 1 GHz. Consequently, to 

satisfy Nyquist-Shannon theorem, the bandwidth has to be at maximum 500 MHz. The input 

frequency     is chosen at 519 KHz, and it satisfies the coherency requirement to avoid 

spectrum leakage: 

    
 

 
                                                                        (4.6) 

where   and   are relatively prime. In our case,      and      . The quantized output 

has 504 quantization levels. This is equivalent to              bits. 

The SNR is calculated from the output spectrum shown in Figure 4.7. The bin (      ) 

corresponds to    . The SNR is obtained over the range 0 – 500 MHz. The obtained value from 

the simulation is 55.8 dB. This is consistent with the value obtained from Equation (3.8) where:  
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Figure 4.7. The quantized output spectrum 

 

Non-idealities of the components degrade the performance of the converter and reduce the 

SNR. The S/H circuit suffers from two main non-ideality sources: thermal noise and clock jitter. 

The S/H circuit model is shown in Figure 4.8. The S/H circuit is mainly an RC circuit which has 

an RMS input referred noise voltage         given by [26]: 

         
  

  
                                                        (4.7) 

where   is Boltzmann constant,   is the absolute temperature, and    is the sampling capacitor. 

 

Figure 4.8. The S/H circuit model 
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  The thermal noise is usually modeled as an additive white noise source with Gaussian 

distribution [43]. The RMS value is equivalent to the standard deviation of the noise 

distribution. Hence, the thermal noise can be modeled as a random variable generator added to 

the input signal with zero mean and standard deviation equals to the RMS value. It is worthy to 

notice that larger sampling capacitor    results in less thermal noise. However, this limits the 

speed of the converter as it reduces the maximum allowable sampling frequency   . Proper 

value of    has to be chosen to satisfy both requirements. The effect of the thermal noise of the 

S/H circuit on the SNR is shown in Figure 4.9. 

 

Figure 4.9. SNR vs. S/H input referred thermal noise 
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The second non-ideality source in the S/H circuit is the clock jitter. Clock jitter refers to the 

temporal variation of the clock period – that is, the clock period can reduce or expand on a 

cycle-by-cycle basis [44]. The jitter effect can be characterized as a zero mean random variable 

with standard deviation that causes variation in the clock sampling edge. The effect of the clock 

jitter on the SNR is shown in Figure 4.10. 

 

Figure 4.10. SNR vs. clock jitter 
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Figure 4.11. The second stage ADC block diagram 

 

The logic encoder converts the thermometer code generated by the comparators into binary 

code. Usually, the thermometer code is converted into gray code, and then the gray code is 

converted into binary code. This approach alleviates the bubble errors since the adjacent gray 

codes will change only one bit in the code word [45]. For example, the second ADC requires a 

4-bit thermometer code to binary code encoder. The conversion to gray code is shown in Table 

4.2. The complete conversion to binary code can be easily implemented using pure Exclusive-

OR operations as shown in Figure 4.12. 
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Table 4.2. Conversion from thermometer code to gray code 

T8 T7 T6 T5 T4 T3 T2 T1 G1 G2 G3 G4 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 

1 1 0 0 0 0 0 0 0 0 1 1 

1 1 1 0 0 0 0 0 0 0 1 0 

1 1 1 1 0 0 0 0 0 1 1 0 

1 1 1 1 1 0 0 0 0 1 1 1 

1 1 1 1 1 1 0 0 0 1 0 1 

1 1 1 1 1 1 1 0 0 1 0 0 

1 1 1 1 1 1 1 1 1 1 0 0 
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Figure 4.12. A 4-bit encoder: (a) thermometer to gray (b) gray to binary 

 

The encoder shown in Figure 4.12 (a) can be represented by the following logic expressions: 

                                                                                   (4.8a) 

                                                                                   (4.8b) 

                                                                           (4.8c) 

                                                           (4.8d) 
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Similarly, the encoder shown in Figure 4.12 (b) can be represented by the following logic 

expressions: 

                                                                                   (4.9a) 

                                                                           (4.9b) 

                                                                   (4.9c) 

                                                          (4.9d) 

 

The design of the comparators is very critical and directly affects the performance of the A/R 

converter. The comparator model is shown in Figure 4.13. A high gain stage amplifies the 

difference, and the output is then latched to either 0 or 1 digital output. The comparators 

compare the sampled input with the threshold levels. Any variation in the resistor values in the 

ladder may result in erroneous quantized value at the output. Careful layout techniques can 

maintain the mismatch between the resistors within 1%. Therefore, the effect of this error 

source can be neglected in our first-order analysis. The other two main non-ideality sources in 

the comparator are the comparator offset and the thermal noise. These two sources result in 

variation in the comparator reference level which represents here the threshold level. Both 

sources can be modeled as additive random variable noise sources at the input. Since the two 

sources have the same effect and assuming they are uncorrelated, we can merge them into one 

random variable noise source at the input as shown in Figure 4.13. 

