
Assertion Checkers – Enablers of Quality Design
Marc Boulé and Zeljko Zilic, Member, IEEE

Abstract—This paper outlines the MBAC tool for the genera-
tion of assertion checkers in hardware. We begin with a high-
level presentation of the automated compilation of assertions into
checkers, and proceed to overview the multitude of applications of
resource-efficient circuit-level checkers in the field of logic design
and verification. A summary of experimental results is also given
to show the current state of the MBAC tool, compared to the
best known checker generator from IBM.

Keywords—Assertion, Checker, Design, Verification, Debug.

I. INTRODUCTION

H IGH-quality design is of paramount importance in the
semiconductor industry. With the development cost of

integrated circuits in the millions of dollars, delayed time
to market, product recalls and loss of market shares are but
some of the consequences of providing faulty designs. In
mission-critical applications the consequences can be more
dire especially when human lives enter the equation. With
the growing complexity of designs (billions of transistors in a
chip), increasingly a realistic goal is not the elimination of
all errors but rather the reduction of critical design faults.
Complexity of verification is increasing at a rate higher than
the design complexity itself; in the industry this is referred to
as the verification gap.

Assertion-based verification has started to emerge as a
valuable paradigm in countering the increased difficulties with
verification. Assertions are a means of formally specifying
correctness properties of a design, and are expressed in high-
level verification languages (HVLs). While HVLs differ from
traditional hardware design languages, the new standards
for VHDL, as well as SystemVerilog, include full assertion
languages—PSL and SVA, respectively. Assertions are impor-
tant as a type of formal documentation, but their real benefits
are exploited when they can be processed by EDA (Electronic
Design Automation) tools. Running a simulation, for example,
wherein the simulator understands the assertions and flags their
violations, greatly assists in debugging; however, the power of
assertions can not typically be exploited outside the realm of
software-based verification tools (simulators, model checkers).

This research widens the scope of applicability of assertions
by providing the efficient means to automatically generate
assertion-checking circuits from the assertions. Once asser-
tions are converted into circuits, assertion checkers can be used
in a variety of applications outside the traditional simulation
and formal verification techniques. For example, instrumenting
a design with a set of checkers allows the power of assertions
to be used in prototype verification and debugging. These areas

M. Boulé and Z. Zilic are with the Department of Electrical and Computer
Engineering, McGill University, 3480 University Street, Montreal, Quebec
H3A 2A7, Canada, Tel.: 514–398–7110, Fax: 514–398–4470, e-mails (first is
contact author): marc.boule@elf.mcgill.ca, zeljko.zilic@mcgill.ca

are notoriously difficult for debugging since the observability
of the design’s signals is relatively low. This research can
also benefit software-based verification tools by allowing them
to seamlessly support assertions, even when not designed
to. In another application, checker generation allows for a
form of high-level design whereby assertion specifications are
converted into design modules automatically. Increasing the
abstraction level of design practices has been a recurrent theme
in EDA, and the proposed tool finds applications there as well.

Efficient assertion checker synthesis is critical for the ac-
ceptance of assertion-based techniques in a number of ap-
plications, as the assertions could take enormous resources
if not handled well. This paper outlines the wide array of
applications of checker synthesis, which is done for the first
time (to the authors’ knowledge) in a single paper. In all
applications, the common theme is that of integrating checkers
in an efficient manner in order to enable and extend the many
benefits of assertions.

II. ASSERTIONS AND ASSERTION CHECKERS

Assertion languages allow the specification of complex
temporal expressions (that do not lend themselves directly to
hardware implementations) in a compact and elegant form. As-
sertions are high-level statements built on temporal logic that
formally express the correctness properties of a specification.

In Assertion-Based Verification (ABV), the observation of
an assertion failure helps to identify design errors, which
are then used as a starting point for the debugging process.
Hardware assertions are usually written in PSL (Property
Specification Language, IEEE Std. 1850–2005) or SVA (Sys-
temVerilog Assertions, part of the SystemVerilog language,
IEEE Std. 1800–2005).

At the core, assertion languages are based on temporal
logic languages (most notably LTL) and regular expressions,
augmented by a number of “sugaring” operators. Sequential
regular expressions are used to specify chains of events of
Boolean expressions. Property operators such as always, and
the suffix implication |-> are used to model how sequences
and Booleans should behave.

