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Abstract 
 In this thesis, our research focuses on fixed-point arithmetic circuits. 

Fixed-point representation is important in low power Application-Specific 

Integrated Circuits (ASICs) and in Programmable Logic Devices (PLDs). 

There are two aspects of the data representation problem: the precision 

problem and the range problem. Both of these are addressed in this thesis. We 

use the new technique based on Arithmetic Transform (AT) which is a 

canonical and efficient representation for digital circuits to avoid the 

disadvantages of past methods, and design an efficient algorithm which can 

compose detached modules to obtain the overall AT for a complex circuit.  

  First the precision problem is processed. The typical imprecise circuits 

expressed in terms of Taylor series are addressed in our research.  Imprecise 

factors including finite terms and input quantization are analyzed by AT, and 

algorithms are designed to verify and optimize imprecise circuits in terms of 

different constraints. A hybrid method performs range analysis to handle the 

range problem and allocates the smallest integer bit-widths. Having devised 

the individual methods for precision and range analysis, we then combine the 

two together to find the optimized implementation. Furthermore, we extend 

the method to analyze floating-point circuits and feedback circuits.  

  The proposed algorithms in the thesis overcome disadvantages of past 

explorations. They are more flexible in processing both Taylor series and 

multivariate polynomials and obtain more precise results, resulting in better 

implementations under various constraints.  
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Résumé 
Dans ce manuscrit, notre recherche se concentre sur les circuits de 

l'arithmétique à virgule fixe. La représentation à virgule fixe est un facteur 

important dans les applications d’une faible consommation pour les ASICs 

(Application Specific Integrated Circuit) ainsi que les circuits logiques 

programmables (PLD). Au point de la représentation des données, 

généralement, il y a deux aspects de problèmes dont la précision et la gamme. 

Dans ce manuscrit, nous adressons principalement à ces deux éléments. Une 

nouvelle technique basée sur une transformée arithmétique (AT) est utilisée. 

Ceci est une représentation canonique et efficace pour les circuits numériques 

qui permet d’éviter les inconvénients des méthodes passées et de concevoir un 

nouvel algorithme efficace afin de composer des modules détachés en obtenant 

une AT le plus générale pour les circuits complexes. 

  Un travail préliminaire sur le problème de précision est effectué. Les 

circuits imprécis généraux s’expriment en termes d’une série de Taylor a été 

mis en œuvre dans notre recherche. Y compris des facteurs imprécis tels que 

les termes finis, la quantification d'entrée qui est analysée par AT ainsi que les 

algorithmes qui sont conçus pour vérifier et optimiser les circuits imprécis en 

termes de contraintes différentes. Une méthode d’une façon hybride est 

effectuée afin de traiter le problème de la gamme et d’allouer un entier le plus 

petit de bit-widths. Mise au point sur les différentes méthodes pour la 

précision et l'analyse de la gamme, nous combinons les deux ensembles afin 

de trouver une implémentation optimisée. En outre, nous étendons la méthode 

pour analyser des circuits en virgule flottante et les circuits de rétroaction. 

  Les algorithmes proposés dans ce manuscrit est de surmonter les 

inconvénients des explorations passées. Ces algorithmes sont plus flexibles 

dans le traitement de la série de Taylor et des polynômes à plusieurs variables. 

Ceux-ci nous permettent d'obtenir les résultats plus précis ainsi d’entraîner les 

meilleures implémentations sous diverses contraintes. 
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Chapter 1  

Introduction 
 

 

 

 

In this chapter, we first introduce the design flow for most 

common Integrated Circuits (ICs) and then describe verification 

approaches that include simulation, emulation and formal 

verification. Then, we state the research goals of thesis aiming at 

providing the solutions addressing the following three aspects of 

fixed-point circuit design: transform composition of a complex 

circuit, optimization of imprecise circuits, and range analysis.  
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1.1 Circuit Design Flows 
  With the development of modern material and production techniques, 

integrated circuits (ICs) reached a level of complexity beyond imagination of 

even a few years ago. In terms of Moore’s law, the number of transistors 

doubled every 18 months. For example, Intel’s Itanium II processor contains 

more than 109 transistors.  Designing such complex circuits is a great 

challenge. The level of difficulties is lifted even higher by the restrictions on 

time-to-market. Hence, a systematic approach to design ICs is a must. Figure 

1.1 outlines one of more commonly adopted approaches.  

An idea for a new product originates usually from market analysis of 

customer needs. Then a team led by product managers describes in form of a 

specification the new design requirements. Once the specification is well 

formulated, the design process starts usually from behavioral modeling. As a 

result, initial algorithms are represented in hardware description languages 

(HDLs) like VHDL or Verilog, or even in higher abstraction languages, like 

SystemC. The correctness of the design refinement at this stage is checked by 

the comparison to the specification. 

Design Space
Exploration

RTL
Coding

Logic
Synthesis Placement Routing

                       
 Figure 1.1: A typical ASIC design flow  

 
After the behavioral model is verified, engineers generally partition the 

whole design into smaller and more refined blocks. Whenever possible, such 

blocks are often represented in terms of intellectual property (IP) cores, while 

HDL is used to design remaining elements at RTL coding. Once the design 

functionality and estimated performance satisfy the specification, the circuit is 

ready to be synthesized. This stage, performed automatically, often needs 

human intervention is terms of manual modifications necessarily such as 

design and insertion of boundary scan and built-in-self-test (BIST). After 

satisfying constraints such as timing, area and power, etc, a layout is conceived 

for fabrication.  
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beyond 70% of the overall design time and cost on checking the correctness of 

their design [157]. The graph in Figure 1.4 describes a breakdown of the effort 

spent in each step and  Figure 1.5 shows different aspects of verification. 

 

RTL and Block Tes t

High-level Des ign

Timing Analys is

DFT

ASIC Testbenches

Beh Model

Simulation

Equivalence
 Checking

Emulation
Support

Emulation
SoftwareVerification

Design

 

Figure 1.4: Breakdown of effort  

 

 

Figure 1.5: Different aspects of verification  

 
  From the above figure, it can be seen that time spent on verification at 

various stages of a design process is significant. Hence, engineers need a fast 

method to achieve the goal. The mainstream verification processes can be 

40%

15%

10%

10%

4%

2%

2%

2%

10%

5%

0% 10% 20% 30% 40% 50%

System verification

Functional HDL verification

Establish simulation environment
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Analog

Noise analysis

Testability
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divided into three categories: simulation, emulation and formal methods. 

 

 

1.2.1 Simulation-based Verification 
  Simulation is a process in which a given design is exercised by a certain set 

of inputs [150]. Its idea is straightforward to comprehend, and the aim is to 

produce a set of test vectors (stimuli) used to check the design correctness. 

These test sets are called testbenches (set of input vectors, expected outputs, 

environment constraints, etc.). More precisely, based on the module response, 

which is compared to the specification, the correctness of the design is 

assessed. Simulation can be used throughout the whole development process. 

Figure 1.6 describes the idea.  
 

 Specfication

Simulation

Comparison

Simulation

RTL Description Logic Gates Description Layout
Extraction

Comparison

Simulation

Comparison

 

Figure 1.6: Simulation in the development procedure  

 
Although the simulation method has obviously strong points, such as 

simplicity and easy testbench programming, there are some shortcomings we 

should note. First, sometimes it is not feasible to simulate all input sequences 

to completely verify a design. Suppose we want to test a 32-bit adder in this 

case - there are 264 combinations. If it requires 1 test/us, it will take 1012 years 

to simulate that many vectors. Secondly, result comparison is often incomplete 

and it is difficult to compare results from different models and simulators. If 

the system grows larger, the number of possible states grows exponentially 

with increased number of possible event combinations. Furthermore, 

simulation can be effective to show the presence of bugs, but it is hopelessly 

inadequate for showing their absence. 
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1.2.2 Emulation 
Hardware emulation is a process that uses a piece of hardware, typically a 

special purpose emulation system, to imitate the behavior of a hardware 

system under design. As a special case, in-circuit emulation is very fast as it is 

performs a working target system in place of a yet-to-be-built chip, so the 

whole system can be debugged with live data.  

High end hardware emulators provide a debugging environment with many 

features that can be found in logic simulators, and in some cases they even 

surpass their debugging capabilities [151]:  

 The users can set a breakpoint and terminate the emulation process to  

inspect the design state, interact with the design, and resume emulation. 

The emulator always stops on cycle boundaries. 

 The users can watch all signal or memory contents in the design without 

probes before the run. While visibility is provided for past time events, an 

emulator can access the backward time steps which may be limited in 

some cases by the depth of the emulator’s trace memory.  

 The users can even back up time (if they save checkpoints) and re-run. 

 
 
1.2.3 Formal Verification 

Formal verification is a process of proving or disproving the correctness of 

intended algorithms underlying a system with respect to a certain property 

using formal methods of mathematics. It can be used for verifying systems 

such as cryptographic protocols, combinational circuits, digital circuits with 

internal memory, and software expressed as source code [155].  

  A formal proof is necessary to verify systems based on an abstract 

mathematical model and the correspondence between the mathematical model 

and the nature of the system known by construction. Then formal verification 

is the process of constructing a proof that a target system will behave in 

accordance with its specification. Basis of formal methods, which distinguish 

them from simulations are: 

 Formal reasoning is used to prove that an implementation satisfies a 

specification, 
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 Correctness of a formally verified hardware design holds regardless of 

input values, 

 Exhaustive exploration of all possible behaviors is conducted, 

 A counter-example (proof) is presented if the property is incorrect 

while if correct, all behaviors are verified; 

  Figure 1.7 describes the formal verification model. A verifier is utilized to 

check whether the system model matches the system specification. If so, the 

verifier sends signal of correctness; if not, the verifier gives a counterexample.   

 

correct     not correct
counterexample

Mathematical
ModelSpecification

Formal Verifier

 
Figure 1.7: The process model of formal verification 

 
Further on, formal verification schemes have many advantages:  

 Complete with respect to a property, 

 Avoid generating expected output sequences, 

 Helpful to detect and trace errors. 

  Since formal verification is based on model methods which are applied 

when a circuit description is given by propositional temporal logic, the three 

most widely model-based methods are equivalence checking, model checking 

and theorem proving. Equivalence checking formally proves that two 

representations of a circuit design exhibit exactly the same behavior. Generally, 

a wide range of possible definitions of functional equivalence covers 

comparisons between different levels of abstraction. 

 Sequential equivalence checking considers machine equivalence, which 

defines two synchronous design specifications functionally equivalent if 

they generate exactly the same sequence of output signals for all valid 

sequences of input signals clock by clock. 

 A more general problem than equivalence checking is used to compare the 
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functions specified for the instruction set architecture (ISA) with a register 

transfer level (RTL) implementation, ensuring that the both models 

executing any program will cause an identical update of the memory 

contents.  

 A system design flow requires comparison between a transaction level 

model (TLM) and its corresponding RTL specification. The interest in this 

mode of checking increases in a system-on-a-chip (SoC) design 

environment. 

 

RTL
VHDL/Verilog

HDL Synthesis Generic LibraryRTL-to-Gate

Unoptmized
Netlist

Optimized & Mapped
Netlist

Technology
library

Logic Equivalence
Checker

 
Figure 1.8: RTL-to-gate equivalence checking  

 
Figure 1.8 illustrates the case of verification whether the RTL design and the 

modified netlist are equivalent. Because post-process often includes activities 

such as insertion of scan chain and some modifications, all these activities can 

not change the original function so equivalence checking can solve the 

problem. 

Given a model of a system, model checking is a process of automatic test 

whether this model meets a given specification. The system can be hardware 

or software, and the specification generally contains safety requirements such 

as critical states that may possibly crash the system.  

  The system model and the specification must be described in some precise 

mathematical language in order to solve such a problem algorithmically. The 

specification is formulated using a suitable language, and the verification 
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process checks whether a given structure satisfies a given logical formula. The 

general concept can be applied to all kinds of logics and suitable structures. A 

simple model-checking problem is to verify whether a given structure satisfies 

a given formula in the propositional logic and it is useful to check circuit 

properties such as safety and liveness property. Model checking has 

characteristics: 

 Searches the entire solution space, for possibly infinite duration 

 Responds with YES or NO (if it terminates) 

 Increasingly used in industry 

 Can be automated for smaller blocks or when applied earlier in the 

flow 

Figure 1.9 illustrates the basic idea of model checking. 

Behavior Model /
RTL Design

Finite State
Machine

Properties

Model
Checker

True Couterexamples  

Figure 1.9: Idea of model checking 

 
  From above figures, we see that although model checking and simulation 

can both verify RTL description, simulation relies on the testbenches, while 

model checking relies on mathematical reasoning represented by properties 

and constraints. Figure 1.10 describes their difference.  
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Model Checker

Properties
(liveness, safety)Behavior/RTL Constraints

True/Counterexamples

Simulator

Behavior/RTL Testbench

Simulation
Outputs

 
Figure 1.10: Comparison of model checking and simulation 

 
  Theorem proving decides whether a conjecture is a logical consequence of 

a set of statements (the axioms and hypotheses), which is used to prove that an 

implementation fits a specification by mathematical reasoning. The 

implementation and the specification are both expressed as formulas in a 

formal logic, and the necessary relationship - logical equivalence or logical 

implication - is described as a theorem to be proven within the context of a 

proof calculus. A proof system comprises a set of axioms and interface rules 

such as simplification, induction, rewriting. Authors in [159] describe how to 

express PSL’s syntax and semantics in the PVS theorem prover and prove the 

correctness of a set of rewrite rules.   

                          Formal Verification Tools 
Supplier Tool Name Class of Tool HDL Design 

Level 
Commercial Tools 
Synopsys Formality Euqiv. 

Checking 
VHDL/Verilog RTL/Gate 

Cadence Affirma Euqiv. 
Checking 

VHDL/Verilog RTL/Gate 

Cadence FormalChec
k 

Model 
Checking 

VHDL/Verilog RTL 

IBM RuleBase Model 
Checking 

VHDL RTL 

Abstract 
Hardware  

Lambda Theorem 
Proving 

VHDL/Verilog RTL/Gate 

Public Domain Tools 
CMU SMV Model. 

Checking 
Own Language RTL 

Berkely VIS Model/Equ. 
Check 

Verilog RTL 

Cambridge HOL Theorem 
Proving 

SML Universal 

Figure 1.11: Comparison of formal verification tools 
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Figure 1.11 lists some typical tools. Although a variety of tools have been 

developed to perform formal verification, simulation is still a predominant 

method in verification because of the advantages of simple operation and 

relatively straightforward task of writing of testbenches.     

 

 

 1.3 Introduction of Fixed-Point Arithmetic 
 Fixed-point arithmetic is of importance in low power designs, embedded 

systems and PLDs. Although floating-point data with single or double 

precision can construct algorithms more accurately, generally for signal 

processing algorithms such as FFT and DCT initiated from real values, 

significant processor overhead is required to perform floating-point 

calculations resulting from the lack of hardware based floating-point support. 

This disadvantage confines the effective iteration of an algorithm. In order to 

improve mathematical throughput or increase the execution rate, calculations 

can be performed by fixed-point representations which require a virtual 

decimal place in between two bit locations for a given length of data [133].  

  The labeling convention of the representation is as follows: 

                      Q [IB] . [FB]                    (1-1) 

 where IB = # of integer bits and FB = # of fractional bits. 

 Total number of bits used to represent the fixed-point number is yielded by 

the addition of integer bits IB and factional bits FB. The sum of IB+FB is 

known as the wordlength (WL) and this sum often corresponds to variable 

widths supported on a given processor. The fixed-point format includes two 

sections of integer and fractional content for the purpose of exploration.  

 
 
1.3.1 Fixed-Point Range – Integer Portion 
 A fixed-point number is viewed as two distinct parts, the integer content and 

the fractional content. The integer range sets the number of IB, Eqn. (1-1), 

required to represent the integer portion of the number. IB itself can only hold 
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integer values because of the binary nature of a bit. Two different methods of 

calculating the number of integer bits match two types of numbers, unsigned 

and signed.  

 
A) Unsigned Integers 
  The Equation (1-2) describes the unsigned integer by the minimum and 

maximum of any IB number. 

                        0 2 1IBr≤ ≤ −                (1- 2) 

 IB can be obtained by solving the required number as: 

                        2[log ( 1)]IB r≥ +  

where r is the floating-point variable being ranged. The square bracket is the 

ceiling function.  

 
Example 1.1: Consider an unsigned variable r = 4.346: 

                   IB = 2[log (4.346 1)]+  = [2.43] = 3 

 Three bits are required for the integer portion of r. 

 

B) Signed Integers 
  The previous equations cannot represent signed variables. The changed 

following equation denotes the definition for the integer contents of signed 

numbers ( r± ): 

                           122 11 −≤≤− −− IBIB r  

Please note that the signed integer type is asymmetrical about zero. For 

instance, a signed 8-bit value ranges from -128 to 127. By solving for the 

negative constraint of the equation: 

                            rIB ≤− −12  

we get:  1)]([log2 +−≥ rIB    

By solving for the positive constraint:   12 1 −≤ −IBr   

we get:  1)]1([log2 ++≥ rIB  

 
Example 1.2: If rmin = -2 and rmax = 2,    

               21]2[log1)]([log| 2min2min
=+=+−≥ rIB r  
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               31]3[log1)]1([log| 2max2max
=+=++≥ rIB r  

IB must be 3 bits to satisfy the two constraints concurrently.  

 
  In the case of signed data type, the positive constraint is tighter than the 

negative constraint because of the asymmetry. It is common for users to define 

variable magnitude constraints that are symmetric about zero (for instance,

55 ≤≤− r ). The computation for IB can be generated uniformly by the 

equation: 

                1)]1])[(max([log maxmin,2 ++= rrabsIB  

 
Example 1.3: Compute a signed variable 43.443.4 ≤≤− r , 

     41]45.2[1]43.5[log1)]1)43.4,43.4[(max([log 22 =+=+=++−= absIB  

 
 
1.3.2 Fixed-Point Resolution – Fractional Portion 
  The number of FB sets the resolution for a fixed-point variable. The 

resolution ε  of a fixed-point number is given by the following equation 

[134]: 

                           FB2
1

=ε   

 Therefore the number of FB required by a particular resolution is defined as: 

                       ]1[log2 ε
=FB  

 
Example 1.4: A signed variable r= -3.2782, ≤ε 0.0001, 

           14]288.13[]10000[log]
0001.0
1[log 22 ====FB  

 
  The resolution is limited for a given wordlength and dynamic range of a 

variable. The WL of the variable must be increased to provide this resolution if 

a higher resolution is needed for a given range [134].  
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1.3.3 Range & Resolution  
 The integer and fractional parts of the number for a fixed WL consist of the 

full range and resolution. The combined range and resolution for an unsigned 

fixed-point number is defined by [133]: 

                     FB
IBr −=

−≤≤ 2|)12(0
ε  

The combined range and resolution for a signed fixed-point number is defined 

as [133]: 

FB
FBIBIB r −=

−−− −≤≤−
2

11 |)22(2
ε

 

The integer and fractional bits are combined together and used to determine a 

standard WL that is large enough to hold all integer and fractional bits as: 

                          FBIBWLrequired +≥  

 A representation U(IB, FB) where IB + FB = N for unsigned format is 

denoted to calculate the value of a fixed-point format. For an unsigned format, 

in the U(IB, FB) representation, the nth bit, counting from right to left and 

beginning at 0, has a weight of 2n / 2FB = 2n-FB. Please notice that if n = FB the 

weight is 1. The value of a particular N-bit binary number x in a U(IB, FB) 

representation is given by the expression [134]: 

                          ∑
−

=

=
1

0
2)2/1(

N

n
n

nb xx  

where xn is the bit n of x. The range representation is from 0 to (2N-1) /2FB = 

2IB –2-FB. For instance, the 8-bit unsigned fixed-point representation U(5,3) has 

the form  

                          b4b3b2b1b0 . b-1b-2b-3 

where the bit bk has a weight of 2k. Since FB is 3, the binary point is to the 

right of the third bit from the right (counting from zero), and hence the number 

has five integer bits and 3 fractional bits. This representation has a range of 

from 0 to 25 – 2-3 = 32 – 0.125 = 31.875. 

  
Example 1.5: U(6,2). This number has 6+2=8 bits and the range is from 0 to 

26 – 1/22 = 63.75. The value 4Bh (0100, 1011b) is: 

 (1/22) (20 + 21+23+26) = 18.75 

  Consider an N-bit binary word x as U(N,0). The one’s complement of x is 

defined to be an operation that inverts every bit of the original value x. This 
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can be performed in the U(N,0) representation by subtracting x from 2N-1. 

That is, if we denote the one’s complement of x as x~ , then: 

                            x~ = 2N -1- x 

The two’s complement of x, denoted as x̂ , is determined by taking one’s 

complement of x and then adding one: 

                           x̂ = x~ +1 = 2N – x 

 
Example 1.6: The one’s complement of the U(8,0) number 05h (0000,0101) by 

hex representation is FAh (1111, 1010). The two’s complement of the U(8,0) 

number 05h (0000,0101) is FBh (1111, 1011). 

 
  Considering signed two’s complement fixed-point representation, we denote 

such a representation A(IB,FB) that IB = N-FB-1. The following expression 

gives the value of a specific N-bit binary number x in an A(IB, FB) 

representation:  

∑
−

=
−

− +−=
2

0
1

1 ]22)[2/1(
N

n
n

n
N

NFB xxx  

  Notice that the number of bits in the magnitude of the sum above has one 

less bit than the equivalent prior unsigned fixed-point representation. These 

bits are the N-1 least significant bits because the most significant bit in a 

signed two’s complement number is often referred to as the sign bit.  

 
Example 1.7: A(11, 2). This number has 11+2+1=14 bits and the range is 

from -211= -2048 to +211-1/4 = 2047.75. 

 
  Fundamental rules of fixed-point arithmetic are listed as follows [134]. 

 Unsigned wordlength: the number of bits required to represent U(IB, FB) 

is IB+FB. 

 Signed wordlength: the number of bits required to represent A(IB, FB) is 

IB+FB+1. 

 Unsigned range: The range of U(IB, FB) is FBIBx −−≤≤ 220 . 

 Signed range: The range of A(IB, FB) is FBIBIB x −−≤≤− 222 . 

 Addition operands: Two binary numbers must keep the same scale in 

order to be added. That is, X(a, b) + Y(c, d) is only valid if X=Y (either 
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both A or both U) and a =c and b= d. 

 Addition result: The scale of the sum of two binary numbers scaled x(a, b) 

is x(a+1,b), the sum of two N-bit numbers requires N+1bits. 

 Unsigned multiplication: U(IB1, FB1) * U(IB2, FB2) = U (IB1 + IB2, 

FB1+ FB2). 

 Signed multiplication: A(IB1, FB1) * A(IB2, FB2) = U (IB1 + IB2+1, FB1+ 

FB2). 

 

 

1.4 Thesis Goal and Contributions 

The investigation of fixed-point representation includes two problems: 

range and precision. In our research, we try to explore the two problems 

concurrently, and propose new methods for verifying and optimizing 

fixed-point circuits.  