 

Figure 4.13. The comparator model 

 

The effect of the comparator offset and thermal noise on the SNR is shown in Figure 4.14. 

To show how the proposed converter has more immunity against the comparator non-idealities, 

the SNR of proposed converter is compared to that of a 9-bit full-flash converter. The proposed 

converter relaxes the requirement of the comparators offset and thermal noise.  
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Figure 4.14. SNR vs. comparator offset and thermal noise 

In the proposed converter, the DA ideally has a gain of         to amplify the 

difference and allow using the same reference voltages in the two-stage resistor ladders. The 

variation in this gain due to process variation can degrade the performance of the converter. The 

effect of  10% variation in the DA gain on the SNR is shown in Figure 4.15. 

 

Figure 4.15. SNR vs. DA gain 
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 4.1.2 Successive Approximation A/R Converter 

An architecture based on the successive approximation principle has been introduced in [38] 

and [40] for direct conversion from analog to RNS representation. The proposed architecture is 

shown in Figure 4.16.  

 

+

-

 

DA

S/H
VIN

SARDAC

Second 

Converter

Residue

 
 

Figure 4.16. The successive Approximation A/R converter in [38] and [40] 

 

The proposed architecture requires two stages, where the first stage generates the base value 

and the second stage generates the residue. The sampled input   is fed to the input of the first 

successive approximation converter. The comparator in a conventional successive 

approximation ADC is replaced by a difference amplifier (DA), and the DAC is modified by 

adding a weighting factor (  ) to its output, where    is the mosulus. The base value is stored 

in the SAR of the first converter after     cycles, where: 

        
    

  
                                                                     (4.10) 

where   is the number of bits of the SAR, and the resolution   is chosen such that       . 

After the base value is obtained, the output of the DA is the analog residue. This residue is 

converted into digital representation using a second converter which can be a flash converter or 

another successive approximation converter. 

The proposed architecture is much simpler than the flash A/R converter architecture. 

However, it is not adequate for high speed applications. The latency of the proposed 

architecture is large compared to the flash converter. In addition, the conversion in the second 

stage requires the completion of the conversion in the first stage. 
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In our approach [41], we preserve the advantage of simplicity of the overall successive 

approximation ADC and only modify the weight of the SAR bits by modifying the gain of the 

DAC. Modifying the gain of the DAC is simply done by changing the reference voltage of the 

resistor ladder of the DAC. The proposed architecture is shown in Figure 4.17. The weight of 

the most significant       
 

  
   bits is set to       , and they represent the base value. The 

weight of the remaining          bits is not changed and set to   . The SAR has a total of   

bits where         
 

  
           . The algorithm requires  +1 clock cycles to perform 

the conversion. Compared to the successive approximation ADC, the proposed converter 

requires an additional DAC and a summer operational amplifier. The overhead of the proposed 

converter is small and tolerable compared to the available successive approximation A/R 

converters proposed in [38] and [40]. 

To illustrate the operation of the proposed successive approximation A/R converter, consider 

a 12-bit converter with the moduli-set {15, 16, 17} where      . To find the residue of the 

analog input   = 95 with respect to the modulus    17, the final value stored in the SAR is 

00000101-1010. The first eight most significant bits 00000101 represent the base value 

where                   . The first four least significant bits 1010 represent the 

residue where                 . The converter requires 14 clock cycles to carry out 

the conversion compared to 13 cycles for the successive approximation ADC. Therefore, the 

speed of the proposed converter is very close to that of a similar ADC and the need for a second 

converter is eliminated.  

+

-
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Figure 4.17.  The proposed successive approximation A/R converter 
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Using the same moduli-set mentioned above, a Simulink model and a MATLAB code [46] 

are used to simulate the behavior of the 12-bit successive approximation A/R converter. The 

Simulink block diagram models the S/H circuit with the effect of clock jitter and thermal noise. 

