
Brief Contributions__

A Deterministic Multivariate Interpolation
Algorithm for Small Finite Fields

Zeljko Zilic, Member, IEEE, and
Zvonko G. Vranesic, Member, IEEE

Abstract—We present a new multivariate interpolation algorithm over arbitrary

fields which is primarily suited for small finite fields. Given function values at

arbitrary t points, we show that it is possible to find an n-variable interpolating

polynomial with at most t terms, using the number of field operations that is

polynomial in t and n. The algorithm exploits the structure of the multivariate

generalized Vandermonde matrix associated with the problem. Relative to the

univariate interpolation, only the minimal degree selection of terms cannot be

guaranteed and several term selection heuristics are investigated toward obtaining

low-degree polynomials. The algorithms were applied to obtain Reed-Muller and

related transforms for incompletely specified functions.

Index Terms—Multivariate interpolation, finite fields, Vandermonde matrices,

Reed-Muller transform.

æ

1 INTRODUCTION AND BACKGROUND

THIS paper presents an algorithm for multivariate polynomial
interpolation, developed for the problem of representing incom-
pletely specified Boolean and discrete functions by the Reed-
Muller (RM) transform [1]. RM transform is a discrete function
representation by a polynomial in n variables over a finite field.
Although we are primarily interested in algorithms suitable for
small finite fields, the algorithm can be used over any field.

In addition to the traditional applications over real numbers [2],

interpolations over finite fields have been used for decoding error-

correcting codes [3], testing [4], and in learning algorithms [5]. The

application considered in our previous work [1] was that of

obtaining an RM transform for functions with possibly many

“don’t care” points. It is known that the problem of finding such

transforms, i.e., multivariate polynomials, with a bounded number

of terms is NP-complete and the optimization approaches are

exhaustive and time-consuming [6], [7]. The interpolation

approach can instead produce the fitting multivariate polynomial

of the size bounded by the number of specified points. Hence, the

RM transform of an incompletely specified function can be

obtained efficiently if a polynomial time algorithm can be devised

for the interpolation problem. The same results then extend

naturally to a broader class of polynomial representations [8], [9],

as well as to RM-related graph-based circuit descriptions, such as

Functional Decision Diagrams (FDDs) [10].

1.1 Multivariate Interpolation

The Lagrange or Newton interpolation algorithms can be used

over any field to obtain the coefficients ci of a univariate

polynomial fðxÞ ¼
Ptÿ1

i¼0 cix
i of degree tÿ 1 from the values at

arbitrary t points. The problem, though, is much more difficult for

multivariate functions. While the choice of terms (1; x; x2; . . . ; xtÿ1)

and the result are unique in the univariate case, for multivariate

functions, the term selection depends on the position of interpola-

tion points. There is no known algorithm to select, in advance, the

terms of a multivariate polynomial that guarantee the existence of

a solution for an arbitrary set of points. Currently, it is possible to

completely characterize the solutions for up to two-variable

polynomials of degree at most four [11]. Due to the difficulty of

the problem, most results on multivariate interpolation deal with

somewhat relaxed cases.

1.1.1 Black Box Interpolation over Finite Fields

The ”black box” interpolation model assumes that the algorithm

can select the interpolation points freely. The degree of the

polynomial is often given as an input. For this problem, the

solution critically depends on the underlying field. Three cases

need to be considered, depending on whether the field is GF ð2Þ
[12], a small finite fields [13], or a large finite (and infinite) field

[14]. For GF ð2Þ, an effective procedure exists for selecting the

points and solving the interpolation problem by decoding the

Reed-Muller codes [12], [15]. For large fields, the algorithms [14]

rely heavily on the size of the field. For small finite fields other

than GF ð2Þ, the solution exists only if the interpolation points are

chosen from a sufficiently large extension field [18]. We refer to

[16], [23], and [17] for further review.