 
 

1.4.1 Composition of AT and Extensions 
The main technique in our exploration is Arithmetic Transform (AT), which 

is defined in the spectral domain. The exploration of the function description 

in a spectral domain aims at elevating the classical problems with the Boolean 

function domain where a truth table is used. Each entry to the table describes 

precisely the behavior of the function at a single point, and bears no relation to 

the function behavior in the other points of the domain. For some applications 

this is satisfactory, however, other like circuit verification would benefit much 

more if partial information about the whole function could be included in a 

function value at each point of its domain. In fact, it is possible to give an 

alternate representation of a function where the information about the function 

is much more global in nature. This alternate representation is in the spectral 

domain, where a number of function properties are much more easily deduced 

than in the Boolean domain. However, it must be stressed that the overall 

information content of a given function is identical regardless of the domain 

considered (functional or spectral), and data in one domain can be uniquely 
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recreated from the data in the other. In spite of that, the meaning of the 

function parameters at each individual point of the two domains is dissimilar. 

In particular, the discrete nature of the data in the functional domain will 

generally be replaced by data in the spectral domain, which is global in nature, 

being influenced by the complete functional performance of the circuit or 

network under consideration. Therefore finding the spectral transform of the 

circuit is an important step to verification [56]. 

A straightforward way to compute the AT requires a multiplication with a 

matrix of size that is exponential in number of primary inputs. This is clearly 

an impractical proposition. Other methods, such as conversion from diagrams, 

usually focus on the whole circuit [92]. If a complex circuit comprises many 

smaller modules, it is hard to get its transform directly, and then the methods 

mentioned are invalid [94]. 

A complex circuit generally consists of modules such as adders, multipliers 

and similar, for which the transforms are easily obtained. If we can take 

advantage of the relatively simpler transforms to form the transform of the 

complex circuits, the gain would be significant. It was shown earlier [70] that 

AT could be composed out of transforms of circuit blocks by help of several 

extensions to AT, and we extend that work by constructing efficient algorithms 

and transform representations. In addition, since the AT representation only 

contains primary inputs and outputs, if engineers know the overall transform 

of the complex circuit in advance, compared to the compositional AT 

representation, they should be identical, and hence the composition procedure 

can perform equivalence checking. Therefore the process of constructing AT 

composition becomes very important. Because basic AT cannot represent 

sequential circuits, extensions are necessary for the purpose of the 

composition. 

In this thesis, we explore AT and its extensions proposed by Zilic and 

Radecka [70] [158] then develop several subroutines to compose the detached 

transforms of smaller modules which exist within a bigger circuit, and finally 

integrate these subroutines into a fast algorithm for the construction of AT and 

its extensions. 
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1.4.2 Imprecise Circuits 
 Here we focus our attention on a large category of circuits which cannot be 

exactly represented. We will refer to these as imprecise circuits, as 

implementations do not match specifications exactly since they are only 

realized approximately. When dealing with arithmetic circuits, the imprecision 

of these circuits creates added complexity for the design and verification phase. 

In such cases, implementations realize intended specifications only to the 

certain degree of precision, adding yet another dimension to the already 

complex process of design verification. Also it is not compulsory to require 

them to be identical as some imprecision reason should and could be tolerated. 

While verifying arithmetic circuits, if the error measured as a difference 

(imprecision) between them is within an acceptable range, the implementation 

is deemed suitable to the specification. Mathematical forms of expressing 

imprecision are related to the type of implemented designs. For example, for 

arithmetic circuits, the error can be described in some arithmetic form, and is 

therefore referred as an arithmetic error. Figure 1.12 denotes the basic idea of 

imprecise circuits. The solid line represents the specification, and the dotted 

lines represent the implementations. The implementations approximate the 

specification but not exactly overlap.  

 

 

Figure 1.12: The basic idea of imprecise circuits 

 
Mathematical forms of expressing imprecision are related to the type of 

implemented designs. For example, for arithmetic circuits, the error can be 

described in some arithmetic form, and is therefore referred as an arithmetic 

error.  

The current verification methods, such as equivalence checking cannot be 

applied: in some cases, many output bit values may differ, while the 
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implementation might still be considered correct if the difference of the 

specification and the implementation is within a given arithmetic precision. 

Consider, for example, the representation of value 1.0. It is approximation 

0.111… can be made arbitrarily precise by increasing the wordlength, yet all 

the bits are incorrect. On the other hand, the change of a single, most 

significant bit can change the arithmetic value by 100%. 

Further, when verifying the precision, we must explore yet another problem 

dimension, i.e., the imprecision for the whole domain of definition. In the 

thesis, we address the problem by the following two aspects. 

 
(A) Component Comparison 

The functionality of many circuits, particularly signal processing ones, can 

be described or approximated by polynomials. For instance, many algorithms 

use a common arithmetic function such as sin(X). This function, being a 

real-type and infinite, cannot be realized precisely, and hence some kind of 

approximation is needed, like, for example, the following one:   

                    X - X3/3! + X5/5! - X7/7!.... 

Here X is within the range [-1, 1] for convergence.  

In many cases the implementation of the specification function, like the 

above is not build from scratch. More realistic problem is to realize the 

function by, for example, using only 6 terms and 16-bit inputs approximation, 

where there is an existing module to implement sin(X) by 5 terms and 12-bit. 

The existing implementation can be used, as long as the difference between 

the requirement and the library element is not beyond the given error bound. 

However, to minimize the error of such a substitution, the Taylor terms and 

bit-width must be both optimized.  

We will approach the Taylor terms and input bit-width optimization 

simultaneously, and try to provide a uniform platform, which is easily 

operated and applied. Our goal is to match and verify the precision of real 

DSP/arithmetic modules such as DCT. For this purpose, we present a method 

for matching imprecise datapath circuits expressed by Taylor series and extend 

it to handle word-level polynomials. Such representations are selected based 

on the fact that Taylor expansions provide a representation of arithmetic 

functions, which not only can be made arbitrarily close to the desired 
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domain the function definition, with many precision parameters investigated 

concurrently to get the imprecision. We propose a new method in terms of 

Arithmetic Transform (AT) to analyze these parameters statically, to ascertain 

whether the existing implementation is suitable to the specification. Please 

note that many satisfying implementations can fulfill one specification, and it 

is very much worth finding the implementation with the smallest hardware 

cost. In Figure 1.14, the three dotted lines represent three implementations 

which all satisfy the specification represented by the solid line, but only one 

implementation has the smallest area. How to find out this optimized 

implementation is attractive in practical engineering.  

satis fied

satis fied
(optim ized)

 

Figure 1.14: Optimized implementation with the smallest area 

 
In the thesis we try to analyze the factors generating imprecision such as 

function approximation and finite bit-widths, and develop a series of 

algorithms to process imprecise circuits included comparison, verification and 

optimization. This problem is solved in section 6.2 – 6.4.  

 
 

1.4.3 Range Analysis 
  Range analysis is a significant step in RTL synthesis which directly 

influences cost and performance. This topic is always hot and attractive to 

engineers. Traditional methods have obvious disadvantages of low efficiency 

and coarse bounds, which lead to infeasibility and additional bits for data 

representation. In order to overcome these disadvantages, we propose a new 

method to calculate ranges for each intermediate output and the final output in 

the datapath. This method can obtain exact ranges and allocate the smallest 

integer bit-widths for the datapath, so the optimized implementation with the 

smallest hardware area can be achieved. This problem is solved in Chapter 7.  
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1.4.4 Exploration of Fixed-Point Circuits 

  After investigating the precision and the range separately, we explore the 

fixed-point representation with both integer bit-width (IB) and fractional 

bit-width (FB). The case is more complex and the most important problem is 

how to determine the fractional bit-width in the datapath and estimate the error. 

Based on the above analysis, we propose an efficient method to allocate 

appropriate IB and FB for the inputs and all outputs in the datapath in order to 

obtain the optimized implementation.  

  As blind spots in past explorations, circuits with feedbacks – such as IIR 

filters – are of importance. We analyze feedback circuits and propose 

algorithms to detect stability and find ranges. Furthermore, sequential circuits 

are investigated and the process of fixed-point representation is extended to 

floating-point representation. These problems are solved in Chapter 8.  

 
 
1.4.5 Contributions 

  On the whole, the main contributions of the thesis are in: 

 designing an algorithm to obtain the spectral transform for a complex 

circuit 

 proposing algorithms to verify and optimized imprecise circuits 

 proposing an algorithm to calculate ranges of a datapath 

 conceiving an algorithm to find the optimized fixed-point implementation 

with integer and fractional bit-widths 

 designing an algorithm to explore imprecise arithmetic circuits with 

feedback.
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Chapter 2  

Background  
 
 

 

   

In this chapter, we review function representations including 

truth tables, Shanon expansion and polynomial representation. We 

pay special tribune to decision diagrams, as they play an important 

role in many classical verification methods. Most commonly used 

diagrams include OBDDs, MTBDDs, BMDs and TEDs. Finally, as 

usual methods to handle imprecise circuits rely on dynamic 

analysis and affine arithmetic, we conclude this chapter with the 

introduction of the mathematical background of these methods. 
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With VLSI (Very Large Scale Integration) technologies and the design 

techniques developing rapidly, microchips are utilized prevalently in many 

areas of human activities. The integration density increases fast beyond 

billions of transistors bringing forward a problem: how to build a right system 

to fit requirements? Thus hardware verification theory emerges as an 

important element of the overall design process. There were many 

corresponding explorations in past decades. In this chapter we will review 

some typical theoretical background dealing with function representations and 

verification.  

 

 

             2.1 Function Representations 
  Digital combinational circuits rely on the repreentation of Boolean functions, 

either by means of computation or evaluation processes. Truth tables belong to 

the first group, while decision diagrams belong to the second one. 

 
 
2.1.1 Truth Table 

A truth table is a mathematical table used in logic — specifically in 

connection with Boolean algebra, Boolean functions, and propositional 

calculus — to compute the functional values of logical expressions on each of 

their functional arguments, that is, on each combination of values taken by 

their logical (input) variables. In particular, truth tables can be used to tell 

whether a propositional expression is true for all legitimate input values, that is, 

logically valid. 

 
Example 2.1: The truth table of the 2-bit unsigned adder with inputs x = x1x0 

and y = y1y0, and output z = z2z1z0 is presented below.   
                    x1x0y1y0  z2z1z0 
                        0 0 0 0   0 0 0 
                        0 0 0 1   0 0 1 
                        0 0 1 0   0 1 0 
                        0 0 1 1   0 1 1 
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                        0 1 0 0   0 0 1 
                        0 1 0 1   0 1 0 
                        0 1 1 0   0 1 1 
                        0 1 1 1   1 0 0 
                        1 0 0 0   0 1 0 
                        1 0 0 1   0 1 1 
                        1 0 1 0   1 0 0 
                        1 0 1 1   1 0 1 
                        1 1 0 0   0 1 1 
                        1 1 0 1   1 0 0 
                        1 1 1 0   1 0 1 
                        1 1 1 1   1 1 0 

 
  Truth tables are useful in many synthesis applications, as well, as 

verification due to their canonical property. In fact, equivalence checking of 

two Boolean functions can be done by comparing truth tables of corresponding 

functions.  

  A truth table has 2N rows for an N-input function, hence the size and time 

complexity are always exponential in the number of primary inputs. 

Consequently, the truth table as a binary function representation is impratical 

for verificaiton of even modertate size circuits. 

 
 
2.1.2 Shannon Expansion  
  In mathematics, Shannon expansion is a method by which a Boolean 

function can be represented by the sum of two sub-functions (co-factors) of 

the original. It provides a way for deriving a Boolean function recursively. 

 
Definition 2.1: The cofactor of a Boolean function f(x0, x2, …, xi, …, xn-1) with 

respect to variable xi is ),...,1,...,,( 110 −= nx xxxff
i

. Similarly, the 

cofactor with respect to variable ix  is ),...,0,...,,( 110 −= nx
xxxff

i
. 

 
  Each Boolean function can be represented by its cofactors through Shannon 

expansion.  

 
Theorem 2.1: A Boolean function BBf n →:  can be represented as  

),,...,,( 21 nix xxxxff
i
= = )()(

iiii xixixixi fxfxfxfx +⋅+=⋅+⋅  
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One way of representing the Shannon’s expansion is by means of a 

multiplexer selects between the two cofactors, depending on the value of a 

splitting variable xi. 

0      1 xi

 
ixf  

ixf

f
 

Figure 2.1: Shannon expansion in variable xi 

 
Example 2.2: Given a function of '''''' zyxzyxzxyxyzf +++= , we can 

re-write the function in terms of any two variables — namely, a variable and 

its complement: xx gxxgf ''+= . Simply apply the distributive theorem to 

the function about x: )'()'''(' zyyzxyzzyzyxf ++++= . Now we have 

expanded the function f about the variable x. The work [154] describes a 

method based on Shannon expansion for low- power and testable circuit  

synthesis.  

 

 

2.1.3 Polynomial Representation 
  Positive and negative Davio expansions are other two expressions of  

Boolean functions by means of cofactors and the XOR operation.  

 
Definition 2.2: The positive Davio expansion of a Boolean function f(x0, x2, …, 

xi, …, xn-1) with respect to variable xi is:  

       )(),...,...,,( 110 iii
xxixni ffxfxxxxff ⊕⋅⊕== −  

Similarly, the begative Davio expansion is: 

)(),...,...,,( 110 iii xxixni ffxfxxxxff ⊕⋅⊕== −  

 
  The two representations adopt XOR operations over two cofactors. They 

are useful for polynomial expressions and decision diagrams representations. 
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  If all variables are decomposed by positive Davio expansion, another 

canonical representation of Boolean functions is obtained as Reed-Muller 

transform [4], [5], [6]. RM transform is used in technology mapping by 

symmetry detection, which will be introduced in section 3.1.2.  

 
 
2.1.4 Boolean Satisfiability  

Boolean Satisfiability (SAT) is often used as the underlying model for a 

significant and increasing number of applications in electronic design 

automation (EDA) as well as in many other fields of computer science and 

engineering. Satisfiability determines whether the variables of a given Boolean 

formula can be assigned in such a way as to make the formula evaluate to 

TRUE. Another importance is to determine whether no presence of such 

assignments would imply that the function expressed by the formula is 

identically FALSE for all possible variable assignments. In this latter case, we 

say that the function is unsatisfiable, or else it is satisfiable [152] . 

  The SAT is a decision problem in complexity theory, whose instance is a 

Boolean expression written using operations of AND, OR, NOT, variables, and 

parentheses. The question is that given the expression, whether some 

assignment of TRUE and FALSE values to the variables will make the entire 

expression true. In particular, satisfiability searches are most often applied to 

Boolean functions represented as product of sums. The search for a function 

variables assignment, which would make all the clauses true, is proven to be 

NP-Complete [152]. 

  
Example 2.3: After converting Boolean equations from Example 2.1 into 

product-of-sums, we obtain the following set of clauses: 

 

 
 

  The set of input assignments satisfying the above equations is empty. This 

fact is easy to verify by checking the multiplier truth table, which holds no 

input (x1, x0, y1, y0)  assignment resulting in all the output bits (z2, z1,z0) being 

equal to one. 
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2.2 Decision Diagrams 
Decision diagrams are the binary function representations that explore 

evaluation process. They do not need to compute the response of input stimuli 

and evaluate a function based on a set of binary-valued decisions.  

 
 

2.2.1 Binary Decision Diagrams 
Binary decision diagram (BDD) [7] was already introduced in 1959 as a 

data structure that is used to represent a Boolean function. Furthermore, under 

the name of Branching Programs they were intensively studied in theoretical 

computer science. Within the following years the importance of BDDs for 

VLSI CAD was realized by several groups, and an increasing number of BDD 

algorithms and successful applications were reported. 

  On a more abstract level, BDDs can be considered as a compressed 

representation of sets or relations. Unlike other compressed representations, 

operations are performed directly on the compressed representation, i.e. 

without decompression. BDDs are based on the Shannon expansion. Generally, 

bit-level decision diagrams are constructed in terms of one of the three 

Boolean function decompositions: 

             Shannon: 
ii xixi fxfxf ⋅⊕⋅=  

             positive Davio: )(
iii xxix ffxff ⊕⋅⊕=  

            negative Davio: )(
iii xxix ffxff ⊕⋅⊕=  

 
Definition 2.3: “A Decision Diagram (DD) over a set of Boolean variables Xn 

and a non-empty terminal set T is a connected, directed acyclic graph G=(V, 

E) with exactly one root and the following properties: 

 A vertex in V is either a non-terminal or a terminal vertex. 

 Each non-terminal vertex v is labeled with a variable from Xn, called the 

index index(v) of v and has exactly two successors in V , denoted by 

low(v), high(v). 

 Each terminal vertex v is labeled with a value Tvvalue ∈)(  and has no 

successors.” [7] 
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Example 2.4: Consider Decision Diagrams in Figure 2.2 and 2.3. The graph 

in Figure 2.2 represents a complete tree that by definition is also a complete 

and ordered DD. The DD in Figure 2.3 is also ordered, but not complete. 

Since both DDs are ordered they are also free. 

x1

x2

x3x3

x2

x3 x3

1 0 1 0 1 1 1 0
 

                       Figure 2.2: Complete and ordered DD                 

                             

x1

x2

x3

0 1

0 1

1

1

0

0

 
Figure 2.3: Ordered DD 

 

Definition 2.4: “A BDD is a DD over Xn and terminal set T={0, 1}. If the 

BDD has a root vertex v, then the BDD represents a Boolean function fv 

defined as follows: 

1. If v is a terminal vertex and value(v)=1 (value(v)=0), then fv=1 (fv = 0). 

2. If v is a non-terminal vertex and index(v)= xi, then fv is the function  

    ).,...,(),...,(),...,( 1)(1)(1 nvhighinvlowinv xxfxxxfxxxf ⋅+⋅=  

flow(v) (fhigh(v)) denotes the function represented by low(v) (high(v)).” [7] 

 
 
2.2.2 Reduced Ordered Binary Decision Diagrams 

BDDs have obvious limitations because of exponential sizes which confine 
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applications. Some extensions have been proposed to overcome these 

limitations. Recently, (especially in the area of verification) DDs have also 

been used to represent Pseudo-Boolean functions, i.e., function of the form f :

ZBn → . The simplest extension of BDDs, ROBDDs (Reduced Ordered 

Binary Decision Diagrams), has two restrictions: 

 Appearance of the variable keeps in the same order along each path from 

the root to a terminal. 

 No isomorphic sub-trees or redundant vertices exist. 

 
Definition: 2.5: “Let π  be a total order on the set of variables x1,…xn. An 

ordered binary decision diagram (OBDD) with respect to the variable order 

π  is a directed acyclic graph with exactly one root which satisfies the 

following properties: 

 There are exactly two nodes without outgoing edges. These two nodes are 

labeled by the constants 1 and 0, respectively, and are called sinks. 

 Each non-sink node is labeled by a variable xi, and has two outgoing 

edges, which are labeled by 1 and 0, respectively. These edges are called 

the 1-edge and the 0-edge, respectively.  

 The order, in which the variable appear on a path in the graph, is 

consistent with the variable order π , i.e., for each edge leading from a 

node labeled by xi to a node labeled by xj it holds xi < jxπ .” [7] 

 
An OBDD is a read-once branching program with an additional ordering 

restriction on the variables. The computation path of an input a = (a1 ,…, an) 

∈Bn is the path from the root to a sink in the OBDD which is defined by the 

input. More precisely, the computation path begins in the root, and in each 

node labeled by xi the path follows the edge with label ai.  

 
Example 2.5: Let π  be the variable order x1 < x2 <x3. Figure 2.4 illustrates 

two OBDD representations of the function 21321321 ),,( xxxxxxxxf += with 

respect to the orderπ . 
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Figure 2.4: Two OBDDs of Example 2.5 

 

Definition 2.6: “Two OBDDS of P1 and P2 are isomorphic if there is a 

bijective mapping φ  from the set of nodes of P1 to the set of nodes of P2 such 

that, for each node v, the two nodes v and )(vφ are sinks with identical labels, 

that means var(v)=var( )(vφ ), ))(())(( vhighvhigh φφ = , ))(())(( vlowvlow φφ = . 

An OBDD is called reduced if  

1. it does not contain a node v with high(v) = low(v), and 

2. there does not exist a pair of nodes u, v such that the sub-OBDDs rooted in 

u and v are isomorphic.”[7]  

 
Example 2.6: Consider a Boolean function f = x1x2x3 + x4x5x6 +…+ xn-2xn-1xn. 

The ROBDD G1 for f with variable ordering x1, x2…xn-1, xn is given in Figure 

2.5. The size of the corresponding graph is given by |G1| = n. Since f depends 

on all n variables the ROBDD has optimal size. 
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x1

xn-2
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x5

x2

x4
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.

.
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x3
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Figure 2.5: An example of ROBDD  

 
 

2.2.3 Multi-Terminal BDDs 
Another extension of BDDs to aim on handling word-level values is to 

introduce non-Boolean terminals, i.e, to allow integers in terminal nodes. The 

resulting DDs are called Multi-Terminal BDDs (MTBDDs) [8] if in each node 

an (integer-valued) Shannon decomposition is carried out.  

 
Example 2.7: A MTBDD for function f=3x1+x2 is given in Figure 2.6.  

x1

x2x2

0 1 3 4
 

Figure 2.6: MTBDD for f=3x1+x2 

 

 

2.2.4 Binary Moment Diagrams 
Binary Moment Diagrams (*BMDs) [9] [10] [11], which belong to the class 

of word-level decision diagrams, are generalizations of the BDD to linear 

functions over domains such as Boolean, but also to integers or to real 
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numbers. They can deal with Boolean functions with complexity comparable 

to BDDs, but also some functions that are dealt with very inefficiently in a 

BDD are handled easily by BMD, most notably multiplication. The most 

important properties of BMD is that, like with BDDs, each function has 

exactly one canonical representation, and many operations can be efficiently 

performed on these representations. The main features that differentiate BMDs 

from BDDs are using linear diagrams instead of pointwise diagrams, and 

having weighted edges. No node may have all decision parts equivalent to 0 

(links to such nodes should be replaced by links to their always part). No edge 

may have weight zero (all such edges should be replaced by direct links to 0). 

Weights of the edges should be coprime. Without this rule or some equivalent 

of it, it would be possible for a function to have many representations, for 

example 4x+4 could be represented as 4*(1+x) or 1*(4+4x).  

  *BMDs are particularly effective for representing digital systems at the 

word level, where sets of binary signals are interpreted as encoding integer 

(fixed point) or rational (floating point) values. Common integer and floating 

point encodings have efficient representations as *BMDs, as do operations 

such as addition and multiplication. *BMDs can also represent Boolean 

functions as a special case, with size comparable to BDDs .  

 
Example 2.8: A *BMD for the fractional coding (3 bits) is illustrated as: 

∑
=

−==
3

1
123123 2:],,[:),,(

i
i

i
enc xxxxxxxf  

x3

x2

x1

0 1

0.125

0.5
0.25

 

Figure 2.7: *BMD for unsigned fractional encoding  

 

   Edge weighting leads to a much more concise representation of a function. 

As an illustration, Figure 2.7 describes the representations of *BMD for the 
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same function. 