It also includes the effect of the input referred offset and thermal noise of the comparator. The 

MATLAB code describes the successive approximation algorithm and takes into consideration 

the non-idealities of the DAC. The overall design is shown in Figure 4.18. The MATLAB code 

that describes the successive approximation algorithm is shown in Appendix I. 

 

Figure 4.18. Simulink model of the proposed successive approximation A/R converter 

 

A ramp is applied at the input, and the residue with respect to modulus       is obtained 

at the output as shown in Figure 4.19. The other two residues can be obtained from the base 

value and the residue with respect to modulus    using ROM look-up tables. 

 

Figure 4.19. Output response to a ramp input 
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The simulated A/R converter has a dynamic range       . Hence, the equivalent number 

of bits is             bits. The maximum SNR calculated from Equation (3.8) is 74 dB. 

In a similar way to that used in modeling the two-stage flash A/R converter, the effect of the 

thermal noise and the clock jitter of the S/H circuit on the SNR is modeled. The resulting SNR 

with respect to thermal noise and clock jitter is shown in Figures 4.20. and 4.21., respectively. 

 

Figure 4.20. SNR vs. S/H thermal noise 

 

 
Figure 4.21. SNR vs. clock jitter 
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The input referred thermal noise and voltage offset of the comparator are modeled as one 

random variable noise source added to the sampled input. The effect of the comparator non-

idealities on the SNR is shown in Figure 4.22. 

 

Figure 4.22. SNR vs. comparator offset and thermal noise 

 

The dynamic characteristics of the DACs affect the performance of the A/R converter and 

degrade the maximum SNR. The effect of the finite bandwidth and slew rate of the DAC is 

included in the MATLAB code of the successive approximation algorithm. The effect of the 

finite bandwidth and slew rate on the maximum SNR is shown in Figures 4.23. and 4.24., 

respectively. 

 

Figure 4.23. SNR vs. the DAC bandwidth 
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Figure 4.24. SNR vs. the DAC slew rate 

 

4.1.3 Folding A/R Converter 

A scheme based on folding principle is introduced in [42] for direct A/R conversion. The 

architecture is shown in Figure 4.25. for a three-moduli A/R converter. 
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Figure 4.25. A three-moduli folding A/R converter architecture 
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This conversion technique uses analog folding circuits to fold the analog input. The RNS can 

be represented as a sawtooth folding waveform as shown in Figure 4.26., where the residue 

repeats itself at the multiples of   . However, realizing sawtooth waveforms is very difficult 

using analog circuits because of the discontinuity at    and its multiples. Instead, a differential 

pair can be used to realize one period of the waveform shown in Figure 4.27.  

This waveform has one-to-one correspondence with the RNS representation. The residue    

with respect to modulus    is related to the value   obtained from the folding stage as follows: 

    
                           
             

                                                         (4.11) 

where    is the folding bit, which is 0 if the slope of the folding segment is positive, and 1 if 

the slope of the folding segment is negative. A single-stage folding circuit shown in [42] is 

capable of performing both operations: folding the input and obtaining the folding bit. Further 

processing to obtain the residue when        can be done using combinational logic. 
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Figure 4.26. Folding wave form with respect to modulus 4 
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Figure 4.27. Output waveform of the folding circuit 
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The proposed architecture reduces the hardware complexity by reducing the number of 

comparators. For a three-moduli RNS, a folding A/R converter requires only (        

    –   ) comparators. However, the complexity is transformed to the folding circuits. The 

folding factor can be quite large for a large dynamic range. This requires a large number of 

folding stages, which results in large latency, power consumption and input capacitive loading. 

 

4.2. Reverse Conversion from RNS to Analog Representation 

In this section, we discuss the process of reverse conversion when the output is required to 

be in analog form. Some applications require direct interaction with the analog world. Usually, 

the residue-to-analog (R/A) conversion is performed in two steps where conversion to binary is 

an intermediate stage. This degrades the performance of the overall RNS by adding an extra 

overhead and increasing the latency. Therefore, a direct R/A converter is sought to solve that 

problem and make the RNS efficient. The problem of direct R/A conversion has not been 

sufficiently investigated yet. In this research area, the author in [47] tackled that problem and 

suggested a direct R/A converter based on MRC. The main drawback with the MRC based 

converter is the sequential nature of the algorithm, which makes it slow for large dynamic range 

applications. As a main contribution to this field, we propose a direct R/A converter 

architecture based on the CRT [48]. The proposed converter eliminates the need for an 

intermediate binary stage and can perform even better than the conventional R/B converter. The 

need for a large modulo adder is eliminated. Instead, a summer operational amplifier along with 

a folding circuit is used to perform modulo addition in the analog domain. The proposed 

converter facilitates the implementation of the CRT when direct conversion to analog form is 

required and it is very adequate for large dynamic range applications. 