1.1.2 Interpolation on Arbitrary Points

Much less is known about finding a solution when the interpola-

tion points cannot be selected freely. One known n-variate, t point

interpolation algorithm [19] requires a priori bound d on the

degree in each variable to run in probabilistic Oðndt2Þ time. The

algorithm is suited for larger fields as the probability of failure is

quadratic in the number of points and decreases linearly with the

field size. Substantial work on multivariate interpolation has been

done in the area of numerical linear algebra. The algorithm by de

Boor and Ron [2] attempts to solve the interpolation problem by

Gaussian elimination. The algorithm by Sauer [20] tries to

construct a set of the basis multivariate polynomials, similar to

the Gram-Schmidt orthogonalization, to express the interpolating

polynomial by a linear combination of the basis polynomials.

Although both algorithms could possibly be used over finite fields,

the polynomial run time is not guaranteed over any field.
This paper presents, in Section 2, an algorithm for multivariate

polynomial interpolation that uses the structure of a multivariate

generalized Vandermonde matrix to find suitable polynomial

terms. The algorithm performance depends on the initial term

selection, as shown in Section 2.3. In Section 3, we devise the

decomposition of the interpolation into smaller problems over

subspaces of the function definition domain. The decomposition

alone is sufficient for the quadratic time GF ð2Þ interpolation,

Section 3.3.

2 DETERMINISTIC INTERPOLATION ALGORITHM

We are given t distinct points

p1; p2; . . . ; pt 2 GF ðqÞn

and values

f1; f2; . . . ; ft 2 GF ðqÞ

1100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 9, SEPTEMBER 2002

. Z. Zilic is with the Department of Electrical and Computer Engineering,
McGill University, 3480 University St., Montreal, Quebec H3A 2A7,
Canada. E-mail: zeljko@macs.ece.mcgill.ca.

. Z.G. Vranesic is with the Computer Engineering Research Group,
University of Toronto, Toronto, Ontario M5S 1A4, Canada.
E-mail: zvonko@eecg.toronto.edu.

Manuscript received 10 Mar. 2000; revised 10 Jan. 2002; accepted 25 Jan.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111691.

0018-9340/02/$17.00 ß 2002 IEEE

that a function takes at these points. We want to fit a polynomial,

that is a linear combination,
Pt

j¼1 cj �Mj, of at most t terms

(monomials) Mj ¼
Qn

l¼1 x
mjl

l . Each term is specified by n exponents,

mjl, which are the integers in the range 0 . . . q ÿ 1. Hence, we will

produce the coefficients

c1; c2; . . . ; ct 2 GF ðqÞ

and the terms represented by the exponent vectors

m1; m2; . . . ;mt 2 f0; 1; . . . ; q ÿ 1gn:

We use the lowercase letters, like p, to denote vectors of points,

and indexed letters, as in pi, for the individual points. For

coordinates of points, we use double-indexed letters: pij indicates

coordinate j of point pi. The same convention is used for the terms.
Conceptually, the problem could be solved by a linear algebra

approach. The coefficient vector c of a polynomial fitting the vector

of values f can be obtained by solving the linear system Tc ¼ f if

the matrix T is invertible, i.e., nonsingular.
Matrix T is the generalized multivariate Vandermonde matrix,

obtained by applying the polynomial terms to the given t points,

Tij ¼
Qn

l¼1 p
mjl

il . We denote the entry Tij with either p
mj

i or mjðpiÞ as

an application of a term to a point involves the coordinate-wise

exponentiation. The rows of T correspond to the points and the

columns correspond to the terms. We know that there always exist

t terms for which the matrix T is nonsingular. (Proof: Consider a

t� qn matrix, obtained by applying all possible terms to the given

points. This matrix has rank t, and, consequently, there exists a

t� t submatrix of full rank.)
It is, however, not known how to make the matrix T

nonsingular in advance by selecting the polynomial terms. Starting

with arbitrary terms, our contribution is in exploiting the

Vandermonde matrix structure during the algorithm execution

such that the matrix is made nonsingular by a series of

deterministic term replacements. The interpolation problem is

then easily solved by matrix inversion.