 
 
2.2.5 Taylor Expansion Diagrams 
  A new type of diagram, Taylor Expansion Diagram (TED) [12] – [15], has 

been developed to solve the problem of word-level computation, such as 

A[0:n-1]+B[0:n-1], requiring the decomposition of the function with respect 

to each bit-level variable A[0],…,A[n-1],B[0],…,B[n-1]. It is unnecessary to 

expand the word-level variables when treating them as algebraic symbols. 

Figure 2.8 depicts the decomposition with respect to the word-level variables 

A and B. If we group the nodes corresponding to the individual bits of these 

variables, we can abstract the integer variables and use them directly in the 

design. The figure describes the idea of symbolic abstraction of variables from 

bit-level components [12].  

 

b0

b1

1

2

a0

a1

10
1

2

*BMD: A*B

2b1+b0 B[1:0]

2a1+a0 A[1:0]

B

A

10

TED: A*B

 

Figure 2.8: Abstraction of bit-level variables into algebraic symbols 

 

Assume a regular algebra (R, *, +) over real numbers R with integer 

coefficients on a real differentiable function f(x,y,…). Using the Taylor series 

expansion with respect to a variable x, the function f can be represented as 

[14]: 

.....).,0(
2
1,...),0(...),0(...),( ''2' +=+=+== yxfxyxxfyxfyxf  

where f’(x=0, y…), f’’(x=0, y…),etc., are first, second, and higher order 

derivatives of f with respect to x. The derivatives of evaluated at x=0 are 
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independent of variable x, and can be further decomposed w.r.t. the remaining 

variables, one variable at a time. The resulting recursive decomposition can be 

represented by a decomposition diagram called the Taylor Expansion 

Diagram. 

 
Definition 2.9: “The Taylor Expansion Diagram, is a directed acyclic graph 

(φ , V, E, T), representing a multi-variable polynomial expression φ . V is the 

set of nodes and E is the set of directed edges connecting the nodes. T is the 

set of terminal nodes. Every node Vv∈  has an index var(v) which identifies 

the decomposing variable. The variable of the TED are ordered. The function 

at node v is determined by the taylor series expansion at the point var(v)=0. 

The edge emanating from a node v point to its children nodes which 

correspond to the derivative of the function with respect to the variable var(v). 

The out-degree of a terminal node Tv∈  is 0. The function computed at a 

terminal node is an integer constant c.”[14]  

Vx

f

1
x x2

x3

f(0) f'(0) f' '(0)/2
f'' '(0)/3!

 
Figure 2.9: A decomposition node in a TED [12] 

 
The decomposition is applied recursively to the subsequent children nodes. 

The kth derivative of a function f rooted at node v with var(v)=x is referred to 

as a k-child of v; f(x=0) is a 0-child, )0(' =xf is a 1-child, )0(
!2

1 '' =xf  is 

a 2-child, etc. Notice the implicative terms associated with each arc: x0=1 for 

the 0-edge, x1=x for the 1-edge, x2 for the 2-edge, etc.  

TEDs are a new canonical, graph-based representation for arithmetic 

expressions, which can be exploited to facilitate equivalence checking of 

high-level specifications of digital designs in terms of the compactness and the 

canonicity properties. TEDs handle algebraic variables as real numbers. Figure 

2.10 shows an example of TED representation for a simple algebraic expression. 
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Note the additive and multiplicative weights assigned to the edges. The 

computation of the derivatives, and hence the children of f, performed 

recursively, is trivial for polynomial functions.  

 

A

C

B B

0 1

3

A3+3AC+AB+3BC

 

Figure 2.10: An example of an expression represented with TED  

 

 

2.2.6 Disadvantages of Decision Diagrams 
  The canonicity and ease of composition that OBDDs and MTBDD provide 

make them ideal for matching small combinational circuits. In order to handle 

complex circuits such as multiplication, the potentially exponential size of 

BDD structures makes comparison of BDDs time consuming and memory 

intensive. BMDs and TEDs manipulate the complex circuits by easing the 

requirement of memory and time. They have been used to verify the 

functionality of linear circuits [141]. However, they can only yield information 

on whether or not an implementation matches a specification exactly, but offer 

no path for quantifying the degree to which the two offer. Therefore, if two 

functions are similar but not exactly equal, BMDs and TEDs structures may 

implement drastically different arithmetic functions, while two very different 

diagrams may implement the same mathematical operation with different 

degrees of precision. Also, BMDs and TEDs are unsuitable for use in 

non-linear functions because of the resulting exponential complexity in the 

worst case [77], and hence decision diagrams are not suitable to be used to 

explore imprecise circuits.   
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2.3 Dynamic Analysis 
  Decision diagrams are explored in formal verification as a part of 

equivalence and model checking, but they have no ability to process the 

fixed-point representation. The usual method to handle fixed-point designs is 

through the dynamic analysis which uses appointed vectors as specific inputs. 

The major elements include the tested circuit and a group of vectors. A 

testbench represents stimuli to the circuit under verification. The results of the 

circuit simulations with the stimuli indicate whether the implementation is 

suitable for the specification. The simple idea makes it prevalently used. In 

fact, historically, dynamic analysis is the oldest technique to verify digital 

designs. The major draw back of this class of methods is the requirement to 

enumerate all possible input values in order to verify a circuit in 100%. 

  The exhaustive test vectors are usually infeasible for dynamic analysis 

because of huge execution time. A practical testing method requires as few 

vectors as possible to cover as many faults as possible, so the technique of test 

generation has been developed. ATPG (Automatic Test Pattern Generation) is a 

technology to distinguish between the correct circuit behavior and the faulty 

circuit behavior caused by defects. Obviously, the processed objects are 

precise designs and it is difficult to handle or optimize imprecise designs by 

these methods. Varieties of explorations adopt dynamic analysis and avoid 

exhaustive vectors to optimize imprecise designs, which are introduced next.   

Authors in [18] - [25] rely on the straightforward technique to get 

optimization of a bit-width. In [19] Kung et al. develop a combined word-level 

(WL) optimization and high-level synthesis algorithm to minimize the 

hardware implementation cost and significantly reduce the optimization time. 

Their algorithm initially finds the WL sensitivity or minimum WL of each 

signal throughout fixed-point simulations of a signal flow graph. Then it 

performs the WL high-level synthesis where signals having the similar WL 

sensitivity are assigned to the same functional unit. Finally, the algorithm 

conducts the final WL optimization by iteratively modifying the WLs of the 

synthesized hardware model. Figure 2.11 [19] depicts the design flow of 

optimization. 
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Figure 2.11: Design flow of the architecture-level WL optimization [19] 

 
  Willems and Bursgens [20] present a tool that allows an automated, 

interactive transformation from floating-point ANSI-C into a bit-true 

specification. The tool quantizes the input value and analyzes quantization 

effects on an algorithmic level. Then it invokes the simulation-based 

fixed-point algorithm to target the described specification. The main 

disadvantage of the above method is that it requires a large set of input vectors, 

and hence a long simulation time is unavoidable. 

 

 

Figure 2.12: The tool flow of the method in [20] 
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  Gaffar et al. [21] offer a uniform treatment for bit-width optimization of 

fixed-point designs. They utilize automatic differentiation to compute the 

sensitivities of outputs to the bit-width of the various operands in the design. 

This sensitivity analysis enables to explore and compare fixed-point and 

floating-point implementation for a particular design. As a result they can 

automate the selection of the optimal number representation for each variable 

in a design to optimize area and performance. Figure 2.13 describes its design 

flow.  

 

 Design Description  System Generator
Design

BitSizeCost Function Runtime Data

Annotated Dataflow GraphVerification Output

System Generator

VHDL Synthesis
Matlab Simulation

Xilinx Tools

FPGA Configuration Bitstream

Comparison

Output Error
 

Figure 2.13: The design flow of dynamic analysis in [21] 

 
  C. Shi et al. [22] set up a statistical model to estimate hardware resource in 

terms of perturbation theory. A tool that automates the floating-point to 

fixed-point conversion (FCC) process for digital signal system is described 

based on a simulation tool, Simulink. The tool automatically optimizes 

fixed-point data types of arithmetic operators, including overflow modes, 

integer word lengths, fractional word lengths, and the number systems. The 
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approach is based on statistical modeling, hardware resource estimation and 

global optimization based on an initial structural system description.  

  Nayak et al. [23] propose a precision analysis algorithm to determine the 

minimum number of bits required by an integer variable, and present a 

framework to generate an efficient hardware for signal processing applications. 

Their range optimization relies on data range propagation, while precisions are 

analyzed and optimized by the DFG which is an acyclic graph representation 

of a circuit. A memory packing algorithm is proposed to generate faster 

hardware requiring less execution time. Figure 2.14 illustrates the framework.  

 

   

Input Matlab
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Figure 2.14: Overview of the synthesis framework in [23] 

 
  Though dynamic analysis provides bit-widths closer to the optimal set for 

those particular stimuli, it is not a perfect solution since a large set of stimuli 

signals is required to analyze a design with sufficient confidence. This 

possibly leads to prohibitively long simulation time without guarantees for 

alternative input stimuli encountered in practice. Hence, often not only low 

efficiency of the overall process can be encountered, but the above methods 

can become infeasible for some cases. Therefore, other methods should be 

explored. 
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           2.4 Static Analysis 
Static analysis such as interval arithmetic and affine arithmetic can avoid 

tedious simulation. This section introduces static methods to handle 

fixed-point circuits represented by polynomials.  

 
 

2.4.1 Interval Arithmetic 
In mathematics, a (real) interval is defined as a set of real numbers with the 

property that any number that lies between two numbers in the set is also 

included in the set. For example, the set of all numbers x from the interval [0,1] 

include 0 and 1, as well as all real numbers between them. Interval arithmetic 

(IA) is a method developed by mathematicians in 1950s and 1960s as an 

approach to putting bounds on rounding errors in mathematical computation. 

Among many contributors, we distinguish Hansen, who in [26] introduced 

basic ides of interval arithmetic and Kearfott, who in [27] presented some 

important applications of interval computations.  In general, the advances in 

interval arithmetic led to the development of numerical methods that yield 

very reliable results.  

Where classical arithmetic defines operations on individual numbers, 

interval arithmetic defines a set of operations on intervals. An operation <OP> 

on two intervals is defined as: 

]},[],,[|{],[],[ 21212121 yyyxxxyOPxyyOPxx ∈∈><=><
 

The operand <OP> can, for example, represent addition or multiplication. 

For practical applications the above notation can be simplified to: 

Addition:  ],[],[],[ 22112121 yxyxyyxx ++=+  

Subtraction: ],[],[],[ 22112121 yxyxyyxx −−=−  

Multiplication:  

)],,,max(),,,,[min(],[],[ 22122111221221112121 yxyxyxyxyxyxyxyxyyxx =∗
Division:  

]),/[1(],[],/[],[ 21212121 yyxxyyxx ∗= ,  

where ]/1,/1[],/[1 2121 yyyy =  if ],[0 21 yy∉  

With the help of these definitions, it is already possible to calculate the 
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range of simple functions, such as f(a,b,x) = ax+b. If, for example a = [1,2], b 

= [5,7] and x = [2,3], it is clear that 
 ]13,7[]7,5[]32,21[]7,5[])3,2[]2,1([),,( =+∗∗=+∗=xbaf  

Interval methods can also apply to functions which do not just use simple 

arithmetic, and we must also use other basic functions for redefining intervals 

as known monotonicity properties. The range of values is easy to determine 

for monotonic functions in one variable. If RRf →: is monotonically 

rising or falling in the interval y1, y2∈ [x1, x2], then one of the following  

inequalities applies for all values in the interval such that y1 ≤ y2 : 

f(y1) ≤  f(y2)  or  f(y1) ≥  f(y2)    

The range corresponding to the interval [y1, y2] ⊆ [x1, x2] can be calculated by  

applying the function to the endpoints  y1 and  y2:  

f([y1, y2] ) = [min{f(y1 ), f(y2)}, max{f(y1 ), f(y2)}] 

Using the above equation, the following basic features for interval functions  

can easily be defined: 

• Exponential function: ],[ 2121 ],[ xxxx aaa =     a ≥ 1, 

• Logarithm: ],[ 2121 ],[ x
a

x
a

xx
a LogLogLog =   for positive intervals [x1, 

x2] and a >1, 

• Odd powers: [x1, x2]n = [x1
n, x2

n] for odd n⊆ N. 

The methods of classical numerical analysis cannot be transferred 

one-to-one into interval-valued algorithms, as dependencies between 

numerical values are usually not taken into account. 

In order to work effectively in a real-life implementation, intervals must be 

compatible with floating point computing. The earlier operations were based 

on exact arithmetic, but in general fast numerical solution methods may not be 

available. The range of values of the function f(x,y) = x + y for x∈ [0.1, 0.8] 

and y∈ [0.06, 0.08] are for example [0.16, 0.88]. Where the same calculation 

is done with single digit precision, the result would normally be [0.2, 0.9]. But 

[0.16, 0.88]∉ [0.2, 0.9], so this approach would contradict the basic principles 

of interval arithmetic, as a part of the domain of f([0.1, 0.8], [0.06, 0.08]) 

would be lost. Instead, it is the outward rounded solution [0.1, 0.9] which is  

used. 

The required external rounding for interval arithmetic can thus be achieved 
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by changing the rounding settings of the processor in the calculation of the 

upper limit and lower limit. Alternatively, an appropriate small interval [ 21 ,εε ] 

can be added. 

Interval arithmetic is used in association with error analysis to control 

rounding errors arising from each calculation. The advantage of interval 

arithmetic is that after each operation there is an interval which reliably 

includes the true result. The distance between the interval boundaries gives the 

current calculation of rounding errors directly: 

Error = abs(a − b) for a given interval [a,b].  

 
 

2.4.2 Affine Arithmetic 
Affine arithmetic (AA) is a model for numerical analysis introduced first by 

Stolfi and Figueiredo, [32] [33]. In AA, the quantities of interest are 

represented as affine combinations (affine forms) of certain primitive variables, 

which stand for sources of uncertainty in the data or approximations made 

during the computation. It is meant to be an improvement on interval analysis 

(IA).  

In affine arithmetic, each input or computed quantity x̂  is represented by a  

formula: 

nnxxxxx εεε ++++= ...ˆ 22110  

where x0, x1, ... xn are floating-point numbers and nεεε ..., 21  are symbolic 

variables whose values are only known to lie in the range [-1,+1]. We call x0 

the central value of the affine form x̂ ; the coefficients xi are its partial 

deviations, and the iε  are the noise symbols. Thus, for example, a quantity 

x̂  which is known to lie in the range [3,7] can be represented by the affine 

form kx ε25ˆ += .  

The key feature of AA is that the same symbol iε  may contribute to the 

uncertainty of two or more quantities (inputs, outputs, or intermediate results) 

x̂  and ŷ  arising in the evaluation of an expression. The noise symbols can 

be shared which indicates some partial dependency between the underlying 

quantities x and y, determined by the corresponding coefficients xi and yi. Note 



Chapter 2: Background 

 44

that the signs of these coefficients are not meaningful in themselves, because 

the sign of iε  is arbitrary; but the relative sign of xi and yi defines the 

direction of the correlation. For example, suppose that the quantities x and y 

are represented by the affine forms: 

x̂  = 17 − 3 1ε  + 2 3ε  + 4 4ε      ŷ  = 9 − 1ε  + 2ε  - 2 4ε  

From this data, x lies in the interval x̂= [8, 26] and y lies in ŷ = [5, 13], i.e., 

the pair (x, y) lies in the grey rectangle of Figure 2.16; however, since the two 

affine forms include the same noise variables 1ε  and 4ε  with non-zero 

coefficients, they are not entirely independent of each other. In fact, the pair (x, 

y) lies in the dark grey region of Figure 2. 15, which is the set of all possible 

values of ( x̂ , ŷ ) when the noise variables 1ε , .. 4ε  are independently. This  

set is the joint range of the forms x̂  and ŷ , denoted < x̂ , ŷ >. 

8 26

5

13

 

Figure 2. 15: Joint range ( x̂ , ŷ ) of two partially dependent quantities 

 as implied by their affine forms  

 
  In order to evaluate a formula with AA, we need to replace each elementary 

operation z ←  f(x, y) on real quantities x and y by a corresponding procedure 

ˆ ˆˆ ( , )z f x y← , which uses affine forms of those quantities and returns an affine 

form for the result z. By definition, there are:  

nnxxxxx εεε ++++= ...ˆ 22110  

nnyyyyy εεε ++++= ...ˆ 22110  

Therefore, the result ẑ  is a function of the unknown variables iε  as: 

                    0 1 1 0 1 1ˆ ˆˆ ( , ) ( ... , ... )n n n nz f x y f x x x y y yε ε ε ε= = + + + +  

 
Example 2.10: Consider the multiplication of two affine forms ˆ ˆẑ xy← , where 
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21 3420ˆ εε +−=x  and 31230ˆ εε ++=y . Please notice that the operands 

are partially correlated through the shared noise symbol 1ε . The product of 

ˆˆxy  is: 

ˆ ˆẑ xy= = 600 - 80 1ε +90 2ε + 20 3ε  – 8 2
1ε – 4 1 3ε ε + 6 1 2ε ε + 3 2 3ε ε  

      = 600 - 80 1ε +90 2ε +20 3ε  – 8 4ε – 4 5ε + 6 6ε +3 7ε  

Using the form of ẑ , we can estimate the range of ẑ  is [389, 811]. The 

actual range of ˆˆxy  is [403, 756], so the obtained range by AA is (811-389) / 

(756 – 403) = 1.2 times wider than the exact range. If using IA for comparison, 

z = [13, 27] * [27, 33] = [351, 891], that is (891 – 351) / (756 – 403) = 1.53 

times wider than the exact range. The reason is AA can partly process the 

correlation between x̂  and ŷ  implied by the shared symbol 1ε . The 

correlated terms −120 1ε  and +40 1ε  nearly cancel out in the AA 

computation, but are added with the same sign in the IA computation. 

 
C.Fang et al. [39] [40] take advantage of affine arithmetic modeling to 

analyze range and precision from fixed-point implementations of DSP 

algorithms. The resulting numerical error estimates are comparable to detailed 

statistical simulation, but achieve speedups of four to five orders of magnitude 

by avoiding actual bittrue simulation. Authors in [41] [43] propose an 

approach that optimizes the bit-widths of fixed-point and floating-point 

designs. Range analysis depends on a combined affine and interval arithmetic 

approach to reduce the number of bits. Precision analysis involves a 

coarse-grain and fine-grain analysis. The best representation in fixed-point or 

floating-point is then chosen based on the range, precision and latency. Figure 

2.16 illustrates the methodology.  
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C/C++ Program

Simulation-Error
Function Generation

Guaranteed-Error
Function Generation

Coarse Precision
Analysis

Fine Precision
Analysis

Scheduling
Floating-point Units

Range
Optimization

Cost Table
Generation

Word-length Optimized Fixed /
Floating-Point Design

 

Figure 2.16: An outline of the methodology in [41] 

 
  The algorithm starts from generating cost and error functions and then 

analyzes range. The next stage is precision analysis. A coarse-grain analysis 

produces uniform bit-widths. These results are then refined to produce 

non-uniform bit-widths. The last stage is floating-point scheduling before the 

source code is reconstructed to a given C/C++ design.  

  Authors in [42] use AA to investigate bit-width due to truncated and 

rounded data, and explore hardware area and delay in FPGA on the condition 

of different bit-width. Figure 2.17 introduces the tool of static analysis.  
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In [93], authors set up models for error source dependence. In these models, 

the dependence is approximated by linear functions (AA) or by general 

polynomials (Taylor series methods), which are proved optimal. They also 

describe that the optimal way to decrease the excessive bit-width is to use  

implicit polynomial dependence. 

Affine arithmetic is potentially useful in every numeric problem where one 

needs guaranteed enclosures to smooth functions, such as solving systems of 

non-linear equations, analyzing dynamical systems, integrating functions 

differential equations, etc. Additionally, AA has many applications in areas 

such as computer graphics, optimization and curve drawing in [35], [36], [37], 

[38]. Here it is used to handle range analysis and bit-width optimization. 
 

 

       2.5 Alternate Methods 
Constantinides et al. [46] present an approach to the wordlength allocation 

and optimization for linear DSP systems. The tool Synoptix [47] - an 

optimization technique targeting linear time-invariant digital signal processing 

systems using a novel resource binding technique is proposed. It is based on 

saturation arithmetic to perform the range of bit-width optimizations and 

allows the user to tradeoff implementation area for arithmetic error at system  

outputs. 
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Figure 2.18: Synoptix design flow in [47] 

 

Figure 2.18 describes the tool flow. The input to Synoptix is a 

Simulink block diagram, and the output is a structural description in VHDL. 

Third-party tools are then used to perform the low-level logic synthesis, 

placement, and routing of the designs. 

Kinsman and Nicolici [55] introduce the theory of SAT-Modulo (SMT) to 

explore ranges. SMT first uses the coarse bounds obtained by IA, and then 

refines them by inserting constraints. More precise bounds than AA can be 

obtained, so determine smaller bit-widths for an implementation. Based on the 

scheme, an SMT engine can be used to prove/disprove validity of a bound on a 

given expression by checking for satisfiability. 

 

Affine
Arithmetic

Interval
ArithmeticRange

Precision

     Specification
      (Scientific
       Calculation) Range

Refinement

Initial
ranges

SAT-Modulo

 
Figure 2.19: Flow of SMT technique in [55] 

 
 Ahmadi and Zwolinski [54] address the bit-width assignment in hardware 
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implementation in the context of high-level synthesis. They introduce a 

symbolic noise analysis (SNA) to surpass the pessimism of IA, which is based 

on modeling of the error bounds by an assumed probability distribution 

function over a known range. In comparison to SNA which assumes the error 

distributions more localized, IA is pessimistic by assuming the uniform 

distribution. The proposed method is used in combination with models of 

power consumption, circuit area and delay. Results demonstrate a considerable 

saving in costs when these optimizations are applied. 

 

 

2.6 Conclusions 
In this chapter, we introduced the usual Boolean function representations 

such as decision diagrams. Although decision diagrams such as TEDs are 

suitable to equivalence checking and model checking, they cannot be applied 

to imprecise circuits or to bit-width optimization. Dynamic analysis is a 

common method and many explorations are based on it, but its low efficiency 

confines its applications. Static analysis has been developed to overcome this 

limitation. IA is the usual method of finding ranges and AA is a derivation 

which can calculate more precise ranges than IA.   

These explorations only get one optimization of bit-width such as [42] or 

hardware area such as [51]. Another disadvantage is that they do not consider 

the function approximation so they are not capable of investigating these 

factors concurrently. In our research, we overcame this disadvantage and 

simultaneously processed bit-widths and various constraints as well as 

approximations for Taylor series and real-valued polynomials. 
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Chapter 3  

Compositions of AT and 
Extensions 

 
 

 

 

 Arithmetic Transform (AT) must be extended to represent 

combinational circuits and sequential circuits efficiently. We state 

past methods of calculating AT coefficients, and then address the 

use of AT and its extensions to express word-level quantities and 

sequential elements. Since a circuit transform can express 

properties of the circuit distinctly and help engineers to penetrate 

its essence straightforwardly, obtaining an overall transform by 

symbolic compositions of individual blocks’ transforms becomes 

most significant. For the purpose of running time and memory, the 

best algorithm is proposed for a compositional verification of the 

complex datapath. 
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   3.1 Introduction of Spectral Transforms 
As a main method exploring the fixed-point circuits in our research, 

Arithmetic Transform (AT) is a spectral representation different with Boolean 

representations. So we introduce the spectral domain and the basic AT 

definition at first in this Chapter. 