First, we present the scheme proposed in [47] for direct R/A conversion based on the MRC 

technique. Then, we present the CRT based R/A converter and its proposed architecture. A 

brief comparison between the performance of the two converters, and between the proposed 

R/A converter and the R/B converter is also presented. 

 

4.2.1 MRC based R/A Converter 

An architecture for direct conversion from RNS to analog representation was proposed in 

[47]. The architecture proposed is based on MRC. As it is obvious from Equation (2.31), the 
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MRC is a sequential algorithm. To generate    ’s, we require the knowledge of      ’s. This is 

the main disadvantage of the MRC algorithm. 

Consider an RNS with the moduli-set {         . Based on the architecture proposed in 

[47], a combination of ROM implementation and an analog summer operational amplifier can 

be used. The architecture is shown in Figure 4.28. 
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-1 (r2 – r1)|m2

|m1
-1 (r3 – r1)|m3 |m2

-1 (c3 – c2)|m2

-

+

DAC

DAC

DAC

r1

r2

r3

c2

c3

X

RF

RF

RF/m1

RF/m1m2

-M

RF

ROM

 
Figure 4.28. MRC based R/A converter 

 

If each residue has   bits, then the   ’s can be generated using three (     )-bit ROMs. All 

  ’s can be converted to analog voltages using three  -bit DACs. The analog outputs are added 

using a summer operational amplifier. The resistors at the input and in the feedback are chosen 

and scaled to satisfy Equation (2.31). The result of Equation (2.31) is always positive since all 

  ’s and   ’s are positive. However, some applications require representing negative numbers. 

To achieve that, we can partition the full dynamic range         into two approximately 

equal halves: the upper half represents the positive numbers, and the lower half represents the 

negative numbers. The numbers   that can be represented using the new convention have to 

satisfy the following relations [4]: 

 
   

 
   

   

 
      if   is odd                                                (4.12) 

    
 

 
   

 

 
     if   is even                                              (4.13) 
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When the result of Equation (2.31) is in the negative half of the interval, the result is 

corrected by adding –  . The negative quantity of   is equivalent to the positive quantity 

    in  ’s compliment representation. To detect the sign, we can set    to be a power of 2, 

where    is the largest modulus. In this case, the most significant bit of    is a sign bit for  . If 

the sign bit is 1, the correction is performed by adding –   to the result, and if the sign bit is 

zero, no modification is required. 

The total time delay    of the architecture shown in Figure 4.28. is: 

                                                                                   (4.14) 

 

4.2.2 CRT based R/A Converter 

In contrast to MRC, the CRT is not a sequential algorithm. The intermediate values can be 

generated in parallel using ROM look-up tables. A proposed architecture for direct conversion 

from RNS to analog representation is shown Figure 4.29. 
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Figure 4.29. CRT based R/A converter 

 

In order to realize an R/A converter based on the implementation of the CRT, we need to 

modulo add the intermediate values (partial sums of the CRT) generated by the ROMs. Assume 

each residue has   bits, then the partial sums are generated using three (     )-bit ROMs. 

These values are converted into analog form using three  -bit DACs. Conventional addition is 

carried out by a summer operational amplifier. The summer operational amplifier should be 

capable of operating at input range of      , where      is the reference voltage of each DAC. 



 99 

 To implement the modulo addition in the analog domain, we need a circuit that has the 

transfer function shown in Figure 4.30. 