For example, consider the sequences in the PSL bus protocol
assertion (; is temporal concatenation):

assert always ({!req ; req} |–> {!gnt[∗0:15] ; gnt});

Whenever a bus request is issued, a bus grant must be
given within 16 clock cycles. More specifically, whenever
the sequence in the antecedent of the implication occurs, the
sequence in the consequent must be observed or else the
assertion has failed. The implication is under the scope of the
always keyword, thus it is continually checked. PSL and
SVA are explained in more detail in books [1] and [2].

978-1-4244-2921-9/08/$25.00 ©2008 IEEE 97

Authorized licensed use limited to: McGill University. Downloaded on March 25, 2009 at 09:04 from IEEE Xplore. Restrictions apply.

Design Under
Verification

Assertions Checker
Generator

Assertion-
Checkers

PSL/SVA

HDL

assert

...
HDL

Assertion
Failure

Fig. 1. Checker Generator for Hardware Verification.

To allow assertions to be processed in hardware, a checker
generator is used to produce assertion checkers [3], [4], [5],
which are typically expressed in a Hardware Description Lan-
guage (HDL). An assertion checker is a circuit that captures
the behavior of a given assertion, and can be included in the
design for in-circuit assertion monitoring.

Figure 1 shows a high-level view of the assertion-based ver-
ification methodology, and the roles played by the assertions,
the checkers and the checker generator. At the left of the figure
are the given inputs to the tool, namely the Design Under
Verification (DUV) and the assertions. In this example the
circuit is described in a HDL and the assertions are specified
in PSL or SVA. The checker generator produces an assertion
circuit (a checker) for each input assertion.

A. Checker Generation Techniques

There are two other stand-alone tools in the literature
for generating hardware checkers (PSL only). IBM’s FoCs
Property Checkers Generator [3], [6] (v2.04) is the oldest such
tool. Concurrently to us, the HORUS checker generator is
being developed at the TIMA laboratory [5], and is based on
a library of primitive digital components for PSL operators. A
modular approach was employed in a previous version of our
tool, and also in the HORUS tool, whereby sub-modules for
each property operator are built and interconnected according
to the expression being implemented.

As visible in Figure 1, in the current version of our
checker generator (called MBAC) assertions are transformed
into an intermediate representation in automaton form (the
graph in the top-right box), for subsequent conversion into
RTL (Register Transfer Level). Automata for assertions extend
the classical automata theory algorithms [7] with many new
algorithms to support the vast array of assertion operators [8].
A critical aspect of our automata algorithms for generating
hardware checkers is the novel use of partial nondeterminism
and the unique minimization algorithm. Nondeterministic au-
tomata are well suited for hardware and do not need to be
fully determinized, and we used that to obtain automata and
checkers that are more concise than any others in literature [4].

In addition to original automata algorithms, rewrite rules
play a key role in MBAC to help handle the large variety of
“sugaring” and other more involved temporal operators found
in PSL [4], and SVA to a lesser degree. These rules were
proven correct using automated theorem proving techniques.
Using rewrite rules and specialized automata algorithms, our
checker generator supports the full synthesizable subset of
PSL, and SVA, and produces behaviorally correct checkers in
experimental benchmarks with simulators and model checkers.

Specification Design Prototype Silicon

Production

Simulation Emulation Formal

Dynamic Verification Static Verification

Silicon Debug

On-Line
Monitoring

Assertion Checkers in:

Fabrication

Fig. 2. Assertion Checkers in Hardware Verification, Silicon Debugging and
On-Line Monitoring.

III. APPLICATIONS OF CHECKERS

Assertion-based design and verification [9] are based on
the specification of correctness requirements in the form of
assertion statements. Assertions can (and should) be added
before the verification step, and should be part of the digital
design process as well. Figure 2 shows a summary of the
main engineering tasks leading to a finished integrated circuit.
Ideally, assertions should also be used in the specification stage
to allow the formal documentation of requirements in a clear
and unambiguous way.

The uses of checkers in verification and silicon debug are
presented in the next two subsections. In the third subsection,
on-line monitoring is cast in the more general theme of using a
checker generator and assertions for automating certain types
of logic design, in a high-level manner.