 
 

3.1.1 Spectral Domain 
  It is common to use the product and sum operators of the Boolean algebra 

together with negation to define such functions － for example, f(x1, x2, x3) = 

321 xxx + 321 xxx . The use of Boolean algebra for the manipulation and analysis 

of switching circuits is well known. Part of the problem with the definition in 

the Boolean domain is that each of the entries in the truth table for f tells us 

precisely the behavior of the function at a single point but nothing of its 

behavior for any other points. It is possible to give an alternate representation 

of a function where the information about the function is much more global in 

nature. This alternate representation is in the spectral domain, and a number of 

properties are much more easily deduced in the spectral domain than in the 

Boolean one [56]. Spectral techniques are very powerful tools for logic 

functions to express the principle of linearity and superposition. 

The basic idea of the spectral domain and how to get there is illustrated in 

Figure 3.1. In order to avoid losing information, the transform should be 

reversed, that is, we can move to and from the spectral domain without any 

loss of information.  

 

Conventional
Boolean data

Appropriate
transform

Original Boolean
data re-expressed as

a different set of
numbers

The Boolean domain The transform The spectral domain
 

Figure 3.1: The spectral transform  
 
  The information content in the functional and spectral domains will be 

identical, and the data in either domain is uniquely recreatable from the data in 
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the other, but the meaning of the parameters in the two domains will be 

dissimilar. In particular, the discrete nature of the data in the function domain 

will be generally influenced by the complete functional performance of the 

circuit or network under consideration. The following section outlines several 

usual spectral transforms. 

 
 
3.1.2 Various Transforms 
A) Reed-Muller Transform 
Definition 3.1: In matrix notation, positive polarity Reed-Muller (PPRM) 

expressions for functions in GF(2) are given by: 

                       RM(f) = Rn F                

where F is the truth table for the Boolean function f and  

                ⎥
⎦

⎤
⎢
⎣

⎡
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1 0
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n
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R ,       10 =R           (3-1) 

 
Example 3.1:  Consider a function f(x0, x1, x2) = x1x2+x0, i.e., F = [0, 1, 0, 1, 

0, 1, 1, 1]T . Using the Eqn. 3-1, coefficients of Reed-Muller transform are 

calculated as: 
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Thus RM(f) = x0 ⊕ x1x2⊕ x0 x1x2 

 

B) Fixed-Polarity Reed-Muller Transform 
The fixed polarity Reed-Muller (FPRM) transform is derived from the 

negative Davio expansion together with the positive Davio expansion (no need 

for the same variable). These transforms are characterized by the polarity 
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vectors H = (h1, . . . , hn) ∈ {0, 1}n, whose ith coordinate hi = 1 shows that the 

corresponding variable is represented by the negative literal ix  in the 

polynomial representation for a given function f [57]. 

For a given polarity vector H, the FPRM polynomial is given in the matrix 

notation by: 

FPRM(f) = 
1 1

( [1 ])( [ (1)])i i

n n
h h
i

i i

x R F
= =
∏ ∏  

where 

, 0

, 1
i

i ih
i

i i

x h
x

x h

=⎧ ⎫⎪ ⎪= ⎨ ⎬
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Example 3.2: Figure 3.2 [57] shows the Reed-Muller transform matrix for n = 

3 and the polarity vector H = (0, 1, 0).  

(0,1,0)

0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0

(3)
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 3.2: Reed-Muller matrix for n = 3 and the polarity vector H = (010) 

The indices of columns in R(010)(3) are defined as (i1⊕h1, i2 ⊕h2, i3 ⊕h3) 

compared to the positive polarity (H = (0, 0, 0)) Reed-Muller matrix R(3). So 

the original output order (0, 1, 2, 3, 4, 5, 6, 7) changes to (2, 3, 0, 1, 6, 7, 4, 5). 

With this matrix, for a function f given by the truth-vector F =[1, 0, 0, 1, 0, 1, 

1, 1]T, the Reed-Muller expansion for H = (0, 1, 0) is given by 

FPRM(f) = x0 ⊕ 1x  ⊕ x2  ⊕ x2x0  ⊕ x2 1x x0 

 
C) Walsh Transform 

The Walsh functions [57] [59] [60] [61] are a closed set of two-valued 

orthogonal functions, given by  
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Where ηj , ηk  are determined by the binary expansions of j, k respectively, 

j, k ∈ 0 to 2n-1, where 

  j = {jn-12n-1 + jn-22n-2 +… + j020}       k = {kn-12n-1 + kn-22n-2 +… + k020} 

  The Walsh transform is a complete orthogonal square matrix, with row and 

column entries ∈ {+1, -1} and with a recursive structure as follows: 

 

 

   

where ⊗  denotes the Kronecker product operator. The transform is given by 

W(f) = Wn F. 

 
D) Fixed-Polarity Walsh Transform 

For a given polarity vector H = (h1, . . . , hn) the fixed polarity Walsh 

polynomial is given in the matrix notation by [57]: 

        FPW(f) = 
1 1

2 ( [1 1 2 ])( [( 1) ( 1) ])i i i

n n
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E) Kronecker Transform 
Definition 3.2: For a function f, the Kronecker spectrum is defined as: 

                       K(f) = Kn F 
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Figure 3.3 shows the Kronecker transform matrix K(3): 
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Figure 3.3: A Kronecker transform matrix for n = 3 

 

F) Haar Transform 
  The orthogonal Haar functions [56] may be defined as follows, where k is 

taken over the continuous interval 0 to 1: 
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where i = 1, 2, … , n and q = 0, 1, … , 2i-1-1.  

The sequentially ordered discrete Haar functions for n = 3 are shown in 

Figure 3.4. 

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2 2 2 2 0 0 0 0

0 0 0 0 2 2 2 2(3)
2 2 0 0 0 0 0 0
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Figure 3.4: Sequentially ordered Haar functions for n = 3 
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3.2 Arithmetic Transform 
3.2.1 Basic Definition  

We adopt Arithmetic Transform that is defined in the spectral domain as our 

main method to analyze imprecise factors and compute imprecision. 

Traditional methods are hard to determine the maximum error on the condition 

of the Taylor word-level input, but AT can decompose word-level variables 

into bit-level quantity to avoid the disadvantage and represent the error 

function essentially. AT has been proved to be suitable for precision 

verification and optimization by precision constraints, so here we use it to 

analyze imprecision of Taylor series. 

AT is a canonical polynomial representing uniquely multi-input and 

multi-output Boolean functions mn BBf →: . Multi-output can be grouped to 

form a word-level (integer) number w to obtain an AT description in a form of 

a single polynomial, leading to a pseudo Boolean function wBf n →: . 

Therefore, the AT representation has Boolean inputs and a word-level output. 

 
Definition 3.3: The Arithmetic Transform (AT) [62] is a polynomial 

representing a pseudo Boolean function wBf n →:  using an arithmetic 

operation “+”, word-level coefficients 
niiic ...21
, binary inputs nxxx ,, 21  and 

binary exponents niii ..., 21 : 
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The matrix multiplication is most frequently used to determine AT of a 

given function. In this method, the set of AT coefficients }{ ...21 niiicC =  are 

obtained by multiplying the nn 22 ×  matrix Tn  by a 12 ×n  vector of 

function values (truth table of f ): fTC n ×=  where the transform matrix Tn 

is defined recursively:  

 

             .                                              (3-2) 
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  AT generates a word-level output and it is encoded by binary weights 

addition. A word-level encoding is explicitly expressed by the number norm 

function | |:Bm→W , defining a Boolean vector interpretation in the word-level 

domain. Table 3.1 [70] gives a summary of common integer and fractional 

number norms for a vector of Boolean values xi.  
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Table 3.1: Norm functions for common word encodings 

 
Example 3.3: Consider the following Boolean function, where (x2, x1, x0) are 

bit-level variables, and output variables are grouped to form an integer at 

Boolean domain. Arithmetic Transforms can be obtained using the function 

truth table: 
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Hence AT = 2 - 13x0 + 6x1 + 7x1x0 + 16x2 -19x2x0 +7x2x1 

 
Arithmetic polynomials are used for efficient representation and calculation 

of multi-output functions fk , fk−1, . . . , f0 represented as integer-valued 

functions f(z) via the mapping [57]:  

000  2 

001 -11 

010 8 

011 2 

100 18 

101 -14 

110 17 

111 -8 
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Example 3.4: Consider a system of functions: 

 (f2(x2, x1, x0), f1(x2, x1, x0), f0(x2, x1, x0)) 

where         f0(x2, x1, x0) = x2(x0 + x1) 

f1(x2, x1, x0) = x2x0  ⊕ x1 

f2(x2, x1, x0) = x1+ x2x0 

A matrix F whose columns are truth-vectors of f2, f1, and f0, with their values  

interpreted as integers is used: 

],,[
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An integer valued representation for f2, f1, and f0 is obtained as f = 22f2 + 2f1 + 

f0, i.e,  
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 Now, the arithmetic spectrum of F = [0, 0, 3, 3, 3, 4, 6, 7]T is 
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Therefore, f is represented as the arithmetic polynomial 

f(z) = 6x1 + 7x2x0+ x2x1 -9 x2x x0 

  From the linearity of the arithmetic transform, this polynomial can be 

generated as the sum of the arithmetic polynomials for f1, f2, f3. 

 
 
3.2.2 Utilization of Spectral Techniques 

Spectral techniques have been applied for circuit synthesis, verification and 

testing by many researches. Clarke et al. [64] describe how to calculate 

concise representations of the Walsh transform for a Boolean function with 

huge variables. The technique is applied for Boolean technology mapping and 

obtains a speed up for matching case. 

Klaus [65] develops a new method based on AT for the derivation of fault 

signatures for the detection of faults in single-output combinational networks. 

The signatures do not require exhaustive testing so they provide substantially 

less work than syndrome testing or the verification of Rademacher-Walsh 

spectral coefficients. Two counters are used to test spectral coefficients in [65] 

as the following figure.  
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Counter for
(xi: i    I) ∈

Crcuit under
test

xi=0, i    N-1∈

Counter

parity bit

direction

up=0
down=1

               Figure 3.5: The spectral coefficient ai test structure in [65] 

 
   Lui et al. [66] use spectral signature testing methods for the model of 

multiple stuck-at faults. The testability condition for multiple-input faults is 

established and a minimal spanning signature (MSS) is defined to cover all 

these faults. A MSS contains a single spectral coefficient to detect over 99% 

of all input and internal multiple faults. The approach can obtain a complete 

signature for all multiple faults in any irredundant combinational network with 

small numbers of fan-outs and the possible overhead being an extra control 

input. 

  Miller and Muzio [67] describe a method for the derivation of fault 

signatures for certain classes or irredundant combinational networks. These 

signatures consist of a set of values derived from the network. Any stuck-at 

fault causes at least one of the values to change. The signatures provide 

complete fault detection for all single stuck-at faults.  

Radecka et al. [68] exploit the algebraic properties of the AT that are used 

in the compact graph-based representations of arithmetic circuits. Verification 

time can be shortened under assumption of corrupting a bounded number of 

transform coefficients. Bounds are derived for a number of test vectors and the 

vectors successfully verify arithmetic circuits under a class of error models 

derived from proposed basic design error classes including single stuck-at 

faults. 

In [135], authors describe a methodology for simulation-based verification 

in the presence of a fault model. The authors propose an implicit fault model 

that is based on the AT representation of a circuit and design faults. The 

proposed approach has the advantage of compatibility with formal verification 

and manufacturing testing methods. Errors can be modeled implicitly, and 
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such an implicit error model is given by AT of a difference between the 

correct and faulty circuits. Since a fault is treated as a quantity added to the 

circuit output, the behavior f~  of the faulty circuit is represented as a sum of 

the correct output and the error function e, that is, f~  = f + e. The relation: 

                  AT( f~ ) = AT(f)+ AT(e) 

is satisfied. The size of the error is measured in terms of the number of 

non-zero spectral coefficients in AT of the error e, that is, AT(e). Based on the 

linearity feature, black-box verification can be performed without any 

knowledge of a circuit structure and implementation, as it is performed 

through design interfaces without accessing directly any of internal states. 

 
 
3.2.3 Calculation of AT Coefficients 
 The definition of AT has been introduced. The usual method relies on matrix 

multiplication, which needs huge computation of multiplication and addition, 

so it is always inefficient. Past explorations investigate some other methods to 

calculate AT coefficients. 

  Folkowski and Chang [92] develop an algorithm to calculate the AT of the 

Boolean function from its OBDD representation. The method of 

decomposition of arithmetic spectral coefficients in terms of the cofactors of 

Boolean functions that resembles Shannon decomposition has been introduced. 

A new algorithm to synthesize OBDD from arithmetic spectrum is described.  

Authors in [94] introduce a fast algorithm to generate AT. In that paper, 

different properties and ways of calculation for multi-polarity generalized 

arithmetic and adding transforms have been presented. Mutual relationships 

among spectra of different polarities have been discussed and the possibility to 

generate spectrum of an arbitrary polarity directly from the known spectrum of 

some polarity has been indicated. The following figure illustrates the fast 

algorithm. 

  Krenz et al. [95] present a fast algorithm for evaluating the arithmetic 

transform of a Boolean function based on its circuit representation. Unlike 

previous algorithms requiring an orthogonal and non-redundant representation 

or a single BDD, a new algorithm is proposed to partition the evaluation based 
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on the dominator relations of the circuit graph. The dominators simplify 

intermediate evaluation steps greatly. So the algorithm can process larger 

circuits.  

  Whitley et al. [96] use representations of decision diagrams to calculate 

spectral coefficients by graph-based algorithms which produce Walsh, 

Arithmetic and Reed-Muller transforms for multi-output functions. Thornton 

et al. [97] propose matrix based techniques to calculate direct transformations 

amongst Walsh, Haar, Arithmetic and Reed-Muller spectral domains. They 

implement the fast transforms directly on decision diagrams.  

  Moraga et al. [98] introduce new diagrams based on AT, that is, arithmetic 

transform decision diagrams (ACDDs) which are the integer counterparts of 

the functional decision diagrams (FDDs). The paper describes how to 

construct the diagrams by the structure of arithmetic transform spectrum of 

Boolean functions. Example 3.6 shows an ACDD for a Boolean function.  

 
Example 3.5: Figure 3.6 shows the ACDD for functions of n = 3 variables. 

Figure 3.7 shows the reduced ACDD for the Boolean function: 

f(x1, x2, x3) = 3 - 2x1 - x2 + 4x1x2 + x1x3 + 2x2x3 

The constant nodes represent the arithmetic spectrum of f given by Af = [3 1 2 

4 3 2 4 7]T .  
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r000 r001 r010 r011 r100 r101

f
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Figure 3.6: ACDD for n=3  
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Figure 3.7: ACDD of f in Example 3.6  

 
  Cintra et al. [99] propose a unified theory for AT of a variety of discrete 

trigonometric transforms. Interpolation process is required and determines the 

transform. Authors also introduce a new algorithm to calculate the discrete 

Hartley transform by AT.  

Past explorations calculate AT coefficients directly in spite of using matrix 

multiplication or starting from OBDDs or other function representations. The 

direct way sometimes leads to low efficiency especially for larger circuits. We 

design a new method to calculate AT in this chapter which is an indirect way 

by composing detached blocks in the circuit. First three extensions of AT are 

introduced.  

 

 

3.3 Extensions of the Arithmetic Transform 
Consider a circuit consisting of two blocks B1 and B2 in Figure 3.8. The 

composition of the two ATs: P=AT(B1) and Q=AT(B2) require the binary 

encoding, that is from the conversion of the word-level output P of the first AT 

into the bit-level values T, acceptable as inputs to the second AT [69].  
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B2
.
.
.

I
P=AT(B1(I))

T=|R|-1
.
.
.

Q=AT(B2(T))
B1

 
Figure 3.8: Binary encoding use for compositions of ATs 

 
  Instead of closed-form expression for binary encoding, the integer-to-binary 

conversion algorithm is applied to the AT polynomial to obtain |w|-1. AT 

extensions should accept both word- and bit-level inputs because of no simple 

form of AT(|w|-1).  

The majority of digital circuits subject to verification are complex designs 

composed out of many smaller sub-blocks. AT can still be used to represent 

such designs, however in order to facilitate the compositions of ATs 

describing individual blocks (some of them may be sequential) we need to 

derive extensions to the basic AT. Radecka and Zilic [70] has proposed three 

extensions to represent complex combinational and sequential circuits. Here a 

summary introduces them shortly.  

 
 

3.3.1 Mixed Arithmetic Transform 
The first extension (MAT) facilitates the compositions of two or more AT 

blocks. The introduction of MAT is dictated by the incompatibility of inputs 

and outputs accepted and generated by AT. Note, that ATs in their original 

forms accept inputs as only binary variables, while for the compositions of ATs 

some of the inputs may be binary as well as word-level. 

 
Definition 3.4: The Mixed AT (MAT) [69] is a polynomial representing the 

function wwBf km →×:  which uses an arithmetic “+” operation, 

word-level coefficients 
niiic ...21
, binary x1,x2,…,xm and word-level kwww ..., 21  

inputs as well as binary exponents i1,i2,…,in and e1,e2,…,ek: 
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Eqn. (3-4) can be used to calculate the coefficients of a MAT, which is 
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expanded around binary input variables, and treat word-level input quantities 

unassigned as symbols: 

fTwwwc nk *)...,( 21 =                       (3-4)     

 
Example 3.6: Consider the MAT of a function f=3a+b, where “a” and “b” 

are 2-bit unsigned integers. We treat a=a1a0 as a bit vector, and “b” as a 

single word-level quantity. We obtain the truth table: 

                  f = [b 3+b 6+b 9+b]T 

from which the AT transform application generates:  
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The resulting polynomial is F(a1a0) = b+3a0+6a1 

 
  The size of the matrix Tn is shrunk from 16*16 to 4*4 by treating the input b 

as word-level values. Therefore, the above example denotes that a MAT allows 

a compact way of generating AT.  

  A block represented by MAT can always be converted to the AT with 

polynomial size increase in wordlength m. A MAT is of importance for 

composing ATs by means of its word-level input variables, rather than for 

representing all functions. A function should be expressed explicitly in terms 

of designated word-level inputs.  

 
 
3.3.2 Sequential AT Extensions  
  Since AT and MAT have no ability to represent sequential circuits, as there 

is no notion of time provided by these transforms, two extensions are introduced 

to allow variables to change over time to facilitate sequential implementations. 

We refer to such variables as timed variables. 

 
Definition 3.5: The Timed variable “v[n]” is a variable “v” to which a time 

tag “[n]” is assigned to indicate that the function generating the value of “v” 

changes with time instance “n”[70]. 
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  Timed variables are used to abstract away the clock in the sequential 

implementation. A timed function f[n] represents the value of f in the nth clock 

period. The function f[n] is executed in a finite number of clock cycles.  

 
Example 3.7: A timed equation of a memory element such as a flip-flop whose 

content is reloaded every clock cycle is defined as [70]: 

                     mout[n] = min[n-1] 

 
Definition 3.6: The AT Sequential (ATS) is the Arithmetic Transform AT(f)[n] 

of timed function “f” at time instance “n”, while the MAT Sequential (MATS) 

is analogously MAT(f)[n] of a timed function with word- and bit-level inputs 

[70]. 

 
Example 3.8: Consider a standard flip-flop with input “D”, reset signal  

“reset” and an enable signal “En” – all bit type is represented by ATS [70]: 

])1[*)1(*)(1(])[( −−+−= nfEDEresetnfATS nn  

 
  In fact, if intermediate variables generated by sequential elements are 

word-level quantities, the only appropriate sequential transform is an ATS.  

  The MATS of a sequential function “f” can be obtained from the MAT of 

the combinational part of “f” by the replacement of each MAT input that is 

generated by a memory element with its defining MATS. MATS have two 

forms. A type I MATS presents a case where the timed output variable f is 

expressed only in terms of timed input values, and a type II MATS describes a 

recurrence equation, where a symbol of a considered function f appears on 

both sides of a definition. The circuit behavior at a given time instance can be 

obtained through solving the recurrence equation analytically and 

symbolically by tools such as Maple or Mathmatica.  

 
Example 3.9: In Figure 3.9(a), block A1 represents an N-bit adder. In the nth 

step, one summand is taken from primary inputs, while the other is supplied 

from multiplication of a constant and the register storing the values of the 

previous n-1 additions. The register has been initially reset.  
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Figure 3.9: Add- and Multiply-Accumulate Loops  

  The MATS of this loop is obtained by considering the register input f[n], 

with the value given by the recurrence:  

MATS(f)[n]=a[n]+0.5*MATS(f)[n-1],     MATS(f)[0]=0 

Its solution is:  MATS(f)[n] = ∑
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  Then block B1 in Figure 3.9(b) represents an N*N-bit multiplier, and block 

B2 is a (2N+1)-bit adder creating a multiply-and-accumulate loop. The MATS 

results from the previously derived MAT transforms of its individual blocks. 

The inputs to the MAC loop at the time instance “i” are the N-bit binary 

vectors x[i] and y[i], and the output f[i] is a binary of size (2N+1). The ATS 

(all inputs are bits) of the multiplier B1 is defined for inputs at time instance 

“i”: 
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The recurrence solution of the loop transform is: 
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 Table 3.2 [70] clearly enumerates all definitions of transforms. 

Transform Definition 
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ATS AT transform ATS(f)[n] of a timed function f at a time instance n  
MATS MAT transform MATS(f)[n] of a timed function f at a time instance n 

Table 3.2: Definitions of the AT and its extensions 

 

 

3.4 Composition Subroutines 
After describing each design sub-block in terms of corresponding MAT, 

MATS or ATS, the overall AT can be constructed. Some of the approaches to 

the AT compositions focus on transferring ATs into decision diagrams [92]. 

However, due to their limitations, they are inadequate for many complex cases. 

In addition, factors such as running time and space are significant for these 

schemes. In this section we propose several subroutines to manage the 

complexity of constructing AT and its extensions. 

 
 

3.4.1 Composition of AT and MAT 
 Composition of MAT and AT blocks can get a combinational circuit 

transform. While word-level variables are substituted by their AT polynomials, 

the overall circuit transform comes from the replacements and the Boolean 

algebra law i
n
i xx =  ( 0≠n ). A block downstream must be represented by a 

MAT or an AT. Throughout the composition procedure, lots of intermediate 

terms would be generated and they should be combined for simplification, so 

running time and spaces are crucial factors that need attention. A best 

algorithm gets a tradeoff between them. 

The following observation is a key to facilitating the combination of 

polynomial terms that become isomorphic by applying Boolean algebra rules 
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to polynomials. A single, easy-to-calculate integer parameter referred to as an 

index of the term will be sufficient for finding isomorphic terms. We say that 

the index of the term is the integer encoded characteristic function of its 

variable indices. For instance, the index for the term 2
01

2
3 xxx  is computed 

as 23+21+20 = 11, and it is identical to the index of the term 0
3

13 xxx . Thus, 

the two terms are isomorphic terms and should be combined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Algorithm of MAT and AT composition 

 
Figure 3.10 elaborates the subroutine in detail. The algorithm loops all terms 

in the MAT polynomial and searches whether the terms comprise the 

word-level variable represented by the AT polynomial. If so, the variable is 

expanded to form new terms; if not, the MAT terms are stored in an 

intermediate polynomial directly; the procedures are described in Step 1 - 7. 