2.1 Nullspaces and Increasing the Rank

The interpolation algorithm relies on the step of replacing a term in

the interpolation polynomial, which deterministically increases the

rank of the matrix T by one. For this, we use the nullspaces of the

matrix. For a singular matrix, when the rank is not full, there exist

constants k1; k2; . . . ; kt such that the following holds for each row i:

k1p
m1
i þ k2p

m2
i þ . . .þ ktpmt

i ¼ 0:

The vector k ¼ ½k1k2 . . . kt� belongs to the column nullspace Cnull of

matrix T . Such vectors form a nullspace whose dimension (nullity)

is �. Alternatively, since the row and column ranks are equal, we

can consider the row nullspace, Rnull. The vectors r and k in both

nullspaces then satisfy

Xt
i¼1

rip
mj

i ¼ 0;
Xt
j¼1

kjp
mj

i ¼ 0; i; j ¼ 1; 2; . . . ; t:

For our interpolation, we can freely choose only the terms of a

polynomial and considering the row nullspace will help us select

the terms. For a fixed row nullspace vector r, it is sufficient to find

a term mr for which
Pt

i¼1 rip
mr
i 6¼ 0 to remove that vector from the

nullspace. The following theorem describes the replacement step.

Theorem 1. The rank of T increases by 1 if a column v, corresponding to

a nonzero component kv of k 2 Cnull, is replaced by a column obtained

by a term mtþ1 for which
Pt

i¼1 rip
mtþ1

i 6¼ 0, for r 2 Rnull.

Proof. By adding a term mtþ1 for which
Pt

i¼1 rip
mtþ1

i 6¼ 0, we

eliminate the row nullspace vector r. Then,

Xt
i¼1

rip
mj

i ¼ 0; j 6¼ tþ 1 ð1Þ

and

Xt
i¼1

rip
mtþ1

i 6¼ 0: ð2Þ

We can remove the column corresponding to a nonzero

component kv in the column nullspace vector k. Then, we
obtain the nonzero linear combination

Xt
j¼1;j6¼v

kjp
mj

i ¼ ÿkvp
mv

i : ð3Þ

We now claim that replacing the term mv with mtþ1 cannot

possibly create a new column nullspace vector k0. Obviously,
for nonzero sum in (3), the component k0tþ1 is nonzero. Then, k0

is a nullspace vector if

Xtþ1

j¼1;j 6¼v
k0jp

mj

i ¼ 0

for each i. Multiplying each sum with ri and adding them
together also results in 0. This sum can be written as:

Xt
i¼1

ri
Xtþ1

j¼1;j6¼v
k0jp

mj

i ¼
Xtþ1

j¼1;j 6¼v
k0j
Xt
i¼1

rip
mj

i

¼
Xt

j¼1;j 6¼v
k0j
Xt
i¼1

rip
mj

i þ k0tþ1

Xt
i¼1

rip
mtþ1

i :

Using (1) and (2), this expression reduces to

k0tþ1

Xt
i¼1

rip
mtþ1

i 6¼ 0

because k0tþ1 6¼ 0; this contradicts the assumption that k0 is a null

vector. Hence, replacing the column v by the column tþ 1

eliminates one nullspace vector and increases the rank only by 1

because we can always choose a basis of Cnull which has only
one nonzero coordinate kv among all vectors k in the basis.

Consequently, all the other base vectors will remain in Cnull
after this replacement step as they act on columns that did not

change. tu
This replacement step can be used in a deterministic poly-

nomial interpolation algorithm. There can be at most t replacement

steps. In each step, the nullspace vectors can be obtained in Oðt3Þ
time in a traditional way by either Gaussian elimination, Knuth’s

or Berlekamp’s algorithm [21], or in OðMðtÞÞ time, required for the
fast matrix multiply [22] operation. However, it is not apparent

that searching for the replacement term can be done in polynomial
time because there are qn possible terms to search from.

2.2 Efficient Search for Replacement Terms

We now show that the replacement term can be found in Oðnt2Þ
time by exploiting the structure of the multivariate Vandermonde

matrix. We use the fact that we can obtain the following nullspace
basis vector r ¼ ½r1r2 . . . rt�. For such r, there is no nullspace vector

r0 with nonzero components that are a subset of the nonzero
components of r. (Proof: Otherwise, a linear combination r00 of the

two can eliminate the excess nonzero components, and the
property will hold for r00.) We say that such a vector r is coordinate

reduced.