A. Checkers in Verification

Quality-driven verification consists in ensuring that a given
design respects is specification. Verification mainly takes place
before the fabrication step, and can also be referred to as pre-
fabrication verification. Two main classes of verification are
dynamic verification (ex.: simulation and hardware emulation)
and static verification (ex.: model checking).

1) Dynamic Verification: In dynamic verification, the de-
sign is exercised with a given stimulus and its response is
analyzed for the presence of errors. When simulation times
become excessive, designs are often emulated in custom
hardware in order to run orders of magnitude faster than in
simulators. When simulators or emulators do not support PSL
and SVA, generating assertion checkers and adding them to the
source design is an effective way of allowing the continued
use of assertions. The checker is connected to the design under
verification, as shown in the top part of Figure 3. The output
signal of the checker can be observed and any violation can
be identified in the trace.

2) Static Verification: When formal proofs of correctness
are required, static verification is performed. Although formal
tools show greater challenges in scaling to large designs,
model checkers can provide a guarantee that a property
holds, or it can provide counterexamples when it does not.
When formal verification tools such as model checkers do
not support PSL and SVA, generating assertion checkers and

98

Authorized licensed use limited to: McGill University. Downloaded on March 25, 2009 at 09:04 from IEEE Xplore. Restrictions apply.

Checker AsrOutDevice
Under

Verification
Always !AsrOut

Checker

Checkers in Formal Verification

Checkers in Dynamic Verification
Simulate DUV+Checker:

trace
Device
Under

Verification

Formally Check Property:

Fig. 3. Using Checkers in Formal (Static) and Dynamic Verification.

adding them to the source design also allows the continued
use of assertions.

In the formal verification case (bottom part of Figure 3),
a simple property postulates that the checker output(s) are
always false. This property is implicitly checked over all
possible execution paths. Using checkers in formal verification
is straightforward for safety-type properties (invariants), but
would require some adaptation for liveness-type properties,
which apply to infinite executions.

B. Checkers in Silicon Debug

Verifying a fabricated design for faults is known as post-
fabrication verification or silicon debug. Although it is much
more cost effective to find bugs before fabrication, some
errors sensitive to timing constraints can only be checked
in the actual fabricated silicon. In silicon debugging with
assertions, checkers can be purposely left in the fabricated
IC for debugging purposes, where they can greatly help in
finding the cause of a failure.

When the prototype silicon is found to operate as desired,
these checkers can be removed in the production spin, or they
can be purposely left in the chip for in field testing. Using
assertions with a checker generator can be an effective way
of automating the design of a response analyzer for a form of
built-in self test. As ICs become more complex and harder
to realize as first-time-correct, assertions become useful in
areas such as emulation and post-silicon debug, where full
simulation traces are not easily available for analysis.

C. Checkers in EDA Tools

The checker generator also finds an array of applications in
existing EDA (Electronic Design Automation) tools such as
synthesis tools and core generators (IP generators). We also
present our view of high-level assertion-based design.

1) Synthesis Tools: As assertions become more and more
integrated in the design process, the need to synthesize them
will only gain in importance. The checker generator can also
be integrated to conventional synthesis tools that need to
process assertions. The left side of Figure 4 shows how MBAC
can interact with an FPGA synthesis tool in order to allow
users to incorporate assertions in their implementation.

2) IP Generating Tools: FPGA tools often include core
generating tools (or wizards) whereby multiple types of cores
such as memory interfaces, DSP blocks and math functions, to
name a few, can be automatically generated according to user

Source Design
(HDL)

Checker
Generator

Assertions

FPGA
Synthesis Tools

Netlist Instrumented with
Assertion Checkers

User Parameters /
Assertions

IP-Generator:
DSP, MATH,
Assertion-

Checkers, MEM
and Bus Intf., etc.

IP Cores

Fig. 4. Use of the Checker Generator in Synthesis Tools (left) and in Core-
Generating Tools (right).

Assertion
Checkers

Circuit

Circuit

Assertion
Checkers Decision

Logic MUX

i0

i1 s

Assertions Check.
Gen.

Fig. 5. Example in High-Level Design: Run-time Status Monitoring Using
Assertion Checkers for Redundancy Control.

defined parameters. Assertion checkers can also be offered as
a class of cores: users simply enter their assertion (with the
signal dimensions) and the tool can generate the corresponding
core (checker). This integration is illustrated in the right side
in Figure 4. Interfacing a core generator tool to the MBAC
checker generator makes this new feature possible, and makes
checkers more accessible to hardware designers.