After the loop is finished, an intermediate polynomial is obtained and all terms’ 

indices are computed in Step 8. The algorithm then sorts terms with smaller 

Compose_AT_MAT (AT_poly, MAT_poly) 
{   
1.  for (p=0; p<MAT_poly.term_num; p++)  

 {  
2.      for (i=0; i<MAT_term.wordvarnum; i++) 

{  
3.          if (word_var[i] = AT_poly) 

{  
4.             inter_term = Substitute (MAT_term, AT_poly); 
5.             inter_term = Norm (inter_term); 
6.            Store (inter_term, inter_poly);   
            } 
        } 
7.       if (i = MAT_term.WordVarNum) 
           Store (MAT_term, inter_poly); 
    } 
8.   Set_index (inter_poly); 
9.   for (p=0; p<inter_poly.term-1; p++)  

{   
10.      Adjust_term_position( term[p], term[p+1]);  
11.     if (term[p].index = term[p+1].index) 
            term[p].coeff += term[p+1].coeff);     

 } 
12.   final_poly = inter_poly;  return final_poly; 
} 
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indices forward, and if two terms have identical indices, the algorithm adds 

their coefficients. Ultimately, the composition polynomial is obtained, as 

reflected by Step 9 - 12. If the algorithm sorts and combines terms after each 

expansion procedure, it might be costly, so an intermediate polynomial is 

essential to cut computation time. Therefore, the procedures of adjustment and 

combination occur after all expansions are accomplished. 
 

Example 3.10: Steps for composition of MAT and AT. Assume two modules 

with three primary inputs (x2, x1, x0). 

AT(f1) = 1+ 2x0 + x1 – 4x1x0 

MAT(f2) = 2 -3w0 - 5x1 + x2 – 6w0x2 + 4x2x1 

A main loop begins with the first MAT term, a constant “2”, until it reaches 

the last term “4x2x1”. Since the first term of MAT does not contain the 

word-level number w0, it is stored in an intermediate polynomial directly. The 

second term of MAT comprises the word-level variable, using w0=AT(f1) as a 

substitute for expansion in this term. After simplification, the expanded terms 

are stored in the intermediate polynomial. When the loop is finished, an 

intermediate AT polynomial is obtained: 

inter_poly = 2 - 3 - 6x0 - 9x1 +12x1x0 - 5x1 + x2 - 6x2 - 12x2x0 - 18x2x1 + 

24x2x1x0+ 4x2x1 

and the indices of the expanded terms are: 

(0, 0, 1, 2, 3, 2, 4, 4, 5, 6, 7, 6) 

Through position adjustment, the sequence sort orderly: 

(0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7) 

Now, the intermediate polynomial changes: 

inter_poly = 2 - 3 - 6x0 - 9x1 - 5x1 +12x1x0 + x2 - 6x2 - 12x2x0 - 18x2x1 + 4x2x1+ 

24x2x1x0 

Terms “2” and “-3”, “x2” and “-6x2”, “-18x2x1” and “4x2x1” are combined, 

and the overall AT polynomial is generated: 

AT(f) = - 1 - 6x0 + 14x1 + 12x1x0 - 5x2 - 12x2x0 - 14x2x1 + 24x2x1x0 

 
 
3.4.2 Composition of ATS and MATS 
  ATS and MATS have time tags, so the subroutine has a distinct step to 
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process the tags. The difference is denoted in Figure 3.11. The returning 

polynomial is an ATS polynomial or a MATS polynomial. 

  Step 4 adds time tags of the word-level variables in the MATS polynomial 

to the ATS polynomial and then expands the MATS term. If two identical 

bit-level variables in an expanded term have same time tags, they must be 

combined，for instance, a term of 5x0[n-2]x1[n-1]x1[n-1] is simplified as 

5x0[n-2]x1[n-1]. This procedure is described in Step 7. After the intermediate 

polynomial is generated, if two terms have identical indices, and 

corresponding variables in the two terms also have same time tags, the 

algorithm combines their coefficients. Step 13 - 15 elaborate the procedure. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Algorithm of MATS and ATS composition 

Compose_ATS_MATS (ATS_poly, MATS_poly) 
{   
1.  for (p=0; p<MAT_poly.term_num; p++) 

 {  
2.     for (i=0; i<MATS_term.wordvarnum; i++) 

{   
3.        if (word_var[i] = ATS_poly) 

{  
4.           Add_time(word_var[i].tag, ATS_poly); 
5.           inter_term=Substitute( MATS_term,ATS_Poly); 
6.       for (k=0; k<inter_term.varnum-1; k++) 

{  
7.              if ( var[k].index = var[k+1].index && var[k].tag = var[k+1].tag) 
                  Norm( inter_term);   

} 
8.           Store (inter_term, inter_poly);     

} 
} 

9.      if (i = MATS_term.wordvarnum) 
           Store (MATS_term, inter_poly);.    
    } 
10.  Set_index (inter_poly);    
11.  for (p=0; p<inter_poly.term_num-1; p++) 

{  
12.     Adjust_term_position(term[p], term[p+1]); 
13.     if (term[p].index = term[p+1].index ) 

{  
14.        if term[p].var[k].tag!=term[p+1].var[k].tag) 
             term[p].coeff += term[p+1].coeff);        

} 
} 

15. final_poly = inter_poly;  return final_poly; 
} 
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Example 3.11: Steps for composition of MATS and ATS.  

ATS(f1) = 1 + 2x0[n-1] + 3x1[n-1] 

MATS(f2) = w0 - w1[n-2] - 4w0[n-1]x0[n-2] 

  MATS includes two word-level variables w0 and w1, and w0 = ATS(f1), 

therefore the overall transform is a MATS polynomial. A loop begins with the 

first MATS term w0 and it contains the ATS output variable w0, so it is 

substituted by ATS(f1) and expanded terms are stored in an intermediate 

polynomial. The second term comprises another word-level variable so it does 

not need expansion. The last term has a word-level variable with a time tag 

and it is accumulated to ATS tags, since two x0 variables have same tags “2”, 

they are combined. 

inter_poly = 1 +2x0[n-1] + 3x1[n-1] - w1[n-2] - 4x0[n-2] - 8x0[n-2] - 

12x0[n-2]x1[n-2] 

  Through position adjustment and combination of isomorphic terms, the 

overall transform is generated: 

MATS(f) = 1- w1[n-2] + 2x0[n-1] -12x0[n-2] +3x1[n-1] - 12x0[n-2]x1[n-2] 

 
The other two subroutines, Composition of ATS and MAT, and Composition 

of AT and MATS, are similar to the mentioned subroutines. They are omitted 

here. 

 

 

3.5 Overall Composition Algorithm 
Each block represented by a corresponding transform is as a node defined 

by a data structure to describe its properties to facilitate composition of 

detached blocks. The suitable structure definition is: 

{   unsigned long type;    unsigned long type_index; 

  unsigned long level;   unsigned long in_word_num; 

  char *in_index;      char out_index;  } 

  The parameter type indicates which the transform type is corresponding to 

AT, ATS, MAT or MATS; type_index evaluates its index inside nodes which 

have same type with this node; level determines its depth in the constructed 
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diagram, and blocks with primary inputs are always set “0”; in_word_num 

indicates the number of input word-level variables, in_index stores indices of 

input word-level variables and out_index stores the index of its output 

word-level variable. Figure 3.12 outlines steps to compose modules to get an 

overall transform. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: The overall composition algorithm 

 
The most important issue confirming the parameter level of each node at the 

block-level netlist is dedicated in Step 2 - 6. The “level” parameter builds a 

hierarchy to designate a composition path. The composition procedure always 

begins from AT or ATS with primary inputs, and they are set to level “0”. 

While it goes forward according to the current level, and encounters a block 

which has an identical level with the current level, the algorithm invokes a 

1. for (i=0; i<node_num; i++) 
    Set_property (node[i]); 
2. for (i=0; i<node_num; i++) 
3. {  if (node[i].type = 2 or 3)     // MAT or MATS 
4.   {  for (j=0; j<node_num; j++) 
5.      {   if (node[j].out_word_index = node[i].in_word_index) 

 {  
6.             if (node[i].level<node[j].level+1)   

node[i].level=node[j].level+1;  
}  

}  
} 

} 
7. current_level = 1; 
8. for (i=0; i<node_num; i++) 

{   
9.   if (node[i].level = current_level) 

{  
10.     for (j=0; j<node_num; j++) 

 { 
11.        if (node[j].out_index = node[i].in_index) 

       {   
new_node = Subroutine(node[i], node[j]; 
Set_property ( new_node);  

 } 
       } 

} 
12.  current_level++; 

} 
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corresponding subroutine in terms of the block’s type, eventually the overall 

transform of the circuit is achieved, and please note this transform with 

primary inputs does not contain any intermediate variables, so  

the final transform is AT or ATS. 

 
Example 3.12: Consider a circuit consisting of four nodes with four primary 

input bits as Figure 3.13. Each word-level output is assigned to a different 

index. By the composition algorithm, we get its overall transform. 

AT

ATS

MAT

MATS

W0

X0

X3

X2

X1
W1

W1

W2
W3

 
Figure 3.13: A circuit with 4 modules              Figure 3.14: Node properties 

First, each node properties are labeled through step 1 - 6 in Figure 3.14. N 

represents NULL and the MATS node has the largest level “2”. 

ATS

MAT

MATS

(1,0,0,0,N,1)
(2,0,1,1,1,2)

(3,0,2,2,{1,2},3)

      ATS

ATS

MATS

(1,0,0,0,N,1)

(1,1,1,0,N,2)

(3,0,2,2,{1,2},3)

 
Figure 3.15: Composing the MAT and           Figure 3.16: Composing the MAT and 

the AT nodes                               the ATS nodes 

 A parameter current_level is set to “1” at the beginning, and the algorithm 

searches which nodes has a level the same as the current_level. It is the AT 

node in this case and its out word-level variable is one of the input variables in 

the MAT node. The algorithm calls Compose_MAT_AT function and since the 

MAT node has two different word-level variables, it generates a new MAT 

mode as in Figure 3.15. Next, the algorithm finds that the ATS output variable 

is another input variable of the MAT node. Therefore, it calls the subroutine 

Compose_MAT_ATS and gets a new ATS node in Figure 3.16.  

While no other nodes have same level, the parameter current_level is 

increased by 1, to become 2. The algorithm matches it with the MATS node, 

and then the subroutine of Compose_MATS_ATS can be invoked. 

(0,0,0,0,N,0)

AT

ATS
MAT MATS

(1,0,0,0,N,1)

(2,0,1,2,{0,1},2)

(3,0,2,2,{1,2},3)
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ATS
MATS

(1,1,1,0,N,2)

(3,0,2,1,2,3)

 
Figure 3.17: Composing the MATS and the ATS nodes 

Finally, an ATS polynomial is obtained through the composition of the new 

MATS node and the remaining ATS node.  

 
  From the example, one can notice that the algorithm follows a fixed order 

determined by the parameter “level” to compose block representations. Its 

logic is easy to follow, to implement simply for arbitrary topologies and even 

transforms. 

 

 

3.6 Experimental Results 

In this section, the composition algorithm in Figure 3.12 is verified by 

several benchmarks such as ALU, CSA and MAC. 
 
 
3.6.1 ALU Circuit Implementation 

Arithmetic Logic Unit (ALU) is a necessary block at microchips. It takes 

charge of data operations, including arithmetic, logic and relation operations, 

and stores results in memory. Figure 3.18 illustrates a typical ALU model. The 

AT of an adder is: 
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                    Figure 3.18: An ALU model 

 
Inputs of a multiplier consist of bit-level variables and a word-level variable 

which is from the output of the adder, so the multiplier has MAT form: 
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  Table 3.3: Results for the ALU transform 
 

Table 3.3 gives parameters of the adder and multiplier inputs and gets the  

number of their transform terms based on given input variables. It reveals the 

overall transform terms number after composition. 

 
 
3.6.2 CSA Circuit Implementation 

Carry-Select Adder (CSA) is a common implementation of adders, which 

computes alternative results in parallel and subsequently selects the correct 

results with single or multiple stage hierarchical techniques. The carry-select 

adder increases its area requirements for purpose of enhancing its speed 

performance. In carry-select adders both sum and carry bits are calculated for 

the two alternatives: input carry “0” and “1”. Once the carry-in is delivered, 

the correct computation is chosen by a multiplexer to generate a desired output. 

Therefore waiting for the carry-in to calculate the sum is avoidable, and the 

Adder 
Inputs 

Multiplier  
Inputs 

Adder Terms Multiplier 
Terms 

AT  
Terms

Time [s] 

12 7 12 7 84 0.875 
14 8 14 8 112 1.672 
16 9 16 9 144 3.834 
24 13 24 13 312 13.4 
32 17 32 17 544 34.3 
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sum is correctly generated as soon as the carry-in gets there. The obvious 

advantage is that CSA largely reduces time of computing the sum. Two adders 

share 8-bit inputs variables and have different input carry. The adder transform 

is: 

             carryyxfAT
N

i
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i
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The multiplexer transform is:  

                    MAT( f2 ) = (1-c)w0 + cw1 

Here c is a bit-level variable and (w0, w1) are word-level variables from 

outputs of the two adders. The concept is illustrated in Figure 3.19. 

 
x0~ x3

0
+ +

1

0 1

W0

c

Z

x0~ x3 y0~ y3y0~ y3

W1

 
Figure 3.19: 4-bit carry select adder 

 
Since the MUX transform has two word-level variables, an intermediate MAT 

polynomial is generated for convenience to incorporate one word-level 

variable. The seventh column of Table 3.4 indicates the space requirements. 

 

Table 3.4: Results of CSA transforms  

  
It is apparent that even when the number of input bits becomes large, the 

running time and space requirement remain modest. The program provides an 

Inputs Adder 
Terms 

MUX 
Terms 

Inter 
Terms 

AT Terms Time (s) Space (MB) 

24 25 3 49 25 0.1 0.02 
32 33 3 65 33 0.18 0.036 
40 41 3 81 41 0.26 0.058 
48 49 3 97 49 0.35 0.073 
56 57 3 113 57 0.44 0.092 
64 65 3 129 65 0.53 1.2 
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effective interface to process sparse coefficients which comprise lots of “0” 

values. Hence, the time is dominated by the number of non-zero AT terms, 

rather than being possibly exponential function of the number of input bits. We 

observe that additional speedup can be obtained by relying on the equivalence 

checking of the individual blocks, before the module is incorporated in larger 

netlist. As inclusion of AT of individual blocks is less costly than the 

construction by a netlist traversal of those blocks. 

 
 
3.6.3 MAC Transform 

The AT specification of a MAC circuit from Figure 3.20 can be determined 

by combining AT, MAT, and MATS components. The unit is built using shift 

registers, a multiplier, and an adder-register loop.  

The expression of a MAC is shown below: 
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The equation should be solved at a time instance n to obtain the MAC 

transform. For example, for n=8 and N=2, the ATS of the multiplier is:  
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Figure 3.20: Implementation of a MAC 
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The overall ATS is given by followed equation: 
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Table 3.5: Results of MAC transforms 

 
Table 3.5 displays results of the MAC implementation. Column 1 and 2 

denote its word-level variable size and time instance value. Even though the 

AT terms grows exponentially with word size, the computation time and space 

are satisfied. 

 
 
3.6.4 Implementation of Hilbert Transform 

Hilbert transform is a useful mathematical tool to describe the complex 

envelope of a real-valued carrier modulated signal. The definition of the 

Hilbert transform is as follows: 

 

 

where 
t

th
π
1)( = . 

  The Hilbert transform has a frequency response given by the Fourier 

Transform: 

)sgn(*)}({)( wiwhFwH −==   

where 

 

  

  The Hilbert transform has the effect of shifting the negative frequency 

Word Size Time Instance AT Terms Time(s) Space (MB) 
8 4 256 0.137 0.085 
8 8 512 0.465 0.14 
8 16 1024 1.28 0.26 
16 4 1024 1.459 0.28 
16 8 2048 3.251 0.46 
16 16 4096 6.874 0.91 
32 16 16384 25.43 3.82 
32 32 32768 55.8 7.46 
32 64 65536 132.9 15.8 
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components of )(ts  by +90 degrees and the positive components by -90 

degrees. Generally, FIR is a good realization of Hilbert Transform. Figure 3.21 

gives a FIR structure.  

 

+

Z Z ......X Z Z

w0

w1

wi

wN-2

wN-1

              

       Figure 3.21: A FIR model to realize Hilbert transform 

 
The timed register equation is: 

               ]1[][ −= nmnm inout  

The MAT of adder is: 
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where Xi  is a word-level input from each tap output. 

 
 
 
 
 
 
 
 
 
 

Table 3.6: Results of Hilbert transforms 

 
The FIR implementation has a structure that is easily represented by ATS. 

Furthermore, the task of equivalence checking or the verification of imprecise 

implementations can facilitate to verify whether the implementation fits the 

specification. 

 

Taps Word Size ATS Terms Time(s) Space(MB) 
32 16 512 0.21 0.56 
32 32 1024 0.39 1.3` 
32 64 2048 0.72 2.53 
64 16 1024 0.53 1.22 
64 32 2048 0.98 2.54 
64 64 4096 1.87 5.1 
128 16 2048 0.78 2.55 
128 32 4096 1.98 5.23 
128 64 8192 4.05 10.68 
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3.7 Conclusions  
  AT is the most important representation in our research, so in this chapter 

the spectral techniques and the basic definition of AT were introduced. 

Although AT can represent an arithmetic circuit compactly, it has limitations. 

The proposed three extensions for representing combinational and sequential 

circuits were outlined. Getting the circuit transform is significant for 

verification. Direct computation sometimes requires too much time for these 

processes. We proposed a topological method of composing the transforms of 

detached blocks to facilitate the calculation, so it is easy to obtain the overall 

transform for a complex circuit. The experiments proved its high efficiency. 
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Chapter 4  

Basic Algortihms 
 

 

 

 

Imprecise circuit specifications such as Taylor series complicate 

the process of design and verification. We adopt a spectral 

technique, Arithmetic Transform (AT), to process the imprecise 

circuits. In this chapter, three basic algorithms based on AT are 

described which convert polynomials and search for the maximum 

absolute value. These are fundamental algorithms for the 

verification and optimization in following chapters.  
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The fixed-point representation problem includes two facets, the precision 

problem and the range problem. Beginning in this chapter, we explore the 

precision problem. First, the typical imprecise representation is introduced.  

 

 

4.1 Taylor Series 
In mathematics, the Taylor series is a representation of a function as an 

infinite sum of terms calculated from the values of its derivatives at a single 

point. Let f(X) be a real and differentiable function corresponding to an 

algebraic expression. The variables are real numbers with usual field 

operations (+,*) over real numbers R.  

 
Definition 4.1: The function can be represented as Taylor series using a 

variable X and an initial constant X0. 

 

 

=                                                    

where )(),( ''' XfXf , etc, are first, second and higher derivatives of f(X), and 

Rn(X) is a Lagrange remainder. 

 
The error R is bounded, using point ξ  in the interval I, as:      

Rn(X) = 1
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Taylor series can be used to calculate the value of an entire function in every 

point, if the value of the function, and of all of its derivatives, are known at a 

single point. Uses of the Taylor series for entire functions include: 

 The partial sums (the Taylor polynomials) of the series can be used as 

approximations of the entire function. These approximations are good if 

sufficiently many terms are included. 

 The series representation simplifies many mathematical proofs. 

If this series converges for every x in the interval (a − r, a + r) and the sum 

is equal to f(x), then the function f(x) is analytic in the interval (a − r, a + r). If 
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this is true for any r then the function is an entire function. One normally uses 

estimation for the remainder term of Taylor's theorem to check whether the 

series converges towards f(x). A function is analytic iff it can be represented as 

a power series; the coefficients in that power series are then necessarily the 

ones given in the above Taylor series formula. 

Many transcendental arithmetic functions such as sin(X) and log(X) are 

realized through Taylor series. For example, Taylor series of sin(X) is: 
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Naturally, any hardware realization implements finite terms of Taylor series, 

which invariably would lead to an error. Imprecision further comes from a 

finite-word representation of real numbers. The precision analysis is therefore 

necessary to make use of the fixed-point number representation, which is 

attractive in balancing complexity, cost and energy consumption.  

Both of the above approximations cause the implementation imprecision 

error. The first case from truncation of Taylor terms is easy to evaluate. The 

remainder Rn(X) has an explicit expression and can be estimated without 

actually computing. The most common estimation is based on bounding the 

absolute value of the nth order derivative on the entire interval that contains the 

intermediate point ξ . While estimating the derivative on a given interval, it is 

not necessary to find the exact maximum of a function, for most cases trying 

to find some upper bound is not too rough. Therefore our emphasis 

concentrates on the error due to finite wordlength. Arithmetic Transform (AT) 

is used to investigate the imprecision. 

 

 

4.2 Algorithm for AT Conversion  

by Taylor Series 
Many arithmetic functions can be represented as (infinite) Taylor series, 

however their hardware realization inevitably leads to imprecision due to the 

restrictions regarding the finite number of terms to be implemented. Any 
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imprecision of the implementation causes a circuit to behave differently with 

the assumed specification. Nevertheless, known imprecision cannot be treated 

as unintended errors committed during the design process. Therefore, we 

accept the design to be fault free, if its behavior differs from specification 

within assumed error interval. We convert the Taylor series 

specification/design representation into a corresponding AT to evaluate the 

error upper bound of the implementation. This step is needed in order to 

integrate the verification of the imprecisely implemented blocks into the 

overall verification scheme proposed in this work, and based on the Arithmetic 

Transform data representation. 

AT is canonical, and will be used to directly represent approximation and 

imprecision errors coming from the finite Taylor series function 

representations. The correspondence between Taylor and AT representation is 

illustrated by the following lemma. 

 
Lemma 4.1: Consider a finite Taylor polynomial around X0=0 where the 

variable X will be represented as an m-bit unsigned fractional number. By 

denoting f0
(i)=f (i)(X0), we have: 
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The AT of f(X) is expanded from the Taylor polynomial as: 
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Proof: The transform of an m-bit unsigned fractional number X is 
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)1(2)( . Since AT is linear, that is, AT(f1+f2) = AT(f1)+AT(f2) and 
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Lemma 4.1 denotes that AT[f(X)] results from substituting expanded 

bit-level variables for the word-level variable X in f(X). By combining 

coefficients of isomorphic terms in the expanded polynomial, the AT 

representation in Def. 3.3 is obtained, thus leading to the conversion of Taylor 

expansions to AT.         