Theorem 2. Let vector r 2 Rnull of generalized Vandemonde matrix be

coordinate reduced. Among the existing terms, there is a term mj with

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 9, SEPTEMBER 2002 1101

the following property: If a term mtþ1 is created from mj by

increasing a coordinate mjd by 1, then
Pt

i¼1 rip
mtþ1

i 6¼ 0. It suffices to

choose the coordinate d such that the point coordinates pid; i ¼
1; 2; . . . ; t are not constant for nonzero components of r.

Proof. First, there must exist a coordinate d for which pid is not

constant for all nonzero components ri of r because, otherwise,

some points would coincide.
For each existing term ml ¼ ½ml1ml2 . . .mld . . .mln�, we have

Xt
i¼1

rip
ml

i ¼ 0: ð4Þ

By way of contradiction, assume that there is no term mj with

the above property. Then, we obtain m0l by increasing the

coordinate mld by 1, i.e., m0l ¼ ½ml1ml2 . . .mld þ 1 . . .mln�, and

the expression

Xt
i¼1

rip
m0
l

i ¼
Xt
i¼1

ripidp
ml

i ¼ 0 ð5Þ

is true for l ¼ 1; 2; . . . t. By comparing (4) and (5), a vector with

components r0i ¼ ripid would be a nullspace vector. This is

impossible if the nullity � is 1 because coordinates pid are not

constant for all is and these two vectors are not collinear. The

dimension of the nullspace would then be 2, which contradicts

our assumption.
When � > 1, then, in addition to the vector r0 with

coordinates r0i ¼ ripid, we consider all linear combinations of
r00 ¼ �rþ �r0 that must be in the nullspace. Since sets of
nonzero components of r and r0 are equal and the r0 and r are
not collinear, there must exist r00 with nonzero components that
are a subset of those in r. However, r00 cannot be a nullvector
since the vector r is coordinate reduced, i.e., no nullspace vector
has only a subset of its nonzero components. Hence, there must
exist a term mj with the desired property. tu

This proof guarantees that the replacement term will be found

among OðtÞ alternatives, which is small relative to searching

through all possible qn terms.
The complete algorithm is given by pseudocode in Algorithm 1.

The algorithm produces an OðtÞ term interpolation polynomial

using Oðt �MðtÞÞ field operations if the fast matrix multiply is

applied or with Oðt4Þ operations using standard linear algebra. The

Vandermonde matrix construction step is also linear in n, but,

since, normally, t > n and the algorithm time is dominated by

inversion steps that are independent of n, there is no overall

running time dependence on n.

Algorithm 1: Interpolation by Vandermonde matrix nullspaces

. Select initial terms

. Create initial Vandermonde matrix T

Tij ¼ pmj

i ; i; j ¼ 1; . . . ; t

. If detðT Þ 6¼ 0, return terms and coefficients Tÿ1 � f , else � ¼
nullityðT Þ

. Repeat � times

- Obtain nullspaces, select k1 2 Cnull, and coordinate
reduced r1 2 Rnull

- Find d such that pid is not constant for nonzero
components of r1i

- Find term mj for which

Xt
i¼1

r1ipid � pimj 6¼ 0

- Create mtþ1 from mj by adding 1 to coordinate mjd

- Replace column v for which k1v 6¼ 0 with column
generated by mtþ1

. Return polynomial terms mi; i ¼ 1; . . . ; t and coefficients
c ¼ Tÿ1 � f

2.3 Initial Selections of Term

Algorithm 1 starts with an initial selection of t terms and makes
� replacement steps. Although the algorithm will complete for any
initial selection, having a large initial matrix rank would make the
algorithm faster. The selection might also lead to polynomials that
have large exponents, which are expensive to implement. In [23],
we presented several heuristics for selecting the terms. They
produce as small exponents as possible, while the initial rank is
high. These selections are based on the following observation: If we
consider any projections of points, then the number of terms in
these projections should correspond to the maximum number of
points. Otherwise, if there are more points than terms in some
projection, there may exist no solution, even in the univariate case.