0 VREF 2VREF 3VREF

VOUT

VIN

VREF

 

Figure 4.30.  Folded sawtooth waveform 

 

The main framework of the modulo addition operation is the sawtooth waveform. However, 

implementing this waveform using analog circuits is difficult to achieve because of the sharp 

transitions at VREF  and 2VREF. In practice, the circuit shown in Figure 4.31. is commonly used 

in folding ADCs to fold the analog input signal. The ideal relation between the input and the 

output is shown in Figure 4.32. Assuming a square-law MOS IV characteristic, the transfer 

function in each folding segment is described by: 

                  
           

     
                                              (4.15) 

where        is the voltage gain,   is the MOS transconductance,    is the tail current, and 

  is a constant dependent on the MOS characteristic and dimensions. 
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Figure 4.31.  Folding circuit 
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Figure 4.32.  Folded triangle waveform 

 

Assume the input signal is in the range               , and the output is taken 

differentially as     
       

 . We notice that the slope of the folded signal in this region is 

negative. This will compensate for the negative sign resulting from the inverting summer 

amplifier, and the folded signal represents the modulo addition of the three inputs of the DACs. 

If the input of the folding circuit is in one of the other two regions (           or       

         ), then the slope of the folded signal is positive. We need to multiply the folded 

signal by    to compensate for the inverting summer amplifier. However, since the output is 

taken differentially, multiplying by    is equivalent to interchanging the output nodes and take 

the differential output as     
       

 . An analog multiplexer will chose between one of the two 

possible configurations of the output (    
       

  or     
       

 ) based on the information 

given about the folding region. This information can be obtained easily by a set of two 

comparators and an AND gate to detect the region               . The output of this 

folding region detector instructs the analog multiplexer to select between the two possible 

output configurations. The folding region detector is shown in Figure 4.33. 

The total time delay    of the proposed architecture is given by: 

                                                                      (4.16) 

Compared to Equation (4.14), we notice that Equation (4.16) has an additional term         . 

In addition, the DACs used in CRT based R/A converter are    bits instead of   bits compared 

to the MRC based R/A converter. However, the critical path of the ROM in the proposed 

architecture is reduced from two to one because the CRT is not sequential like the MRC. Also, 

the size of each ROM in the proposed converter is reduced from (     ) bits to (     ) 

bits. For large  , the size of the ROM becomes a very important factor in the design for speed 

requirements. 
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Figure 4.33.  Folding region detector 

In a conventional R/B reverse converter (Figure 2.8.), the total time required to obtain the 

binary values is given by: 

                                                                                   (4.17) 

For large  ,                          . Therefore, the proposed direct R/A converter can 

be more efficient than a conventional R/B converter and it eliminates the need for a large 

modulo   digital adder. 

A comparison that summarizes the hardware complexity and the latency in the proposed CRT 

R/A converter, the MRC R/A converter, and the CRT R/B converter is presented in Table 4.3. 

 

Table 4.3. Hardware complexity and latency comparison among  

different reverse conversion schemes 

Converter CRT R/A MRC R/A  CRT R/B 

ROM size                   

DAC 

resolution 
  -bits  -bits - 

Modulo 

adder 
- - 

Multi-operand 

modulo M adder 

Latency 
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Chapter 5 
 

 
 

Conclusion and Future Work 
 
 
 

 

In this chapter, we summarize the major points the key features of this work: 

 The essentials of the RNS representation and its properties, advantages, and 

disadvantages were introduced. The enhanced speed and the low power consumption 

make the RNS very encouraging in applications with intensive multiply-and-

accumulate operations. DSP applications are good candidates of such applications. 

The reduction in power consumption makes the RNS very encouraging for portable 

devices. 

 Different schemes and architectures for forward data conversion from conventional 

representation to RNS representation were discussed. This process is considered as a 

preprocessing step to encode the data into residue form with respect to some given 

moduli. The overhead of this conversion stage has to be minimized to exploit the 

advantages of the RNS. The conventionally represented data can be in binary form or 

in analog form. In Chapter 2, we dealt with already quantized data in binary 

representation, while in Chapter 4 we discussed the conversion when the input is a 

real world analog signal. 

 Different schemes and architectures for reverse data conversion from RNS 

representation to conventional representation were discussed. After the residue 

encoded data is processed by the RNS processor, they have to be converted back into 

conventional representation. This process is considered as a post-processing step. The 

reverse conversion is one of the most difficult RNS operations and has been a major, 

if not the major, limiting factor to a wider use of RNS [4].  The required output data 
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can be in binary form or in analog form. All reverse conversion algorithms are, in a 

way or another, based on Chinese Remainder Theorem (CRT) or Mixed-Radix 

Conversion (MRC). Various schemes for the implementation of these algorithms 

when the output is in binary representation were discussed in Chapter 2, while in 

Chapter 4  we discussed the implementation when the interaction with the analog 

world requires direct conversion from RNS to analog representation. 