While Lemma 4.1 might seem to lead to a simple realization of the 

conversion between Taylor and AT, in reality the process could be time- and 

memory-consuming. To evaluate the imprecision error using AT, the 

specification should be translated into AT as well. In this section we describe 

the conversion of Taylor series into AT by expansion from Lemma 4.1. A 

straightforward method for generating AT[f(X)] replaces each monomial in 

Taylor series f(X) by its defining AT, followed by the consolidation of AT 

terms. Although the overall conversion procedure is conceptually simple, the 

expansion of the real-valued quantities from Taylor series into word-level AT 

terms can lead to a large intermediate polynomial, similar to what is known to 

happen in symbolic computing.   

By the rule that Boolean algebra xi
n equals xi, lots of expanded terms are 

identical and they should be combined to form a simplified AT polynomial. A 

straightforward method multiplies each factor recursively, and gets an 

intermediate polynomials, then simplifies it by using the Boolean rule, so the 

AT polynomial is achieved. Although the procedure is easy to comprehend, 

complexity in the calculation comes from large Taylor degrees and bits 

number which leads to a large size of the intermediate polynomial since it 

comprise a great many expanded terms.    

For example, with degree k=7 and input bits N=16, the number of 

intermediate terms increases to over 2000000. Consequently, storage and 

grouping of the same terms are major hurdles and result in low efficiency. We 
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now show how to perform conversion into AT polynomial that handles 

efficiently the intermediate data swell. 

 
 

4.2.1 Expansion Formula 
The key problem in converting Taylor series into an AT polynomial is the 

calculation of the corresponding AT terms k
N

i
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i x )2(
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above sum can be obtained as:  
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where m
kC  is defined as ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

m
k

C m
k . Based on Eqn. (4-2), we find that the 

intermediate coefficients of the isomorphic terms must be combined to 

simplify the obtained AT. The structure of equation will be explored to reveal 

the possibility to derive an efficient conversion algorithm. In particular, the 

following property is used for efficient grouping of common terms. 

 
Property 4.1: For AT raised to the exponent k, Eqn. (4-2), the sum of the 

individual variable’s exponent is k for each term. 

Proof: The calculation of the sum requires k-1 multiplication, where all 

bit-level variables in a single factor have a fixed component ‘1”. Through 

each multiplication procedure, the term’s exponent augments one and its 

beginning exponent is also one, so finally the total exponent is k-1+1= k. 

 
Property 4.2: If an AT term has p variables, the largest exponent which a 

variable can obtain is the Taylor degree k subtracting variables number p plus 

1, and the least exponent is 1 in all expanded isomorphic terms. 

Proof: If a variable appears in an AT term, that’s easy to know it has an 

exponent “1” at the lowest. In terms of Property 4.1, the summed exponent of 

the p variables is Taylor degree k, while other p-1 variables all have a least 

exponent “1”, the variable can get the largest exponent, etc., k-p+1. 

 
  Towards that goal, some definitions are in place. An integer coefficient 
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multiplying expanded terms is named “weight”. For example, in the expanded 

term 01
3
22560 xxx , “2560” is its weight. We refer to final terms after 

combination as “AT terms”. Next, msv and lsv represent most significant and 

least significant variables, respectively, in an AT term. For instance, for the AT 

term x2x1x0, x2 is msv and x0 is lsv; for the AT term x1x0, x1 is msv and x0 is lsv. 

The algorithm requires two computation steps: one gets forms of isomorphic 

terms, which is most important to determine performance; the other calculates 

the weight of each expanded term. 

 
 
4.2.2 Isomorphic AT Terms Combination 
  The following example describes the expanded terms.  

 
Example 4.1: Given three input bits (x2, x1, x0) and Taylor degree k=5, the 

expansion is: 
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  One can easily see that the degree of every bit-level variable amounts to k in 

each expanded term due to the property, etc., the summed degree of 01
3
2 xxx  

is 3+1+1=5. There are 2N-1=7 AT terms as (x0, x1, x1x0, x2, x2x0, x2x1, x2x1x0). 

The isomorphic terms for the AT term x2x1x0 in the expanded equation is 

obtained as:  
3 2 2
2 1 0 2 1 02560 ,1920 ,x x x x x x 2 2 2 2 2 3

2 1 0 2 1 0 2 1 0 2 1 0960 ,640 ,480 ,160x x x x x x x x x x x x  

  Now we show how to get all isomorphic terms for an arbitrary AT term such 

as x2x1x0 under a specific Taylor degree. A tuple (m,o,p) expresses variable 

degrees of x2, x1 and x0. At beginning msv x2 is set to the largest degree “3”, 

and degrees of x1 and x0 are “1” according to Property 4.1 and 4.2. The first 

degree representation is (3,1,1) and after that a next degree representation is 

computed. Beginning from lsv x0, preceding variables are searched until one 
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variable with the degree larger than “1” is discovered. In the case considered 

here, such a variable is x2. Therefore its degree decreases one and the degree of 

the succedent variable increases one. After this iteration the degree 

representation is changed to (2,2,1). The computation process continues until 

lsv x0 is set to the largest degree 3, and degrees of other two variables are both 

1. At this time, the degree representation turns into (1,1,3). Transformation of 

the degree sequence is:  

    (3,1,1) (2,2,1) (2,1,2) (1,3,1) (1,2,2) (1,1,3) 

  Here, the sequence determines the movement order of degree 

representations, and guarantees them not to be repeated or missed. Also it 

makes an easy implementation by a program.  

 
 
4.2.3 Weights of Expanded Terms 

Next we calculate terms’ weights. They are obtained by an input binary 

weight multiplying a combination constant. For example, in the case of an 

expanded term 0
2

1
2

2
2
3

2
5 )2()4( xxxCC , the input binary weight equals to 

64124 22 =∗∗ , and the combination constant is 302
3

2
5 =CC . Using variable indices 

simplifies the computational process of the input binary weight, so the 

problem reduces to getting the combination constant. The terms number of the 

combination constant is N-1 (result of the last Nth term is always 1, so it is 

neglected). According to Equation (3-3), the first term is p
kC , where k is the 

total degree (5 in considered case), and p is the degree of first variable x2 

(equals to 2 in the example). The second term is q
pkC −
, where q is the degree of 

second variable x1 (equals 2 in the example). The procedure continues until it 

reaches the last variable. Since each variable degree is known from the 

previous sequence in advance, it becomes easy to compute.  

 
 

4.2.4 Other Discussion 
Above we assume that the bits number is lower than the Taylor degree; if 

not, etc., N>k, the circumstance would be more complicated. For instance N=4 

and k=2,  
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There are no terms with 3 and 4 variables, so the algorithm only needs a 

little amendment — terms which have the variable number beyond the Taylor 

degree would be neglected. In this example, the neglected terms are x2x1x0, 

x3x2x1, x3x2x0, x3x1x0 and x3x2x1x0. 

  Integrating these two cases, Property 4.3 counts how many AT terms from 

Taylor conversion. 

 
Property 4.3: The number of AT terms is determined by the bits number N and 

the highest Taylor degree k. If N<k, the terms number equals 2N-1; if not, it is 

∑
=

k

g

g
NC

1
. Please note if the constant f(X0) is not zero in Taylor series, the 

number needs to add 1. 

 
  The situation of X0=0 in Taylor Series has been elaborated. X0 must not be 0 

at some functions such as log(X) and (1/X)n. Y replaces X0 to avoid confusion 

with the binary bit x0 to explore it.  

 
Example 4.2: Given three input bits and Taylor degree k=3, Y is not zero value, 

the expansion is:  
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Y is regarded as a variable and expanded in terms of Equation (4-2) 

although it is a constant in fact. x0
3, C3

1x0Y2 and -C3
2x0

2Y represent the same 

AT term x0 thus they should be combined. The difference in comparison with a 

true variable (not a constant) is that its exponent can be permitted to set “0” 

whereas an ordinary bit-level variable has a smallest exponent “1” in terms of 

Property 4.2. Therefore, the algorithm needs to be revised: if Y is not 0, let the 

exponent of Y change from 0 to the largest to get weights of expanded terms. 

For example, Y changes its degree from 0 to 2 in the AT term x0 and from 0 to 

1 in the term x2x1. 
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Figure 4.1: Algorithm of converting Taylor series to AT 
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4.2.5 Flow of Conversion Algorithm 
Equation (4-2) establishes the algorithm foundation. The algorithm first 

computes how many AT terms will be according to Property 4.3 and creates an 

AT linked list to allocate their variable indices, then commences a main loop. 

Within each loop procedure, the algorithm retrieves a Taylor degree from 

Taylor series and starts an inner loop to point the AT link list, which indicates 

the first AT term at beginning. Based on the retrieved Taylor degree, 

isomorphic forms and their weights for the indicated AT term are fast 

computed due to Property 4.1 and 4.2, the weights addition is a temporary 

coefficient for the AT term under the specific Taylor degree. While the pointer 

has moved to the last AT term, a new procedure of the main loop occurs to 

retrieve a next Taylor degree and the pointer resets to the first AT term. When 

the algorithm finishes the main loop, AT coefficients can be obtained 

eventually by summation of all corresponding temporary coefficients. Figure 

4.1 outlines the algorithm in detail. We observe that the algorithm does not 

generate any intermediate polynomials to store expanded terms explicitly, 

therefore, the algorithm avoids expending huge memory and running time. 

 

 

4.3 Processing Multivariate Polynomials 
The conversion of Taylor series to AT has been solved above. However, 

Taylor series only comprises one word-level variable – work in [84] gave 

examples for verification and the limitation was similar to Taylor series, that is, 

the benchmarks only consisted of one word-level variable. This case restricts 

further applications since many circuits are represented by polynomials 

included beyond one word-level variable or mixed with bit-level variables 

such as a multiplexer. Emergence of the fast more realistic conversion 

algorithm above makes it possible to conquer the problem for cases. In 

addition, a significant advantage is polynomial data structures are often 

represented by decision diagrams like BMDs and TEDs, which stand for bit- 

and word-level variables, respectively. These diagrams can be transferred to 
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ATs easily, therefore a bridge is generated between decision diagrams and the 

imprecision model to overcome their weakness to do component matching. 

The conversion algorithm mentioned above is unable to process the more 

difficult case. The algorithm is revised to deal with several word-level 

variables to overcome this limitation.  

For an AT term, we define its index, which is unique for each term. The 

index will facilitate the combination of isomorphic terms in an intermediate 

polynomial. 

 
Definition 4.2: Let the term consist of p bit-level literals bp-1 … b0. Let every 

bit br belong to the word-level variable Wr, that is mr-bit wide. Then, the term 

index of the AT term is defined as:  

                  term.index = ∑
−

=

+∑
−

=

1

0

)(
1

02
p

r

mb
Wr

q
qr

               (4-3)     

 
Example 4.3: Consider AT over three word-level variables X, Y and Z 

consisting of 3, 4 and 3 bits, respectively. Let X be the least significant 

variable indexed as ”0”, and Z be the most significant variables indexed as 

“2”. For the three bit-level literal term z2z1x0, the word-level variables to 

which the respective literals belong, are (W2, W1, W0) = (2, 2, 0). The index of 

the term is obtained as the sum of the three literal indices. First, the 

computation for x0  produces its index 20 =1, since b0 is 0 and W0  is 0. Then, 

z1 contributes 21+(3+4)=256, since b1  is 1 and W1  is 2, so m0+m1 = 3+4=7. 

Finally, z2 produces 22+(3+4) =512, because b2 is 2 and W2 is 2. Therefore, the 

term index for the AT term z2z1x0 is 512+256+1=769. 

 
It is evident that this case incurs more complexity. Figure 4.2 describes the 

algorithm to produce AT over multiple word-level variables from a real-valued 

polynomial. The algorithm first generates AT for each monomial, and then 

performs additions of the isomorphic intermediate monomials, leading to the 

final transform. The function Expand_Term expands a single word-level 

polynomial term into its AT. The subroutine Convert_Univar_AT 

introduced in Figure 4.1 obtains ATs for all word-level variables in the term.  

Then, the subroutine Multiply_AT multiplies the resulting univariate AT 
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into the multivariate AT. Note that Multiply_AT follows the conversion of a 

word-level variable that reduces the number of terms. Hence, the size of 

resulting AT can be kept under control by avoiding storing expanded terms. In 

each iteration, the algorithm adjusts term indices and combines isomorphic 

terms. Each AT term input to the Multiply_AT is assigned a unique index 

from Definition 4.2, which guarantees linear ordering among terms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Algorithm for converting a multivariate polynomial  

 
The function Add_AT adds two AT polynomials in a canonical way. In this 

procedure, the isomorphic term combination and the term ordering by index 

Convert_Multivar_AT(f, term_num, bit_num ) 
{  for (i=0; i< term_num; i++) 

{  temp_AT = Expand _Term (bit_num); 
sum_AT = Add_AT (sum_AT, temp_AT);   }  

   final_AT = sum_AT;     return final_AT;  
} 
Expand _Term (bit_num) 
{  for (p=0; p<word_var_num; p++) 

{  AT_poly[p]=Convert_Univar_AT (f, term_num, bit_num);  
product_AT= Multiply_AT(AT_poly[p], AT_poly[p-1]); } 

  Set_index (product_AT);   return product_AT;  
} 
Add_AT (augend_AT, addend_AT) 
{   While (!augend_AT.tail && !addend_AT.tail( ) ) 
    {  if ( augend_AT.term.index < addend_AT.term.index) 

     Copy_AT_term (sum_AT.term, augend_AT.term);  
else if (augend_AT.term.index> addend_AT.term.index ) 

         Copy_AT_term (sum_AT.term, addend_AT.term); 
else {  Copy_AT_term(sum_AT.term, augend_AT.term); 

        sum_AT.term.coeff = augend_AT.term.coeff + addend_AT.term.coeff; } 
    } 
   Delete (augend_AT, addend_AT);  return sum_AT;  } 
} 
Multiply_AT (multiplicand_AT, multiplicator_AT) 
{  while (!multiplicand_AT.tail) 

{  while (!multiplicator_AT.tail) 
  {  product_AT.term.coeff = multiplicand_AT.term.coeff 

                           * multiplicator_AT.term.coeff; 
     for (p=0; p<cand_bit_num; p++) 
     product_index[p] = cand_index[p]; 
  for (p=cand_bit_num; p<product_bit_num; p++) 
            product_index[p]=cator_index[p-cand_bit_num]; } 

} 
return product_AT; } 
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occur concurrently. When comparing indices of terms, the AT term with a 

smaller index is moved forward in the ordered list. If two terms have identical 

indices, they are isomorphic, and hence their coefficients are accumulated.  

 
Example 4.4: Consider a polynomial that has two word-level variables 

consisting of (2, 3) bits.   

F(X, Y) = 2X3Y +X2Y2  

This polynomial has two terms. The algorithm loops them and expands them 

to two AT polynomials. In the first term 2X3Y, expansions of X3 and Y are: 

AT(X3)= (2x1+x0)3=x0 +8x1+18x1x0          AT(Y)= 4y2+2y1+y0 

This term transform is multiplied by the two sub-AT polynomials: 

AT(2X3Y)=2y0x0+16y0x1+36y0x1x0+4y1x0+32y1x1+72y1x1x0+8y2x0+64y2x1 

+ 144y2x1x0 

The individual AT term index is:   (5, 6, 7, 9, 10, 11, 17, 18, 19)  

In the second term, expansions of X2 and Y2 are: 

AT(X2) = x0+4x1+4x1x0       AT(Y2) = y0+4y1+4y1y0+16y2+8y2y0+16y2y1 

Their multiplication is the transform of X2Y2:        

AT(X2Y2)= y0x0+4y0x1+4y0x1x0+4y1x0+16y1x1+16y1x1x0 +4y1y0x0      

+16y1y0x1+16y1y0x1x0+16y2x0 +64y2x1 +64y2x1x0 

+8y2y0x0+32y2y0x1+32y2y0x1x0 +16y2y1x0 +64y2y1x1+64y2y1x1x0 

Its index is:  (5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27 ) 

  The addition subroutine is invoked to compute the transform of 2X3Y + X2Y2 

in terms of their indices: 

AT(2X3Y+X2Y2)= 3y0x0 +20y0x1 +40y0x1x0 +8y1x0 +48y1x1 +88y1x1x0 +16y1y0x1 

+16y1y0x1x0 +24y2x0 +128y2x1 +208y2x1x0  +8y2y0x0 

+32y2y0x1 +32y2y0x1x0 +16y2y1x0 +64y2y1x1 +64y2y1x1x0 

 
  Because polynomial multiplications described as the subroutine 

Multiply_AT take place after conversion of a word-level variable, the result 

AT size can be controlled and avoid storing expanded terms, also in each loop 

procedure the algorithm adjusts terms position and combines isomorphic terms, 

and releases memory in time, so it disperses computation time then reduces 

total complexity. Therefore, the algorithm keeps good performance even 

though there are a number of word-level variables.  
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4.4 Imprecision Searching Algorithm 
Saving costs and speeding up a design are so important to engineers, 

whenever available, they benefit from reusing a previously designed module. 

However, these modules usually do not match specifications so they are only 

approximations. If discrepancy (imprecision) is within an acceptable boundary, 

it could be chosen. The approximations come from various aspects and this 

paper concentrates on restrict input space and finite realization of Taylor series. 

Therefore, a good solution to find difference between specifications and 

implementations is significant. 

  A static method for range and precision analysis was used in [43], where 

circuits described by Verilog were assessed for FPGA implementations. This 

solution did not provide a uniform platform and it depended on tools of 

simulation annealing which are often inefficient. In this paper we explore the 

suitability of Arithmetic Transform in the representation of the imprecise 

blocks and make up their deficiency. 

 
 
4.4.1. Basic Definitions of the Algorithm 
  Related definitions are introduced to describe the imprecision searching 

algorithm comprehensibly. 

A straightforward approach tries every input value to compute its error AT. 

The procedure requires 2N calculation because of total 2N possible inputs. 

Experiments indicate that such an approach would require an infeasible 

amount of time, and therefore a fast algorithm is necessary. In this work we 

propose such an improved algorithm.  

For each input variable xi, we say that Si is a sum of coefficients multiplying 

terms with xi. The most positive variable (mpv) is the variable xj where the sum 

Sj is largest. An upper bound ubcoef of AT polynomial is by summing all 

coefficients that are positive and the coefficient c00…00 that contributes an 

offset for all input assignments. Such a bound is calculated as: 

∑
>

=
0

...
21

c
iiicoef n

cccub + c00…00 

The algorithm checks whether there are the input assignments to be made 
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without the search to avoid calling the main search loop unnecessarily. Such a 

preprocessing step is used at each call of the search routine.  

a) Assign xi =1 if coefficients of the AT monomials with xi present are all 

positive (or zero). 

b) Assign xi =0 if coefficients of the AT monomials with xi present are all 

negative (or zero). 

 
 
4.4.2. Branch-and-Bound Searching Algorithm 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Searching the maximum absolute value in AT 

 
The algorithm first removes the constant in the polynomial if it exists, and 

Search_max (AT_poly) 
{ const = Remove_constant(AT_poly); 

var_index = Mpv(AT_poly);      
  rev_AT_poly = Reverse(AT_poly);      rev_var_index = Mpv(rev_AT_poly); 
  value_0 = Decompose(AT_poly, var_index); 

value_1 = Decompose(AT_poly, rev_var_index); 
  value_2 = Decompose(rev_AT_poly, var_index); 

value_3 = Decompose(rev_AT_poly, rev_var_index);  
max_value = Max(value_0, value_1);  |min_value| = Max(value_2, value_3); 

   mismatch = Max ( |max_value+const|, |min_value+const|; } 
Decompose(AT_poly, mpv) 
{  for (i=0; i<var_num; i++) 

{  flag = Preprocess(AT_poly, mpv[i]); 
   if (flag = 1)   

{  11 )( ==
ixfATAT  , ub_1 = Ub(AT1); 

         00 )( ==
ixfATAT ,  ub_0 = Ub(AT0); 

     if (ub_1> ub_0)   1ATAT = ;  
     else   0ATAT = ;  
 }   
 Delete_var (mpv[i]);    var_num--; 
 for (i=0; i<var_num; i++) 
 {  flag = Preprocess(AT_poly, mpv[i]); 
    if (flag = 0) 
      Delete_var (mpv[i]);   var_num--; 
 } 

   } 
} 
Preprocess (AT_poly, xi) 
{  if (all 

ixc > 0)  val = 1;   

  else if (all 
ixc < 0)  val = 0;  else  return 1; 

  valxi
fATAT == )( ;   return 0; 

} 
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gets the mpv sequence as the order of decomposition variables, and then the 

reversed AT polynomial and the reversed mpv sequence are obtained easily.  

A subroutine Decompose is invoked to compute the maximum value and 

the minimum value due to the two AT polynomials and two sequences. The 

preprocessing step deals with a variable to explore whether it can be evaluated 

directly by probing into its coefficients; if not, the algorithm chooses a path 

which has a larger upper bound. Figure 4.3 describes the branch searching 

algorithm in detail. 

 
Example 4.5: Consider the following AT polynomial: 

AT(f) = -2 +x0 -3x1x0 +3x2 + 3x2x1 - 4x3x1 -2x3x2x0 +5x3x2x1 

  Figure 4.4 illustrates all the steps taken to compute the maximum absolute 

value. First remove the constant and get a new AT polynomial: 

AT(f)’ = x0 - 3x1x0 + 3x2 + 3x2x1 - 4x3x1 - 2x3x2x0 + 5x3x2x1 

S0=-4, S1=1, S2=9, S3=-1, so the mpv sequence is (x2, x1, x3, x0). The reversed 

polynomial is:  AT(f)’’ = -x0 + 3x1x0 - 3x2 - 3x2x1 + 4x3x1 + 2x3x2x0 - 5x3x2x1 

The reversed mpv sequence is (x0, x3, x1, x2).  

  First AT(f)’ is searched by the order of the mpv sequence, due to the ubcoef 

value, x2 and x1 are set to 1, here the decomposed polynomial is 3- x0 + 4x1- 

3x1x0, then the algorithm finds coefficients of all terms with variable x0 present 

are negative, so x0 is preprocessed to 0; and it continues to preprocess x3 = 1, 

finally a constant value_0 = 7 is obtained; the procedure is displayed by a) in 

Figure 4.4. Using the reversed mpv sequence upon AT(f)’, the obtained 

constant is value_1 = 3, showed by b), so the maximum value of the AT 

polynomial without the constant “-2” is:  

max_value = max (value_0, value_1) = 7. 

  Decompose AT(f)’’ by the mpv and the reversed mpv sequences respectively, 

showed by c) and d), value_2 = value_3 = 6, so the minimum value of the AT 

polynomial without the constant “-2” is: 

           min_value =max (value_0, value_1)* -1 = -6. 