The simplest way to ensure that the number of points does not
exceed the number of terms in any projection is by identical

selection, i.e., having the terms equal to the points. A degree-
reduced one-to-one mapping between point and term coordinates
by which the most commonly used degrees in each variable are the
lowest is called bijective selection. Finally, the greedy selection chooses
the lowest degree terms such that the number of terms in the
projection does not exceed the number of points. This goal is
achieved by considering points one by one: For each new point,
only the highest coordinate that has changed is increased by one.
We proved in [23] that the greedy selection produces a nonsingular
system for any three points in any field and for some configura-
tions of n points in any field.

Since it is impossible to analyze fully even the case with two
points, we compared the term selections on randomly generated
incompletely specified functions over several small finite fields.
Fig. 1 and Fig. 2 give the percentage of systems for which these
initial term selections fail to produce a nonsingular system over
GF ð3Þ and GF ð11Þ, respectively. Since there is no apparent
difference between the average ranks using the identical and
bijective term selection schemes, the bijective term selection is
preferred since it minimizes the degrees among all such term
selections. Greedy selection works better for fewer points, while
the bijective selection becomes better as the size of the field
increases. The results for finite fields of order between 3 and 11,
not shown here, show a gradual transition between the two cases

1102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 9, SEPTEMBER 2002

Fig 1. Initial failure rates for three selections of terms—GF(3).

plotted. Comparing the final term degrees for each selection, we
observe that they are bounded by the initial degrees plus the initial
rank nullity, according to Theorem 2.

3 PROBLEM DECOMPOSITION

By investigating the structure of the system Tc ¼ f , we now
decompose the original problem into smaller problems which can
be solved independently. The decomposition is useful in speeding
up the interpolation, and in parallel [24] and incremental [23]
algorithms. The decomposition is most effective for small finite
fields, which interest us the most.

3.1 Partial Ordering of Interpolation Spaces

We say that two points u and v are equivalent, u � v, if they have
0s in the same coordinates. This relation is an equivalence relation
over the interpolation space and the equivalence classes are called
z-subspaces. Since z-subspaces are distinguished only by coordi-
nates which are 0, we denote them with expressions like Sx0x0 to
indicate which coordinates are zero and which have only nonzero
values.

A relation of partial order � is defined between z-subspaces. A
z-subspace S1 precedes or equals S2 if the set of coordinates that
are 0 in S2 is a subset of those in S1. Incomparable z-subspaces are
those whose zero coordinates form mutually noninclusive sets. We
use the symbol k for the incomparability relation. Relations � and
� are defined using � and equality in a standard way.

Example 1. Points 1020 and 2010 belong to the z-subspace
S1 ¼ Sx0x0. Points 1210 and 1012 belong to the z-subspaces S2 ¼
Sxxx0 and S3 ¼ Sx0xx, respectively. Since the sets of zero
coordinates in both S2 and S3 are the subsets of zero coordinates
in S1, it follows that S1 � S2 and S1 � S3. Also, the latter two z-
subspaces are not comparable, i.e., S2 k S3, because the coordi-
nate S22 6¼ 0 while S32 ¼ 0 and S24 ¼ 0, but S34 6¼ 0.

This relation maps the hypercube ðGFqÞn to the Boolean
algebra Bn. We use this mapping to speed up the polynomial
evaluation and decompose the interpolation. In our case, the poset
representing the existing z-subspaces can be any subposet of Bn.

3.2 Structure of the System Matrix

The following statement holds:

Theorem 3. An entry mðpÞ of a matrix T is:

1. zero if p � m,
2. zero if m and p are not comparable,
3. nonzero if p � m.

Proof. The proof follows from the definition of relation � .
Case 1) Some coordinate of p is zero, while it is nonzero in m,
for which pm results in a zero application pm. Case 2) m and p

have zero coefficients such that, in both mðpÞ and pðmÞ, there is
a term eð0Þ ¼ 0e; e 6¼ 0. Case 3), whenever a coordinate in p is 0,
it is 0 in m as well and 00 ¼ 1. tu

This characterization suffices to decompose the problem, as
follows: When the z-subspaces of points and terms coincide, the
system matrix is block-triangular.