3) High Level Design: In a more general usage scenario,
the expressive power of assertions, combined with a checker
generator can be used to actually perform explicit logic design,
going beyond the bounds of verification and debugging. In this
view, any form of monitoring circuit that can be expressed by
an assertion, once given to the checker generator, can pro-
duce a complex error-free circuit instantly. These circuit-level
checkers are in fact more akin to actual design modules rather
than verification modules. An example where this technique
can be utilized is in designing certain portions of self-test
circuits, as mentioned previously.

If checkers are incorporated in the final design, in-circuit
diagnostic routines that utilize the checker output can also be
implemented. Assertion checkers can be an integral part of any
design that attempts to assess its operating conditions on-line
in real time. Figure 5 shows an example of how a checker
generator can be used to automatically design the monitoring
circuits for switching in redundant systems. Designing an array
of safety-checking circuits can be more easily performed using
assertions and a checker generator.

The use of PSL/SVA and a checker generator can be
explored for use in high-level synthesis, similar to the Pro-
duction Based Specification work [10] and the high-level
synthesis of synchronous languages such as Esterel [11]. Using

99

Authorized licensed use limited to: McGill University. Downloaded on March 25, 2009 at 09:04 from IEEE Xplore. Restrictions apply.

TABLE I
BENCHMARKING PSL ASSERTIONS. (CHECKERS SENSITIVE TO ACTIVE LOW RESET AND RISING EDGE CLK)

Assertions S1-5: “assert never Sx;” Hardware Metrics Equivalence Check
S6-10: “assert always {a} |=> Sx;” MBAC FoCs v2.04 MBAC ↔ FoCs
P1-5: “assert always Px;” FF LUT MHz FF LUT MHz (FoCs counterexamples)
S1: { {{b;c[∗2:4];d}[+]} && {b;{e[–>2:4]};d} } 20 21 456 32 39 383 pass
S2: { {a ; b[∗] ; c[∗]} : {d[∗] ; e[∗]} ; f[∗] } 5 7 352 32 56 261 pass
S3: { {a ; b[∗] ; c[∗]} : {d[∗] ; e[∗2:4]} ; f[–>] } 8 15 338 26 32 332 pass
S4: { {a[∗0:1];b[∗1:2];c[∗]} : {d[∗0:1];e[∗2:4]} } 6 7 392 38 43 340 {∼reset ; b∧e ; e}
S5: { {{a[∗];b[∗];c[∗]} && {d[∗5:7]}} : {c[–>]} } 14 16 445 65 127 257 {∼rst ; a∧d ; d ; d ; d ; c∧d}
S6: { {{c[∗1:2];d}[+]} && {e[–>2]} } 9 22 311 No Output –
S7: { {{b;c[∗1:2];d}[+]} : {{e[–>]};d} } 22 59 259 No Output –
S8: { b ; {{c[∗0:2]} ; {d[∗0:2]}}[∗] ; e } 3 4 610 7 12 331 {∼reset ; a ; b ; d ; d ; d}
S9: { {{c[∗1:2];d}[+]} & {e[–>2]} } 4 4 472 No Output –
S10: { {b ; c[*]} : {d[*] ; e} ; f } 9 17 280 17 44 258 pass
P1: {a;b;c} |=> never {d[∗0:3] ; e} 7 7 419 Not Supported –
P2: (a –> {[∗0:7] ; b}) abort ∼c 8 8 667 Not Supported –
P3: e || (a –> ({b;c} until d)) 3 5 469 Not Supported –
P4: {a} |–> { {b;c[∗]} : {d[*];e;f} } 8 23 295 No Output –
P5: a –> next event e(b)[1:6](c)) 7 8 445 12 12 564 pass

assertions and a checker generator as a means of logic design
poses difficulties when it comes to generating complex output
signals; however, the design of many types of analysis circuits
can benefit directly from these techniques.