Eventually the maximum mismatch is computed as: 

8)26,27max()2min_,2max_max( =−−−=−− valuevalue
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x1
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0
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Preprocess x3=1
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a)                                    

x3

1-3x1+3x2+3x2x1

-4x3x1-2x3x2+5x3x2x1
ub=12

ub=10

x0

0 1

3

ub=11

Preprocess x2=1
0

3+3x1-2x3x0
ub=6

2+x1
Preprocess x1=1

3x2+3x2x1

-4x3x1+5x3x2x1

1-7x1+x2+8x2x1

 
 

                     b) 

   

-3-x0-3x1
+3x1x0+2x3x0-x3x1

ub=5

x2

0

6

ub=7

Preprocess x1=1

-x0+3x1x0+4x3x1

Preprocess x3=1
-x0+4x1+3x1x0

4+2x0
Preprocess x0=1

1

 
c)

x3

-1+3x1-3x2-3x2x1

+4x3x1+2x3x2-5x3x2x1
ub=8

ub=6

x0

0 1

6

ub=4

Preprocess x2=0
0

-1+3x1-3x2-3x2x1
ub=3

-1+7x1
Preprocess x1=1

-3x2-3x2x1

+4x3x1-5x3x2x1

-1+7x1-x2-8x2x1

1

 
                    d) 

   Figure 4.4: Performing the imprecision algorithm in Example 4.5 
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   Compared to the searching algorithm in [70] and [85], the predominance of 

the algorithm improvement stands to reason. It recursively seeks the variables 

which can be preprocessed in a decomposition procedure. If successful, 

complexity is minified much since the computation avoids decomposing the 

variable and directly sets its value, and then the residual polynomial is 

simplified. For example, only one node, x2, is searched to determine its value 

in c), and other three variables are preprocessed, therefore time and space 

requirements are diminished.    

 

 

            4.5 Experimental Results 
The conversion algorithm is a basic algorithm for verification and 

optimization of imprecise circuits because of its huge impact on performance. 

Here we mainly aim the benchmarks of Taylor series. All experiments are 

done on an Intel Celeron 2.4GHz CPU with 1G main memory under Linux.  

 
X0 = 0 

Function Taylor  
degree 

Bits AT terms 
 

Expanded  
terms 

Run 
time (s) 

Memory
(MB) 

sin(x) 7 31 3572223 10625591 586.593 156 
sin(x) 9 26 5658536 55962920 179.171 247 
sin(x) 11 24 7036529 316283264 921.218 293 
sin(x) 13 20 988115 409609664 1167.58  59 
exp(x) 10 24 4540386 131128139 371.266 239 
exp(x) 12 22 3096514 548354039 1633.36 182 
exp(x) 14 18 261156 471435599 1497.81  3 
exp(x) 14 20 1026876 1391975639 4222.25 59 
exp(x)*sin(x) 10 24 4540385 123221864 314.703 254 
exp(x)*sin(x) 13 20 988115 429816984 1445.19 88 
exp(x)*sin(x) 15 16 65534 282662144 985.703 18 
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X0 = 0.5 

Function Taylor 
degree 

Bits 
 

AT terms 
 

Expanded  
terms 

Run  
time (s) 

Memory 
(MB) 

sin(x) 7 31 3572224  13002888 873.437 163 
sin(x) 9 24 2579130  41317895 158.125 159 
sin(x) 11 20  784626  95629666 269.093  43 
sin(x) 13 20  988116 668795865 2286.89  49 
exp(x) 10 24 4540386 183578305 509.89 156 
exp(x)*sin(x) 10 24 4540386 173039772 625.171 150 

Table 4.1: Performance of Taylor series conversion 

 
Table 4.1 shows results of the algorithm described by Figure 4.1. The two 

sub-tables correspond to “0” and “0.5” values of X0 respectively. Column 2 

and 3 list the highest degree and input bits. Column 4 and 5 show final AT 

terms and expanded isomorphic terms.    

From the table, the conversion algorithm is feasible even though Taylor 

degree and input variables are very large. The performance of time and space 

are satisfied, and the AT terms only occupy around 5% - 20% of isomorphic 

terms. So combining these terms to form AT terms will spend huge processing 

time, but the algorithm can handle it easily. During experiments, we find this 

algorithm has been always the fastest algorithm. 

 

 

4.6 Conclusions 
 Taylor series is a typical imprecise representation with function 

approximation and finite wordlengths, so it is our main research object that we 

adopt AT. In order to utilize AT technique, we propose several algorithms 

which can convert Taylor series to AT and search for its maximum absolute 

value. These algorithms can handle not only Taylor series but also real-valued 

polynomials with multiple variables, and are fundamental to the future 

verification and optimization, so they can cover a majority of applications. 
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Chapter 5  

Analysis of Precision Parameters 
 
 

 

 

Arithmetic circuits such as these realizing Taylor series-based 

algorithms incorporate many generalizations leading to 

imprecision. In order to design and verify imprecise circuits, the 

first step is to analyze these factors carefully. Traditional methods 

have difficulty to represent the factors mathematically. In this 

chapter we describe the imprecise arithmetic computations, and 

then utilize AT to analyze imprecise parameters in a polynomial, 

and estimate how much error is caused by each parameter.  
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5.1 Imprecise Arithmetic Computations 
Major causes of imprecision in an implementation come from two aspects. 

One is the approximations of the specifications in hardware realization and the 

other is using finite wordlength to represent an infinite length of specification 

data. For example, real fractional numbers are usually realized by finite size 

registers which are regarded as fixed-point data representations. Radecka and 

Zilic [70] introduced the fundamental idea based on AT representations. 

 
Definition 5.1: The error is a numerical difference between the results 

required by the specification and the quantity obtained in the implementation. 

The unit in the last place (ULP) used to evaluate the error is the least 

significant bit for binary encoding of a given number.   

 
  The function approximation is an inexact implementation regardless of the 

precision while the precision is the total bit number used to represent the 

fixed-point circuit. Although there might be some other causes of imprecision 

in ASIC implementations, the above two reasons are the focal points in this 

work.  

 
 
5.1.1 Finite Wordlength  
  Using finite precision to represent infinite length real numbers is performed 

by truncation and rounding. Output bit-width is always restricted so it is 

unavoidable to cause imprecision. The following example explores data 

truncation and rounding. 

 
Example 5.1: A circuit has four N-bit unsigned fractional inputs: “a”, “b”, “c” 

and “d” to perform the operation ab+cd. The output result has 2N-1 bits : 

     

 

  If the result of the implementation is restricted to N most significant bits of 

the original expression, two cases would be considered:  

a) Rounding to the nearest value causes the error bounded to half of the ULP, 

i.e., 2-(N+1). 
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b) When truncating to “N” bits, the error is bounded by one ULP, which is 

2-N. 

 
Explicit representation of output values is required for the precision 

verification because the precision on a per-bit basis is not reasonable. A simple 

example can describe the situation that even though all output bits are 

incorrect, the imprecision is arbitrarily small. For instance, if the exact N-bit 

result is 100….0, and the approximation is 011…1, then all bits are incorrect; 

the error is one ULP, however, which for large N becomes negligible. 

 
 

5.1.2 Arithmetic Transforms and Imprecise Datapaths 
  AT has a property of linearity which can be directly applicable to 

verification of imprecise circuits. The transform of an imprecise circuit, i.e, 

IAT(f), can be represented as a linear superposition of the specified AT form 

SpecAT(f) and the error e. Generally, error accumulation makes that various 

errors throughout the circuit can be observed at outputs and expressed by the 

error e and fault-free AT representation of SpecAT(f): 

                   SpecAT(f) = IAT(f) + ErrAT(f)                (5-1)    

The error AT polynomial (ErrAT) is determined by a series of imprecision 

sources, which may be caused by function approximations, or size restrictions 

of intermediate data of an implementation. 

 
Definition 5.2: “The AT error polynomial (ErrAT) is a difference polynomial 

between Arithmetic Transforms of specification (SpecAT) and its 

corresponding implementation (IAT)” [70]. 

 
Example 5.2: A circuit calculates the product a*b with 8-bit for each variable 

and disregards all partial products needed for obtaining 8 least significant 

bits. This approximation will save half the circuit area, but causing the AT 

error: 

ErrAT(f) = SpecAT(a*b) – IAT(a*b) = i
i

i

i

j
ji
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  After summation, we obtain that the worst case error is bounded by  

(6*28+2)/211, which is O(2-6). 

 

 Since AT has the linear property, if a module within a circuit has an error, 

this error can be peeled off from the transform of the module, the following 

equation describes it: 

                         AT(f+e) = AT(f) + AT(e)            (5-2)   

  The arithmetic transform of the erroneous module equals the addition of the 

transform of the good module and the error transform. The property makes it 

easy to analyze the effect caused by errors.  

Once the overall AT is constructed for an imprecise circuit, the maximum 

allowable value of an error polynomial (ErrAT) can be determined. When an 

input/output size of an implementation differs from that of specification, the 

precision of the implementation, expressed in terms of acceptable error bounds 

is a required parameter. Only then we can state that the implementation (IAT) is 

in agreement with the specification (SpecAT) within a precision error bound ε. 

In consequence, the maximum absolute value of ErrAT must accord with the 

inequality [69]: 

ε≤−= IATSpecATErrAT max)max(                 (5-3)        

  The maximum absolute error can be calculated by the branch-and-bound 

searching algorithm introduced in Chapter 4. If SpecAT is imprecise itself and 

represents a function f up to an absolute precision of δ, the following 

inequality [69] holds:  

δε +≤−+−≤

−

|))(()(|max)()(max
|))(()(|max

XfATXSpecATXSpecATXIAT
XfATXIAT      (5-4)  

While the value δ is known, Eqn. 5-4 can be used to verify the imprecision 

between SpecAT and IAT.  
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     5.2 Function Approximation Error 
Determining the set of parameters needed to achieve a circuit of the allowed 

imprecision is a challenge that is in part due to the difficulties with the 

precision analysis. The traditional method of using simulations over various 

values of the parameters is costly and not guaranteed to produce the optimal 

result. We next analyze the arithmetic precision parameters due to all 

approximations and finite bit widths in the implementations of real-valued 

specifications such as Taylor series in Figure 5.1. In summing the imprecision, 

we will repeatedly use the triangle inequality.  

 

 

Figure 5.1: Imprecision due to the combined sources 

 
In implementing real-valued functions by arithmetic circuits, an algorithm 

might be employed to approximate, rather than exactly implement the function. 

For instance, when using n Taylor terms to represent a transcendental function, 

the approximation error is provably bounded by a remainder Rn(X), Eqn. (4-1). 

Hence, for a function given in interval I, this truncation error bound et is: 

                     e t = max
X ∈ I

| R n ( X ) |                      (5-5)   

 
Example 5.3: Consider the following function f(X) = cos(X). In interval [-1, 1], 

its Taylor approximation around X0=0 with 3 terms is:  

42

24
1

2
11)(cos XXXTaylor +−= , 

Now we can estimate its error bound:  

007.0|1sin
120

1||sin
120

1|max|)(|max 5
5 =≤∗== XXRet ξ    

 
Given the desired error bound E, it is easy to find the appropriate number of 

Taylor terms n as a largest integer for et < E. Such a finite truncation of Taylor 

series will have the least number of terms that result in an acceptable 

imprecision over the given interval I. Please note from Eqn. (4-1) that instead 
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of finding the exact maximum of the (n+1)st derivative on I, using an upper 

bound might suffice. 

 

 

5.3 Input Bit-width and Quantization Error  
In fixed-point implementations, a bit vector represents the real-valued input 

variable X, so the input quantization due to finite bit-width affects the final 

result. An insufficiently precise result can be caused by using too few bits, and 

we hence try to find an appropriate bit-width resulting in the acceptable 

overall error. 

 
 

5.3.1 Effect of Finite Input Bit-width – Interval 

Analysis 
  An argument of a real-valued function is potentially infinitely precise. Such 

a theoretical value Xth is instead replaced by the quantized input value X in 

function calculation. The classical interval analysis [26]-[31] is expressed in 

terms of AT as follows. Let FB represent Fractional Bits. The input range is 

divided into uniform 2FB intervals, so the difference between two consecutive 

intervals is 2-FB. The point representing Xth is between two quantized values, as 

in Figure 5.2. The relationship between Xth and X is then: 

...... .....

0 11-2 +FB

thX  X

2-FB
 

Figure 5.2: Value description of Xth and X 
)1()1()1( 222 +−+−+− +≤≤−⇒≤− FB

th
FBFB

th XXXXX        (5-6)      
Hence, by replacing Xth by m fractional bits of X in accordance with Eqn. 

(5-6), we get the expressions for the theoretical fth and quantized f function 

values (given X0 = 0):                  
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∑ ∑
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where Ci is a Taylor coefficient that equals to 
!

)( 0

i
Xf i

. 

We represent fth and f by AT polynomials AT(fth) and AT(f) to efficiently 

search over binary inputs, obtained from Eqn. (5-7) and (5-8), respectively. The 

conversion algorithm introduced in Figure 4.1 is designed to deal efficiently 

with the intermediate terms swell when the number of Taylor series terms and 

the bit-widths increase. The error polynomial AT(fei) is then a difference 

between AT(fth) and AT(f): 
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(5-9) 

This AT formulation of the interval analysis assumptions allows us to obtain a 

bound ei on the effects of input quantization of half an ulp to the output 

precision. The maximum absolute value of AT(fei) in Eqn. (5-9) gives the error 

bound ei. While a straightforward approach requires 2m polynomial evaluations, 

ei can be obtained by the efficient branch-and-bound searching algorithm 

tuned for this application.  

The interval method is represented by the Eqn. (5-9) which considers the 

worst case, and applies the algorithms for Taylor conversion and imprecision 

searching. Figure 5.3 shows the AT usage of interval analysis to estimate error 

of input quantization.  
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Figure 5.3: Computation of input quantization error 

 
 

5.3.2 Tight-bound Interval Scheme 
  The interval analysis unavoidably overestimates the error bound and gets a 

coarse result. We now propose a tight-bound interval scheme, which employs a 

more precise specification with larger input bit-width, to obtain tighter error 

bounds. 

For example, assume that m=8 bits is used to represent fractional number. 

Let f and fth represent the quantized function and the theoretical function, 

respectively. For interval analysis:  

)2(|| 8−Θ==− Ihpff ε  

We improve precision analysis by the tight-bound method. For this, we use 

another, finer quantized function representation with, say t=17 bits, labeled by 

fhp and get: 

hphpff ε=− ||  

The error in the higher-precision specification alone is estimated by the 

interval analysis as:  

)2(|| 17
_

−Θ=≤− TBIthhp ff ε  

  From the triangle inequality, it follows that: 

TBIhpthhphpth ffffff _|||||| εε +=−+−≤−      (5-10)  

In other words, the tight bound analysis uses the exact knowledge of the 
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mismatch to a more precise specification, to which a significantly smaller 

residual error by interval analysis is added, which allows us to get a tighter 

error bound.  

  Please note that the second, larger bit-width function is used here only for 

analysis purposes, and will not increase the cost. Actually, due to the tighter 

bounds, the tight-bound interval analysis can lead to a sufficiently precise 

implementation with less bits used in the implementation. For example, 

instead of m=8, it might suffice to have only bit-width of 7, as the tight-bound 

comparison with the 17-bit implementation will arrive to the imprecision not 

worse to that with m=8 bits, obtained by the straightforward interval analysis. 

The scheme for tight-bound interval based on AT technique combines Figure 

5.3 and the inequality (5-10) to obtain the suitable bit-width.  

 

 

5.4 Quantization of Coefficients and Output  
The finite-word representation of real-valued constants such as coefficients 

of Taylor expansions causes coefficient quantization. If q stands for the 

coefficient bit-width, then the value of the theoretical (infinite precision) 

coefficient Cth and its word-level representation C are related as follows:    
)1()1( 22 +−+− +≤≤− q

th
q CCC .  

Using this inequality to replace Cth, the expression of fth becomes:       
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The error function fec is defined as the difference between fth and f, while the 

error polynomial ATec is its transform: 
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e xATAT

c          (5-12)  

The tight-bound analysis can also be applied to explore coefficient 

bit-widths. The maximum error ec is again computed by the branch searching 

algorithm combined with the tight-bound scheme over this AT polynomial.  

Finally, if the output bit-width is o, the bound on the output quantization 
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error eo is 2-O -1. With et, ei and ec determined, the upper bound of eo is eo =2-O -1 

=E- et - ei - ec. Hence, o is given as: o = -log2 (E- et - ei - ec) + 1. Since eo can be 

obtained easily and the output bit-width does not affect on internal hardware 

structure, it is omitted from further considerations below.  

 

 

                       5.5 Conclusions 
Imprecise circuits generally contain many imprecise factors leading to error 

generation. Here we focus to analyze Taylor series which has four imprecise 

factors as function approximation, quantization of input bit-width, coefficient 

bit-width and output bit-width. We use AT and construct mathematical 

expressions for each factor to facilitate analysis. These expressions are 

fundamental to future verification and optimization. 
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Chapter 6  

Algorithms for Precision  
Verification and Optimization  

 
 

 

 

   In this chapter, we propose an algorithm to compare two similar, 

but not exact components. A verification algorithm is then 

introduced to check whether the implementation satisfies the error 

bound. A sequential method is designed to find a feasible 

implementation to satisfy the error bound. In order to single out the 

best implementations under different constraints, such as area, 

delay, and fixed bit-width, an optimization algorithm is described. 

Finally, we integrate these algorithms into a package to handle 

imprecise circuits. 
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functions into two AT polynomials, while the error AT is obtained by 

subtracting the two polynomials. Then the imprecision is obtained by the 

searching algorithm introduced in Chapter 4.  

 

Interface File

Implemented
Taylor Series 1

Implemented
Taylor Series 2

Parser

Implemented
AT Polynomial 1

Implemented
AT Polynomial 2

Conversion
 Algorithm

Error AT Polynomial

Bits 1 Bits 2

Conversion
 Algorithm

Branch
Searching
Algorithnm

Maximum Mismatch

Subtraction

            
Figure 6.2: Algorithm of computing imprecision between  

two implementations of Taylor series 

 

 

6.2 Verification of Implementations 
Given an implementation, the imprecision between the specification and the 

implementation determines whether the implementation can fit the 

specification, so it becomes necessary to calculate the imprecision coming 

from the four sources described in Figure 5.1. The problem description is as 

follows. 
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The given implementation includes the number of Taylor terms, 

quantization bits of the inputs, coefficients and output. Calculating the 

imprecision can be achieved by adding the values of et, ei, ec and eo. If the 

imprecision is beyond the error bound, the implementation does not satisfy the 

specification. It is helpful to evaluate the validity of the implementation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.3: Algorithm of verifying the implementation 

 
Figure 6.3 describes an algorithm that checks an implementation by 

computing each type of error. The result indicates whether the implementation 

is suitable to the specification through the confirmation of a relationship 

between the imprecision and the given error bound. The algorithm 

concurrently investigates function approximation and bit-widths. It handles not 

only Taylor series but also any real-valued specifications without 

approximations, and so has wide applications. 

Problem 6.2: Verifying an implementation 

Inputs:   f(X), E, n, m , q, o 

Judgment:  et + ei + ec + eo < E 

Outputs:  Satisfied? (Yes or No) 

Check_Imp (f, E, n, m , q, o) 
1. {  if (et ≥ E)  return false; 
2.   ei = Get_input_error (f, n, m); 
3.   if (et + ei ≥ E)  return false; 
4.   ec = Get_coeff_error (f, n, m, q); 
5.   if (et + ei + ec ≥ E)  return false; 
6.   eo = 2-O-1; 
7.   if (et + ei + ec + eo ≥ E)  return false; 

else  return true; 
} 

Get_input_error (f, n, m) 
{  AT_theoretical = Convert_AT (f, n, m, 2-m-1); 

AT_real = Convert_AT (f, n, m); 
   error_AT = AT_theoretical - AT_real; 
   ei = Search_imprecision (error_AT); 
   return ei; 
} 
Get_coeff_error (f, n, m, q) 
{  ATec = Convert_AT (f, n, m, 2-q-1); 
   ec = Search_imprecision (ATec);   return ec;  
} 
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 6.3 Finding a Feasible Implementation 
As distinct from the above section, our goal here is to explain how to design 

a satisfying implementation to restrict the imprecision within the error bound 

if given a specification represented by Taylor series expanded around Xo and 

the error bound. We now solve the problem of finding a feasible 

implementation, so that the error in the given interval I is smaller than E. 

 

 

 
   

 

The algorithm in Figure 6.4 applies sequential selection of parameters such 

that the total imprecision is smaller than E. The symbols n, m and q represent 

the Taylor terms, input bit-width and coefficients bit-width respectively. Since 

all the error causes can be made arbitrarily small by increasing n, m or q, we 

can investigate them in any order. As the Taylor approximation error, Eqn. 

(4-1), is independent of bit-widths, while the errors caused by the bit-widths 

rely on the exact number of Taylor terms, et is investigated first (Step 1), and n 

is selected such that the imprecision due to approximation is smaller than E. In 

Steps 2 and 3, we find input and coefficient bit-widths m and q using triangle 

inequality in order to obtain the required precision. 

This algorithm always terminates with a feasible implementation, because 

each of the three steps can determine an arbitrarily small error. Although one 

can apportion the percentage of E for each step, this is potentially wasteful. 

Since the first source of error is relatively small in comparison to the whole 

error bound, the distance to E will leave room for subsequent quantization 

values of errors ei and ec without needing very long bit-widths m and q.  

 

 

 

Problem 6.3: Feasible Precision Parameters 

Inputs:   f(X), X0, I, E  

Constraint:  imprecision < E, IX ∈∀  

Outputs:  n, m, q 
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Figure 6.4: A sequential method of fitting the error bound 

 
The method is applicable to Taylor series, but also to any real-valued 

polynomial specifications. Please note that when some (input or output) 

bit-widths are fixed because of other modules, those steps are skipped. This 

scheme achieves a tighter match than the traditional error bounding techniques 

as its exact searches for the worst-case imprecision account for the interplay 

between multiple imprecision causes. Although this algorithm can stand on its 

own, its immediate application is as a pre-selection stage of the full precision 

optimization algorithm, which is presented next.  

 

 

6.4 Designing Optimized Implementations 

with Constraints 
Although the algorithms in Figure 6.3 and 6.4 compute the precision 

automatically and indicate whether the implementation is feasible to the error 

bound, it cannot give information to optimize the implementation. Because the 

satisfying implementation is not the best one possible in different constraints, 

1. Determine Taylor terms 
{  assume n terms and obtain et; 

while (et≥E)     {  n++;  obtain et ;  } 
} 

2. Determine input bit-width 
{ assume input bit-width m; 
  for ( )   

{  AT(f)th = Convert_Taylor_AT (fth, n, m); 
AT(f) = Convert_Taylor_AT (f, n, m); 
ei = Imprecision_Searching (AT(fth - AT(f)); 
if (ei ≥ E-et )   m++;   else  break;  }   

} 
3. Determine coefficient bit-length 

{  assume bit-width of coefficients q; 
   while ( ) 

{   ATec = Convert_Taylor_AT(fec); 
         ec = Imprecision_Searching (ATec);  
         if (ec ≥ E-et- ei )  q++;   else  break;  }   

} 
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it is necessary to develop an algorithm to allow for a flexible distribution of 

imprecision due to the error sources. In this section, we demonstrate an 

automated way to find the precision parameters (bit widths, approximation 

schemes) of the minimum cost determined by constraints.  

 
 

6.4.1 AT Size as a Cost Function 
While it is impossible to know precise area data before mapping a circuit by 

a concrete technology, we do not need to know the exact area as long as the 

different alternatives can be compared realistically. In our case, the area 

increases monotonically in both n and m. More Taylor terms (n) require more 

stages in hardware, which raises inputs to higher exponents. Similarly, longer 

bit-width (m) requires more arithmetic circuitry. As the number of AT 

polynomial terms |AT(f)| exhibits the same tendency, we use it as the cost 

function to be minimized. The size of AT is obtained by directly expanding the 

n-term Taylor polynomial over m-bit input words. One can show that: 

               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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fAT
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i
mn
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, )(                 (6-1)         

 
 

6.4.2 Error Sensitivity 
We recall first that the Taylor series representation comes with a provable 

bound on the error due to the truncation of the Taylor terms n, given by Eqn. 