Example 2. Let a sparse function be specified at z-subspaces S00x,
S0xx, Sx0x, and Sxxx. Then, the matrix T consists of block
matrices, each of which contains applications of terms from one
z-subspace to points in another z-subspace. These block
matrices consist either of all zeros or all nonzero elements,
depending on the relative order between the point and term
subspaces. The matrix takes the form

T ¼
½0000xx� 0 0 0
½00x0xx� ½00xxxx� 0 0
½x000xx� 0 ½xx00xx� 0
½x0x0xx� ½x0xxxx� ½xxx0xx� ½xxxxxx�

2664
3775;

where each nonzero block matrix is represented by the values
that the point and term coordinates can take. Note that, for each
block, if there exists a coordinate in which 0 is raised to a
nonzero coefficient, a block matrix filled with zeros is obtained.

Equivalent to this process is the inversion of block-triangular
matrices. Another view is based on the geometric meaning of
z-subspaces, which are the points, lines, planes, etc., in
n-dimensional space. Fig. 3 shows the execution order of the
algorithm for the three-dimensional case. The solution is first
obtained for the z-subspace S000 (the point at origin), if present.
Next, interpolations along lines Sx00, S0x0, and S00x can be obtained,
followed by planes S0xx, Sx0x, and Sxx0. The last z-subspace to be
solved is in Sxxx. Since this order of execution is given by the poset
of z-subspaces, we use that poset as a primary way to describe the
interpolation by decomposition into z-subspaces.

An interpolation algorithm can be defined, based on the
traversal of the poset of z-subspaces. After performing interpola-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 9, SEPTEMBER 2002 1103

Fig. 3. Solving z-subspaces in order—newly found terms are in white dots, already known terms are in black.

Fig. 2. Initial failure rates for three selections of terms—GF(11).

tion over each subspace, the algorithm evaluates the polynomial

just obtained at all higher subspaces. Algorithm 2 allows us to

select the terms independently for each subspace and even to

change them during the execution because the overall matrix T is

never constructed explicitly. All nondiagonal block matrices used

in the derivation above need not be known in advance. The

following example illustrates the proposed algorithm, including

the decomposition into smaller problems in z-subspaces.

Algorithm 2: Interpolation using z-subspaces

. Sort z-subspaces according to �

. For each z-subspace Si with points Pi and values fi in
increasing order

- Select all polynomial terms Mi and create Ti ¼ ½PMi

i �
- Interpolate in Si to obtain a vector of coefficients

ci ¼ Tiÿ1fi

- For all Sj � Si, update vectors of values

fj ¼ fj ÿ ½PMi

j �ci

Example 3. Consider the three-variable partial function given by

the points in ðGF ð3ÞÞ3 as shown in Table 1.

The first two points belong to the z-subspaces Sx0x and Sxx0,

respectively, while the remaining three points belong to Sxxx.

The ordering relation � between these subspaces allows us to

solve the first two subsystems independently. This gives the

following two terms: c101 ¼ 1 and c120 ¼ 1. With these two

coefficients, the system can be updated for the remaining

points. We adjust the function values for points in Sxxx by

subtracting the value of the calculated term at these points. This

results in the value vector ½1; 1; 2� after the first coefficient is

calculated and ½0; 2; 0� after both coefficients have been taken

into account. The final step consists of setting up and solving a

system of equations for points in Sxxx. The matrix Txxx is

constructed by calculating all possible values pj pið Þ (terms

equal points):

Txxx ¼
1 2 1
2 1 1
2 2 1

24 35:
After multiplying its inverse with the vector of values ½0; 2; 0�,
the last three coefficients are c121 ¼ 0, c211 ¼ 1 and c221 ¼ 1. The

result is: f ¼ x1x3 þ x1x
2
2 þ x2

1x2x3 þ x2
1x

2
2x3.

The decomposition lowers the number of points that have to be

considered at a time, but does not reduce the worst-case complex-

ity as all the points can be in one z-subspace. It is easy to obtain the

average-case performance: For uniform distribution of points, the

largest z-subspace is of size ð1ÿ 1
qÞ
n � t. The worst-case perfor-

mance can be improved by using the shifted polynomials [1]. This

decomposition is obviously most useful for small fields.

3.3 Binary Case

The decomposition of the interpolation just given can be applied to

the binary case, where each z-subspace consists of a single point—

consequently, the solution trivially exists. The Oðt2Þ time algorithm

is performed as in Algorithm 3.1

Algorithm 3: GF(2) Interpolation by Posets

. Sort points according to �

. For all bottom points p?

c? ¼ f?