 

In this thesis, we focused on the algorithmic side of the design where most of the available 

and proposed data converters in RNS rely on similar data conversion techniques in digital 

systems. Many of these data converters (in digital) were developed and reported in the 

literature. Therefore, we focused on the high-level design and developed some models that 

describe the behavior of the proposed converters. 

 

Among this work, the major contributions are: 

 A direct analog-to-residue (A/R) converter based on the two-stage flash conversion 

principle was proposed. The proposed converter obviates the need for an intermediate 

binary stage. Explanation and analysis to demonstrate the efficiency of the proposed 

scheme were provided. The proposed A/R converter was compared to its ADC 

counterpart and to similar A/R converters in the literature. The proposed converter 

possesses the following advantages: 

- Reduced area and hardware complexity. 

- Reduced power consumption. 

- Reduced input capacitive loading. 

- Relaxed offset and thermal noise requirements of the comparators. 

- Possibility of using interpolating and folding techniques for further reduction 

in area and power consumption. 

- Possibility of pipelining to increase the throughput. 

A high-level model of the proposed two-stage flash A/R converter was presented. 

The model includes most of the non-idealities that affect the performance of the 

converter and degrade the maximum obtained SNR. The effect of each of these non-

idealities on the SNR was analyzed. 
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 A direct A/R converter based on the successive approximation algorithm was 

proposed. The proposed converter preserves the simplicity of the successive 

approximation ADC and extends the principle to A/R conversion. The proposed 

converter performs better than the successive approximation A/R converters in the 

literature as it eliminates the need for a second stage converter to obtain the residue. 

In summary, the proposed successive approximation A/R converter has the following 

advantages: 

- The design is compact and provides reasonable speed, good resolution, and 

low power consumption. 

- The overhead of the proposed converter is small and tolerable compared to 

the available successive approximation A/R converters. 

- The speed of the proposed converter is very close to that of a similar ADC 

and the need for a second converter is eliminated. 

A high-level model of the proposed successive approximation A/R converter was 

presented. Using the proposed model, the effect of the components non-idealities on 

the maximum obtained SNR was analyzed. 

  A direct residue-to-analog (R/A) converter based on the CRT was proposed. The 

need for an intermediate binary stage was eliminated. The proposed converter 

facilitates the implementation of the CRT when direct conversion to analog 

representation is required and it is very adequate for large dynamic range 

applications. The proposed R/A converter was compared to the MRC based R/A 

converter, and to the CRT based R/B converter. The key features of the proposed 

R/A converter are: 

- The need for a large modulo adder was eliminated. Instead, a summer 

operational amplifier along with a folding circuit was used to perform the 

modulo addition in the analog domain. 

- The proposed architecture reduces the size of the ROM which is a very 

important factor in the design of reverse converters for large dynamic range 

applications. 
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The work presented in this thesis can be extended in several ways. As RNS seems to be 

suitable for many modern algorithms, investigating more applications is one possibility of future 

work. We plan to explore integration to mixed-signal and multiple-valued FPGAs [49] and 

synthesis [50]. Further applications in signal processing, e.g., echo cancellation [51] are worth 

further investigation, as well as the circuits with imprecision [52]. Moreover, the isolation 

between the modulo channels facilitates error detection and correction. One new direction could 

be in conjunction with debug uses, as debug is a major issue in modern technologies. Applying 

RNS to some of these debug approaches [53, 54] is another encouraging possible future work.  

 In this thesis, we focused on developing efficient conversion schemes which we found very 

promising on the course of facilitating the implementation of RNS in different applications. Here, 

we mention the following as basic guidelines for any future work in this field: 

 The variety of the available ADC topologies makes it very encouraging to investigate 

other possible A/R conversion architectures by manipulating the ADC architectures 

to accommodate the variations needed to generate residue-represented digits instead 

of binary digits. Among these architectures, folding and interpolating ADCs are 

promising. Pipelined architectures can also be studied and implemented. The two 

above-mentioned architectures are good candidates due to their capability of meeting 

speed requirements of the A/R conversion process. 

 Developing efficient algorithms for reverse conversion is another possible path of 

future work. Variations on CRT or MRC can result in more efficient implantation of 

these algorithms. More effectively, developing a new efficient reverse conversion 

method can open new vistas of RNS implementation. 