IV. SUMMARY OF EXPERIMENTAL RESULTS

In this section we show recent experimental results com-
paring the latest version of FoCs to our MBAC tool. In order
for checkers to benefit the most the application scenarios
mentioned in the previous section, the checkers should utilize
the fewest circuit primitives as possible when implemented in
hardware. The experimental results contained in this section
help motivate this, and we compare against the best known and
only other available stand-alone checker generator. Synthetic
benchmarks are used to better compare the tools against more
temporally complex properties.

The checkers produced by MBAC are compared to FoCs
checkers by synthesizing the assertion circuits for a Xilinx
XC2V1500-6 FPGA, using ISE 8.1.03i. The number of flip-
flops (FF) and four-input lookup tables (LUT) is reported,
together with the maximum operating frequency after syn-
thesis. In all the experiments, the checkers were generated
instantly by our tool. Model checking by Cadence SMV is
further used to compare the behavior of checkers from both
tools (MBAC and FoCs). For a given assertion, the checkers
generated by both tools are compared using the miter approach
(i.e. by asserting that XOR between the two checker outputs
is false). For several test cases, the model checker finds
counterexamples where the assertion signals from FoCs fail to
report the error, as reported in the last column of Table I. From
the results, MBAC outperforms FoCs in all the test cases in
terms of the circuit size of the checkers, and in all but one case,
MBAC checkers have a higher maximum clock frequency.

The MBAC checker generator has consistently been at the
forefront of generating resource-efficient checkers since our
initial publication on the topic [12], where a particular test
case even yielded a 1000× improvement over FoCs, in terms
of the Verilog code size of the checker.

V. CONCLUSION

In this paper we have presented a variety of new directions
where checker generators can be used, which we expect to
materialize further as the assertion paradigm evolves. The
MBAC checker generator was shown to be the most effective
at compiling assertions into circuit-checkers. New automata
methods and rewrite rules play a key role in this tool to help
produce efficient run-time checkers for verification and debug,
which is important when these checkers compete with the
DUV for valuable chip area. This research significantly ex-
tends and enhances the many benefits associated to assertions,
in the quest for quality designs.

REFERENCES

[1] C. Eisner and D. Fisman, A Practical Introduction to PSL. New York,
New York: Springer, 2006.

[2] S. Vijayaraghavan and M. Ramanathan, A Practical Guide for Sys-
temVerilog Assertions. Springer, 2005.

[3] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic Generation of Simulation Checkers from Formal
Specifications,” in Proceedings of the 12th International Conference on
Computer Aided Verification (CAV’00), 2000, pp. 538–542.

[4] M. Boulé and Z. Zilic, “Automata-Based Assertion-Checker Synthesis of
PSL Properties,” ACM Transactions on Design Automation of Electronic
Systems (ACM-TODAES), vol. 13, no. 1, p. Article 4, January 2008.

[5] K. Morin-Allory, E. Gascard, and D. Borrione, “Synthesis of Property
Monitors for Online Fault Detection,” Journal of Circuits, Systems and
Computers (JCSC), vol. 16, no. 6, December 2007.

[6] IBM AlphaWorks, “FoCs Property Checkers Generator, version 2.04,”
www.alphaworks.ibm.com/tech/FoCs, 2007.

[7] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages and Computation, 2nd ed. Addison-Wesley, 2000.

[8] M. Boulé and Z. Zilic, Generating Hardware Assertion Checkers – For
Hardware Verification, Emulation, Post-Fabrication Debugging and On-
Line Monitoring. Springer, ISBN 978-1-4020-8585-7, 2008.

[9] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design, 2nd ed.
Norwell, Massachusetts: Kluwer Academic Publishers, 2004.

[10] A. Seawright and F. Brewer, “Clairvoyant: A Synthesis System for
Production-Based Specification,” IEEE Transactions on VLSI Systems,
vol. 2, no. 2, pp. 172–185, 1994.

[11] S. Edwards, “High-level Synthesis from the Synchronous Language
Esterel,” in Proceedings of the International Workshop on Logic and
Synthesis (IWLS), 2002.

[12] M. Boulé and Z. Zilic, “Incorporating Efficient Assertion Checkers into
Hardware Emulation,” in Proceedings of the 23rd IEEE International
Conference on Computer Design (ICCD’05), 2005, pp. 221–228.

100

Authorized licensed use limited to: McGill University. Downloaded on March 25, 2009 at 09:04 from IEEE Xplore. Restrictions apply.