. For all other points pi in increasing � order

ci ¼ fi ÿ
Xiÿ1

j¼1

Tij � cj ¼ fi ÿ
X
j<i

pj pið Þ � cj ¼ fi ÿ
X
pj�pi

cj ð6Þ

Example 4. Consider the poset diagram in Fig. 4. The function

values fp associated with a point p are used in the traversal

to produce the coefficients cp. For each term, equal to its

point p, the polynomial coefficient is obained by subtracting

the function value from the sum of all coefficents below the

point, (6).

3.4 Algorithm Extensions

In [23], we presented three extensions of the proposed algorithm.

An incremental version of the algorithm can be useful in logic

synthesis and in learning algorithms. The problem decomposition,

although not leading directly to provably parallel algorithms, can

be very practical for many parallel machine models. The shifted

polynomials (those whose variables are x1 þ a1; x2 þ a2 . . .xn þ an)

can be used to both speed up the algorithm and reduce the degree

of the resulting polynomial.

4 CONCLUDING REMARKS

We presented a new algorithm for the multivariate interpolation

problem in which the interpolation points are specified as inputs,

rather than being selected freely. The algorithm can be used over

1104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 9, SEPTEMBER 2002

TABLE 1
Three-Variable Partial Function

Fig. 4. GF(2) interpolation example using Algorithm 3.

1. We believe that this special case was known before, although we
found no direct reference to such an algorithm. An algorithm in [5] uses the
poset structure in a similar way for GF(2) function learning, rather than for
interpolation.

any field, although we applied it only to the finite field
interpolation.

To the best of our knowledge, this is the first algorithm that
solves the problem using the deterministic polynomial number of
field operations. Compared to other algorithms over finite fields,
the algorithm uses only tools of linear algebra, including the newly
discovered properties of the generalized multivariate Vander-
monde matrix. The algorithm deals directly with the nonsingular-
ity of the system matrix. The longstanding openness of the
problem attests to the difficulty of ensuring nonsingularity in
advance. Unlike other approaches, which are probabilistic, restrict
the scope of the problem and underlying fields, or abandon the
polynomial runtime, we ensure the system matrix nonsingularity
by constructing the polynomial term set during the algorithm
execution. The algorithm starts with an initial selection of
polynomial terms and then increases the matrix rank by a series
of polynomial term replacements, based on the matrix nullspaces,
until the matrix becomes invertible.

As a separate and independent contribution, we presented the
decomposition of the multivariate interpolation, which is most
useful for the small field case. By establishing a special type of the
partial order relation between the interpolation points and
polynomial terms, the original problem is transformed into smaller
independent interpolation problems. We find that such a decom-
position is useful in speeding up the serial algorithm and
providing efficient incremental and parallel implementations.

ACKNOWLEDGMENTS

The authors thank Charles Rackoff, Frank Kschischang, Daniel
Panario, and Allan Borodin from the University of Toronto for
their help. Anonymous reviewers provided invaluable help in
improving the final presentation of the paper.

REFERENCES

[1] Z. Zilic and Z.G. Vranesic, “A Multiple Valued Reed-Muller Transform for
Incompletely Specified Functions,” IEEE Trans. Computers, vol. 44, no. 8,
pp. 1012-1020, Aug. 1995.

[2] C. de Boor and A. Ron, “Computational Aspects of Polynomial Interpola-
tion in Several Variables,” Math. Computation, vol. 58, pp. 705-727, 1992.

[3] V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon and
Algebraic-Geometric Codes,” Proc. Symp. Discrete Algorithms, pp. 108-117,
Nov. 1998.

[4] T. Damarla and M. Karpovsky, “Fault Detection in Combinational
Networks by Reed-MullerTransforms,” IEEE Trans. Computers, vol. 38,
no. 6, pp. 788-797, June 1989.

[5] R.E. Schapire and L.M. Sellie, “Learning Sparse Multivariate Polynomials
over a Field with Queries and Counterexamples,” Proc. Symp. Computational
Learning Theory (COLT ’93), pp. 17-26, May 1993.