 Implementing and testing the proposed architectures on IC technology is 

recommended as future work. Acquiring experimental results will give credibility 

and reliability to the obtained results from theoretical simulations. Moreover, it will 

help encounter the technical problems that may arise in practical implementation of 

the proposed architectures. 
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Appendix I 
 

 
 

 

MATLAB code to implement the successive approximation algorithm with finite bandwidth 

and slew rate of the DAC: 

 
function 

[counter2,counter,r_thresholds]=SAR_AR(input,m,nbit,nbit_r,f_bw,sr,f_s) 
% input= input sample 
% m = modulus 
% nbit=  number of base value bits 
% nbit_r=  number of residue bits 
% f_bw=  DAC bandwidth [f_s] 
% sr=    DAC slew-rate [V_fs/T_s] 
% f_s=   sampling frequency 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                global variables                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                 % 
 threshold(1,nbit+1)=0;  % threshold array 
 counter=0;              % converter decimal output 
 counter2=0; 
 threshold(1)=0.5;       % 0 threshold 
 threshold(2)=0.5;       % first threshold 
 threshold_id=0.5;       % next ideal threshold 

  

  
 r_threshold(1)=0.5;       % 0 threshold 
 r_threshold(2)=0.5;       % first threshold 
 r_threshold_id=0.5;       % next ideal threshold 

  

  
 tau=1/(2*pi*f_bw);      % DAC output pole 
 in=input/(m*2^nbit); 

  
 Tmax=1/(f_s*nbit);      % clock period 

  
 nbit;                 % Base value bits 
 nbit_r;                 % Residue bits  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
 for i=2:(nbit+1)       % conversion cycle for the base value 

      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  finite  bandwidth & slew-rate                   %    
%                       error calculation                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%                                                                  % 
   deltaV=abs(threshold_id-threshold(i-1)); 
   slope=deltaV/tau; 
   if slope > sr 
        tslew=(deltaV/sr) - tau; 
            if tslew >= Tmax              % only slewing 
                error = deltaV - sr*Tmax; 
            else 
                texp = Tmax - tslew; 
                error = (deltaV-sr*tslew)*exp(-texp/tau); 
            end 

     
   else                         % only exponential settling 
        texp = Tmax; 
        error = deltaV*exp(-texp/tau); 
   end 

     
   threshold(i) = threshold_id - sign(threshold_id-threshold(i-1))*error; 
%                                                                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      successive approximation       % 
%        conversion algorythm         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                     % 
    if (in-threshold(i)) > 0 
        threshold_id=threshold_id+1/2^i; 
        bit=1; 
    else  
        threshold_id=threshold_id-1/2^i; 
        bit=0; 
    end 
 counter=(counter+bit*2^(nbit-i+1)); 
 thresholds(i-1)=threshold(i); 
 end 
%                                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
in2=(input-counter*m)/(2^nbit_r); 

  

  
%                                                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
 for i=2:(nbit_r+1)       % conversion cycle for the residue 

      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  finite  bandwidth & slew-rate                   %    
%                       error calculation                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                  % 
   deltaV=abs(r_threshold_id-r_threshold(i-1)); 
   slope=deltaV/tau; 
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   if slope > sr 
        tslew=(deltaV/sr) - tau; 
            if tslew >= Tmax              % only slewing 
                error = deltaV - sr*Tmax; 
            else 
                texp = Tmax - tslew; 
                error = (deltaV-sr*tslew)*exp(-texp/tau); 
            end 

     
   else                         % only exponential settling 
        texp = Tmax; 
        error = deltaV*exp(-texp/tau); 
   end 

     
   r_threshold(i) = r_threshold_id - sign(r_threshold_id-r_threshold(i-

1))*error; 
%                                                                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%      successive approximation       % 
%        conversion algorythm         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                     % 
    if (in2-r_threshold(i)) > 0 
        r_threshold_id=r_threshold_id+1/2^i; 
        bit=1; 
    else  
        r_threshold_id=r_threshold_id-1/2^i; 
        bit=0; 
    end 
 counter2=(counter2+bit*2^(nbit_r-i+1)); 
 r_thresholds(i-1)=r_threshold(i); 
 end 
%                                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%             Output             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                % 
 counter2=counter2; 
 if nargout > 1 
    r_thresholds=r_thresholds; 
 end 