[6] D.H. Green, “Reed-Muller Expansions of Incompletely Specified Func-
tions,” IEE Proc., Part E, vol. 134, no. 5, pp. 228-236, Sept. 1987.

[7] A. Zakrevskij, “Minimum Polynomial Implementations of Systems of
Incompletely Specified Boolean Functions,” Proc. Second Workshop Applica-
tions of the Reed-Muller Expansions in Circuit Design, Aug. 1995.

[8] W.G. Schneeweiss, “On the Polynomial Form of Boolean Functions:
Derivations and Applications,” IEEE Trans. Computers, vol. 47, no. 2,
pp. 217-221, Feb. 1998.

[9] K. Radecka and Z. Zilic, “Using Arithmetic Transform for Verification of
Datapath Circuits via Error Modeling,” Proc. VLSI Test Symp. (VTS 2000),
pp. 271-277, 2000.

[10] Z. Zilic and K. Radecka, “Don’t Care Minimization by Interpolation,” Proc.
Int’l Workshop Logic Synthesis (IWLS ’98), pp. 353-356, May 1998.

[11] D. Bojanov, H.A. Hakopian, and A.A. Sahakian, Spline Functions and
Multivariate Interpolations. Kluwer Academic, 1993.

[12] A. Dur and J. Grabmeier, “Applying Coding Theory to Sparse Interpola-
tion,” SIAM J. Computing, vol. 22, no. 4, pp. 695-703, Aug. 1993.

[13] D.Y. Grigoriev, M. Karpinski, and M.F. Singer, “Fast Parallel Algorithms
for Sparse Multivariate Polynomial Interpolation over Finite Fields,” SIAM
J. Computing, vol. 19, no. 6, pp. 1059-1063, Dec. 1990.

[14] M. Ben-Or and P. Tiwari, “A Deterministic Algorithm for Sparse
Multivariate Polynomial Interpolation,” Proc. 20th Symp. Theory of Comput-
ing, pp. 301-309, Apr. 1988.

[15] R.M. Roth and G.M. Benedek, “Interpolation and Approximation of Sparse
Multivariate Polynomials over GF(2),” SIAM J. Computing, vol. 20, no. 2,
pp. 291-314, Apr. 1991.

[16] E. Kaltofen, W.-S. Lee, and A.A. Lobo, “Early Termination in Ben-Or/
Tiwari Sparse Interpolation and a Hybrid of Zippel’s Algorithm,” Proc. Int’l
Symp. Symbolic and Algebraic Computing, pp. 192-201, 2000.

[17] K. Werther, “The Complexities of Sparse Polynomial Interpolation over
Finite Fields,” Applicable Algebra in Eng., Comm., and Computing, vol. 5,
pp. 192-201, 1994.

[18] M. Clausen, A. Dress, J. Grebmeier, and M. Karpinski, “On Zero-Testing
and Interpolation of k-Sparse Polynomials over Finite Fields,” Theoretical
Computer Science, vol. 84, no. 2, pp. 151-164, Jan. 1991.

[19] R. Zippel, “Interpolating Polynomials from Their Values,” J. Symbolic
Computation, vol. 9, pp. 375-403, Mar. 1990.

[20] T. Sauer, “Polynomial Interpolation of Minimal Degree,” Numerische
Mathematik, vol. 78, pp. 59-85, 1997.

[21] D. Knuth, The Art of Computer Programming, second ed., vol. 2: Seminumerical
Algorithms. Reading, Mass.: Addison-Wesley, 1980.

[22] J. von zur Gathen and G. Juergen, Modern Computer Algebra. Cambridge
Univ. Press, 1999.

[23] Z. Zilic, “Towards Spectral Synthesis: Field Expansions for Partial
Functions and Logic Modules for FPGAs,” PhD dissertation, Dept. of
Electrical and Computer Eng., Univ. of Toronto, Jan. 1997.

[24] Z. Zilic and Z. Vranesic, “Parallel Sparse Finite Field Interpolation,” Proc.
First IEEE Workshop Randomized Parallel Computing, pp. 9-16, Apr. 1996.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 9, SEPTEMBER 2002 1105

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