(4-1). This bound can be readily used during the precision searches, when 

different values of n are explored. Further, we can readily access the 

information on error sensitivity due to the input bit width m. 

Traditionally, sensitivity [21] is defined as Eqn. (6-2) and Figure 6.5 to 

describe the influence that a small change ∆X of X has on the output Y: 

XXfY Δ≈Δ )('                       (6-2) 

where f’(X) is the derivative of f(X).  
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Figure 6.5: The basic idea of sensitivity [21] 

 
In order to use sensitivity to investigate the input quantization error and find 

the suitable input bit-width, we re-define the sensitivity. 

 
Definition 6.1: The sensitivity is a numerical value to describe the influence 

that a small change of X has on the output Y in condition of the worst case: 

YΔ = AT(f’(X))max * 2-m-1                          (6-3)    

 
The sensitivity reflects the output change in terms of tiny input turbulence. 

It has the same essence as the representations of Eqn. (5-7) and (5-8), so 

sensitivity can be used as a substitution. The performance bottleneck in 

determining the optimized implementation is that the procedure must repeat 

itself to invoke the conversion algorithm when searching different Taylor 

terms and input bits. In each flow, this requires invoking the conversion 

algorithm twice, and subtracting two AT polynomials as Eqn. (5-7) and (5-8) 

to get the input error in order to confirm whether the input bit-width is 

satisfied. Of course the complex procedure will consume a lot of time and 

memory. However, if using sensitivity, as long as f’(X) is converted to 

AT(f’(X)) and the branch-bound algorithm is used to find the maximum value 

to match the worst case, the sensitivity can be calculated by its multiplication 

with ∆X . Here ∆X is 2-m-1, i.e., half of the ulp. We can see this procedure only 

invokes the conversion algorithm one time to transform f’(X) into AT(f’(X)). 

The advantage is very obvious. When the sensitivity is obtained, combined 

with the input error bound, it is easy to conclude the suitable input bit-width.  

Similarly, the search for an appropriate bit-width of the Taylor coefficients 

Ci is guided through the corresponding sensitivity, readily calculated using 

Taylor series, the conversion algorithm and the searching algorithm. 
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6.4.3 Constraint of the Smallest Area 
A) Optimized Parameters for Taylor Series 

In some cases, there is no limitation for Taylor terms and input bit-width, so 

engineers can adjust the parameters to achieve an error-satisfied circuit with 

the smallest area. Consider the following problem, where the total imprecision 

due to the disparate causes and the cost are obtained through AT. 

 
 
 
 
 
 
 
  
The goal is to get a satisfying implementation with the minimum AT size 

which represents the smallest area. The constraint which restricts the 

imprecision must be smaller than the error bound. Since coefficients and 

output bit-width have much less effect of area, we mainly focus on the number 

of Taylor terms and input bit-width. In deriving a more thorough search 

scheme, we need the ability to concurrently explore multiple precision 

parameters.  

Figure 6.6 describes the algorithm optimizing the number of Taylor terms 

and the input bit-width. A pair (n, m) is referred to as a node, representing a 

combination of a number of Taylor terms (n) and an input bit-width (m) used 

in each step of the search. In the first iteration, the algorithm gets the smallest 

number of Taylor terms for the given error bound, and obtains input bit-width 

by sensitivity computation (Steps 1 to 5). It is sufficient to consecutively 

increase the set of Taylor terms used to explore the search space, while 

simultaneously exploring the alternative input bit-widths (Steps 6 and 7). If the 

new node can satisfy the error bound E, the newly computed number of Taylor 

terms is assumed, and the algorithm continues to decrease input bit-width until 

the current node breaks the bound. When it happens, the algorithm backtracks 

to the previous node and stores it (steps 9 and 10). The procedure is repeated 

until the change of bit-widths is exhausted, while ei > E (step 8).  

Problem 6.4: Finding optimized Taylor terms and input bit-width to get  

the smallest area 

Inputs:   f(X), X0, I, E 

Constraints:  imprecision < E, IX ∈∀  

Outputs:   n, m 
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Figure 6.6: Algorithm of finding the optimized implementation with smallest area 

 
Since Taylor series cannot be compared directly, it is necessary to use AT for 

comparison because of the easy computation of Eqn. (6-1), so in the above 

procedure the conversion algorithm is invoked to achieve that goal. The 

searching algorithm helps to find the quantization error represented by AT 

polynomials. A subroutine Compare_AT_size is called into action to 

compare the AT size of each stored node, and selects the one with the smallest 

Design_min_Taylor_area (f, E) 
{  
1.  while (et > E)   { ++n;   et = Get_Taylor_error (n)  } 
2.  AT_derivative = Convert_Univar_AT( 'f , n, m0); 
3.  sensitivity=Search_Imprecision (AT_derivative)* 102 −−m ; 
4.  ini_m = m0 – log[(E- et) / sensitivity];   
5.  Store_node (n, ini_m);    m = ini_m; 
  while 

6.  {  et = Get_Taylor_error (++n); 
7.     ei = Get_input_error (f, n, --m); 
8.     if (ei < E) 
      {  while (ei <E - et)  ei = Get_input_error (f, n, --m); 
9.          if (++m != ini_m)   

{  Store_node (n, m);  ini_m = m; 
10.            Tight_interval (node);   } 

}   
11.    else  break; 

}  
12.  best_node = Compare_AT_size (nodes); 
13.  (ec, q) = Get_coeff_bit (E, et, ei) ; 
14.  o = -log2 (E- et - ei - ec) + 1;  
    return best_node; 
} 
Get_input_error (f, n, m)         // Using Eqn. (6-3) 
{  AT_derivative = Convert_Univar_AT( 'f , n, m); 
   max_val = Search_Imprecision (AT_derivative); 
   ei = max_val * 2-m-1;     return  ei ; 
} 
Compare_AT_size (nodes) 

{  for (i=0; i<nodes_num; i++) 

      AT_size[i] = Get_AT (node[i](n), node[i](m) ); 

   Sort (AT_size);   return the node with smallest AT_size; 
} 

Get_AT (n, m) 

{ for (i=1; i<=n; i++)  AT_num += Choose (m, i); } 



Chapter 6: Algorithms for Precision Verification and Optimization 

 123

AT representation. In fact, while the algorithm begins with the largest et value 

(within the total bound E) – initially ei is smallest, but in subsequent steps et 

shrinks while ei grows until ei becomes the largest value – the procedure 

explores the search space, eliminating nodes that will have larger AT than 

already obtained solutions. Finally, the bit-width of coefficients is calculated 

using the notion of sensitivity, while the output bit-width o is determined using 

the expression o = -log2 (E- et - ei - ec) + 1 (Step 13 and 14). Note that at this 

point all the error parameters in the above equation can be determined using 

the optimal values of n, m and q.  

The algorithm provides a branch-and-bound exploration of the space of all 

potential optimized nodes. When the error bound E is exceeded, the complete 

subtree of the search tree is safely abandoned. Further, the search is guided by 

the sensitivity function, as a heuristic to speed up the search. At each node, the 

error ei from Eqn. (6-3) is computed in the subroutine Get_input_error, 

which uses the sensitivity definition. The transform of the first order derivative 

of f(X) is obtained in terms of the Taylor terms n and input bit-width m. Then, 

the branch searching algorithm is invoked to get its maximum mismatch, so 

the sensitivity is calculated through the multiplication of the maximum 

mismatch and ∆X, i.e., 2-m-1. As a result, the conversion algorithm is invoked 

only once to get AT of f ’(X), while the use of Eqn. (5-7) to (5-9) would 

activate the algorithm twice. The following example illustrates the use of the 

precision optimization algorithm. 

 
Example 6.1: Consider an implementation of sin(x) represented by Taylor 

series. Due to the given error bound 0.0002, the algorithm finds the least 

number of Taylor terms to be 4, and the corresponding input bit-width to be 14 

on the condition of the Taylor terms. Therefore, the initial node is (4,14). 
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Figure 6.7: Search of optimized parameters in Example 6.1 

The algorithm adds then one Taylor term and cuts one input bit at the same 

time, hence generating a new node (5, 13). By using the sensitivity, ei is 

estimated fast, and as this node satisfies the error bound, input bits are 

decreased again. However, when the node reached (5, 11), the error addition 

of et and ei is beyond the bound but ei is smaller than the bound, and the 

algorithm backtracks to the previous node (5, 12). The node (5, 13) is 

redundant because its AT terms number is obviously larger than the node (5, 

12), and the node (5, 11) is an invalid node. The procedure is repeated with 

Taylor terms increased to 6 giving the node (6, 11) which satisfies the bound. 

The input error ei of the next node (7, 10) breaks through the error bound so it 

is an invalid node, which means the smallest input bit-width is 11 regardless of 

the increase in the number of Taylor terms, so the algorithm stops. 

Figure 6.7 indicates three nodes (4, 14), (5, 12) and (6, 11) that satisfy the 

given error bound. The procedure Compare_AT_size is then called to select 

the node with the smallest AT size, so the node (6, 11) is the optimized 

parameters for Taylor terms and input bit-width. 

 
From this example, we see that starting from an initial feasible 

implementation, the algorithm proceeds with generating nodes of improved 

parameters, and then checks whether such new nodes are within the error 

bound. In each search step, the sensitivity is used to accelerate calculation of 

the input quantization error, drastically improving the performance. When the 

error bound is exceeded, the backtracking technique returns the previously 

determined feasible solutions, and no solution will be missed. 
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B) Optimized parameters for multivariate polynomials 
The above section proposes an algorithm that is limited to Taylor series of 

only one word-level variable. Since many real-valued polynomials comprise 

word-level variables beyond one, the optimization algorithm needs an 

extension to process it. An algorithm is now presented to handle cases of 

specifications given over several word-level variables. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Algorithm for finding optimized parameters for real-valued  

polynomials over multiple variables 

 
A set of bit-widths for each variable is referred to as a node in Figure 6.8. 

The algorithm first gets sensitivity for each variable as in Step 1 – 5, and 

obtains the initial node and final node by using sensitivity as in Step 6 – 7. The 

initial node makes the first variable determine the minimum bit-width and the 

final node makes the last variable calculate the minimum bit-width. 

Beginning from the initial node, the algorithm shrinks the error generated 

Design_best_poly_imp (f, E) 
{ 
1.   for (i=0; i<word_var_num; i++) 
2.   {   AT_th = Convert_AT(f, i, 0); 
3.       AT_real = Convert_AT(f, i, 102 −−m ); 
4.       error_AT = AT_th – AT_real; 
5.       sens [i]=Search_imprecision (error_AT); 
     } 
6.    ini_bit = Get_ini_node (sensitivity); 
7.    final_bit = Get_final_node (sensitivity); 
8.    for (i=word_var_num-1; i>=0; i--) 
9.    {   ini_bit[i]++;  ini_bit[i+1]--; 

for (m=word_var_num-1; m>=i; m--) 
10.      {  stop_error = Compute_input_error (sens, ini_bit); 
12.         ei[0] = pow(2, init_bit[0]-m0) * sens[i]; 
13.         if (ei[0] = stop_error) 
                break; 
           else { while (ei < E)   init_bit[0]--; 
                Store (nodes);  Tight_interval (node);  } 

} 
14.       if (ini_bit = final_bit) 

         break; 
} 

15.   Irredundant (nodes); 
16.   optimized_bit = Compare_AT (nodes); 
} 
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by the first variable by increasing its bit-width. At the same time, the bit-width 

of the following variable decreases and this may enlarge the error. The 

procedure propagates the input error within the error bound from the first 

variable to the last variable in sequence. When the final node is reached, the 

loop stops and all possible nodes are traversed as in Step 8 – 14. While all 

intermediate nodes are obtained, the redundant nodes are deleted in Step 15. 

If two nodes only differ in one variable and other variables have the same bit 

widths, the node which has more bits is identified as the redundant node. For 

example, if the two nodes have three variables consisting of (12, 13, 12) and 

(12, 14, 12) bits respectively, one variable is different and the node of (12, 14, 

12) is deleted as a redundant node. The optimized bit-widths for variables are 

selected by comparing AT sizes of obtained nodes and choosing the smallest 

one as in Step 16.  

 
Example 6.2: Consider a function F with three word-level variables and the 

given error bound is 60.  

            F(X, Y, Z) = 2X 2+ 3YZ – 4Z3 + XYZ 

By using sensitivity the initial node is obtained as (14, 16, 18) which means 

that the error generated by X has the largest value within the error bound, and 

the final node is (18, 16, 13) which means that the error generated by Z has 

the largest value within the error bound. The Figure 6.9 describes the two 

nodes and the error generated by each variable. 

E

e[X]
e[Y]

e[Z]
             

E
e[X]

e[Y]

e[Z]
 

Figure 6.9: The error of each variable for the initial node and the final node 

Now the algorithm begins with the initial node to increase bit-width of Y and 

decrease bit-width of Z, etc., e[Y] is reduced and e[Z] is augmented. The new 

obtained node is (14, 17, 16) and since the bit-width of Z cannot be cut down 

any more, the bit-width of X has to be increased to “15” and bit-widths of Y 

and Z are computed again. Consequently, the node changes to (15, 15, 15). 

The two nodes are shown in Figure 6.10. 
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Figure 6.10: Two intermediate nodes from the initial node  

The algorithm continues to get intermediate nodes until it reaches the final 

node. It removes the redundant nodes and creates a search path to represent 

each node. The chain is described as: 

(14,16,18)    (14,17,16)    (15,15,15)    (15,16,14)     (16,14,16)    

(16,15,14)    (17,14,15)    (17,17,13)    (18,16,13) 

The AT size of each node is calculated and a node with the smallest size is 

chosen as the optimized node. In this example the optimized node is (16, 15, 

14). 

 
 

6.4.4 Constraint of the Minimum Delay 
  Some applications often require that the implementation has a minimum 

delay. Taylor series is implemented by a Horner polynomial evaluation such as 

the cosine circuit: 
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Figure 6.11: n-stage pipelined circuit  

 
In Figure 6.11, n-terms Taylor series correspond to an n-stage circuit 

represented by a Horner polynomial. Although input bit-width and coefficient 
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bit-width both have effect on delay, it is obvious that the number of Taylor 

terms has far bigger impact. More terms result in a longer delay, so the 

minimum delay requires the least Taylor terms and is restricted by the 

imprecision. The least number of Taylor terms is simple to obtain and the input 

bit-width can be obtained by using Eqn. (6-3). The problem description is as 

follows. 

 
 
  
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.12: Algorithm of finding parameters for the minimum delay 

 
Figure 6.12 describes the algorithm for finding the optimized 

implementation with the minimum delay. It calculates the least number of 

Taylor terms to satisfy the inequality et < E, then decreases the initial input 

bit-width and keeps the calculation of the input error ei until ei > E - et. So the 

appropriate input bit-width is obtained.  

 
 

6.4.5 Constraint of Interface Input Bit-width 

  In some cases the input comes from the output of another module, so the 

bit-width is determined by that module and it cannot be changed. Figure 6.13 

illustrates this situation. 

Problem 6.5: Finding optimized parameters to get the minimum delay 

Inputs:   f(X), X0, I, E 

Outputs:  n, m 

Constraint:  imprecision < E, IX ∈∀  

Goal:      minimum satisfying Taylor terms n 

Design_min_delay (f, E) 
{  while (et < E)   { --n;  et = Get_Taylor_error (n) }; 

m = Initiate (f, n) ;  
ei = Get_input_error (f, n, m) ; 
while (ei < E - et) 
{  m--; 
   ei = Get_input_error (f, n, m) ;   
} 
m++ ; 
return (n, m) 

} 
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output           input Taylor SeriesAnother Module

Interface

              
    Figure 6.13: Description of interface input bit-width 

Since the parameter of input bit-width is fixed in this case, only the Taylor 

terms and coefficient bit-width should be explored to make the imprecision 

suitable to the error bound. Figure 6.14 describes the algorithm of calculating 

Taylor terms and coefficients bit-width. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Algorithm of finding parameters for interface input bit-width 

 
The algorithm first finds the least satisfying Taylor number to make the 

approximation error et smaller than the error bound (Step 1), and calculates the 

corresponding input error (Step 2). If the error ei is larger than the error bound, 

it means that the interface input bit-width is too small to fit the error bound 

and the algorithm will give the error information (Step 3). If the addition of et 

and ei is larger than the error bound, which would indicate that the number of 

Taylor terms is too small, the algorithm increases the number value n and 

re-calculates its input error (Step 4 – 7) since the number of terms will affect ei 

even though the input bit-width is fixed. After the suitable Taylor number n is 

obtained, the coefficient quantization error ec is determined, and the algorithm 

Design_fixed_input (f, E, m) 
1. { while (et < E)   { --n;  et = Get_Taylor_error (n) }; 
2.  ei = Get_input_error (f, n, m); 
3.  if (ei ≥ E )   

 print  “The interface input bit-width is too small to fit the error bound”;  
4.   else if (et + ei ≥ E ) 
5.   {  while (et + ei ≥ E ) 
6.      {  et = Get_Taylor_error (--n); 
7.        ei = Get_input_error (f, n, m);  } 

} 
8.   ec = E - et - ei;  
9.   for (i=0 ; i<m ; i++) 

     input_val += pow(2, -i-1) ; 
10.  for (i=0 ; i<n; i++) 

     coeff_sen += pow(input_val, i) ; 
11.  q = (-log(ec / coeff_sen) / log2) – 1; 

return (n, m, q) ; 
} 
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calculates the coefficient bit-width by Eqn. (5-12) corresponding to the worst 

case (Step 9 - 11).  

 
Example 6.3: Given an error bound E=2e-4 for exp(X), the interface input 

bit-width is 13. The algorithm finds the least number of Taylor terms is 6, and 

gets et = 1.98e-4, ei = 1.76e-4. Since ei < E and et + ei > E, that denote the 

number of Taylor terms is too small so the algorithm loops to find that the 

suitable number of Taylor terms is 8. It obtains et = 2.76e-6 and ei = 1.79e-4, 

so ec = E - et - ei = 1.82e-5. In order to calculate the coefficient bit-width, Step 

9 and 10 execute: 

∑ ∑
= =

−−
7

0

12

0

1 )2(
i k

i
k

k x = 7.99561  

when each xk  equals 1 considering the worst case, the equation is 1.82e-5 = 

2-q-1* 7.99561 and the coefficient bit-width q is obtained as 18 bit, so the final 

obtained parameters are n=8, m=13, q=18.  

 

 

          6.5 Experimental Results 
6.5.1 Comparison of Two Implementations 
(A) Benchmarks 
1) Imprecise Cosine circuit implementation 

  In ASICs or FPGAs, the pipelined implementation of a cosine circuit 

represented by finite terms of Taylor series often uses the Horner’s polynomial 

evaluation: 
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2) B-splines   

Uniform cubic B-splines are used for image warping applications. Four 

B-spline basic functions B0, B1, B2 and B3 are defined by:  
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where u= [0, 1]. We use different bits to represent u to implement this design 

and observe imprecision effects. 

3) Chebyshev polynomials  

Chebyshev filters are analog or digital filters with a steeper roll-off and more 

passband ripple. The gain response as a function of angular frequency w of the 

nth order low pass filter is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

0

221

1)(

w
wT

wG

n

n

ε  

Where ε  is the ripple factor and Tn is the Chebyshev polynomial of the nth 

order. Its mathematical characteristics are derived from Chebyshev 

polynomials. They are a sequence of orthogonal polynomials which are related 

to de Moivre's formula and which are easily defined recursively. The 

Chebyshev polynomials of the first kind are defined by the recurrence relation: 

T0(X) = 1     T1(X) = 1   Tn+1(X) = 2XTn(X) - Tn-1(X) 

According to the relation, we get: 

T8(X) = 128X8 – 256X6 + 160X4
 – 32X2

 + 1 

T9(X) = 256X9 – 576X7 + 432X5
 – 120X3

 + 9X 

4) Implementations of cubic filters 

  Cubic filters generally have multiple word-level variables, such as the 

benchmarks from University of Utah [51]. The complicated module contains 

three word-level variables, and we have to try exhaustive variable 

combinations if simulation is adopted, but the method of AT can avoid this 

time-consuming situation. Consider a filter: 

F(X, Y, Z) = 16384X4 + Y4 +57344Z4 + 64767XY3 + 16127Y2Z2 + 8965X3Z 

+19275X2YZ +51903XYZ + 32768X2Y +40960Z2 +32768XY2 + 49152X2 

+ 4869Y 

5) Discrete Cosine Transform (DCT) 

DCT is the kernel of JPEG and MPEG. Here the 88 × DCT 

implementation according to is considered. A vector of input data x0…x7 can 

be transformed to DCT coefficients by y0…y7. Coefficients c0…c6 are 
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fractional numbers within (-0.5, 0.5) and generally approximated by 8 – 16 

bits. 
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6) Box-Muller implementation 

  Box-Muller algorithm for generating Gaussian random variable is critical to 

a number of applications such as accurate bit error rate testers. The algorithm 

uses the following expression: 
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We represent it by a finite number of Taylor series terms: 
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The implementation consists of two Taylor series and two word-level 

variables. Imprecision in two variables affect each other, so it is difficult to 

evaluate imprecision and get the optimized implementation by past univariate 

explorations. 

 
(B) Comparison Results 
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Table 6.1: Error and performance of various components on different criteria 
 

The module in Figure 6.2 is critical for both the conversion and the branch 

searching algorithms, so it is important to pay special attention to it. The error 

AT polynomial is derived from two implemented AT polynomials, from which 

imprecision can be discovered by the brand search. The module has the 

advantages of being fast and space-efficient, as Table 6.1 shows.  

More bits imply that the results are more precise, i.e., the implemented 

function value is closer to the originally specified data output. However, the 

precision comes not only at the cost of area, but also the rate of speed and 

energy consumption. In light of this, choosing an appropriate length to 

represent coefficients is worth the effort. Table 6.1 displays imprecision based 

on different degrees and input bits. It is obvious that imprecision decreases in 

proportion to the increase of the Taylor degree and input bits. Running time is 

acceptable even for a large number of terms. Hence, this module provides a 

reliable method of calculating and matching the imprecision of 

implementations, which will allow the engineers to lower the cost of design. 

The results also help to obtain an understanding of whether the existing 

implementations can be reused. 

 
 

6.5.2 Verification of Imprecise Circuits 
In this section, the algorithm in Figure 6.3 is verified. In order to cover 

Case Imp 
 Degree 1 

Imp  
Degree 2 

Imp Bit 1 Imp Bit 2 Error AT 
Terms 

Error Time(s) Space(MB) 

cos(x) 8 8 20 16 224747 1.2e1-5 7.98 66.6 
cos(x) 8 8 24 20 1007676 7.52e-7 38.84 347.3 

cos(x) 10 8 24 20 615115 2.75e-7 44.16 71 
cos(x) 10 8 24 24 4533805 2.76e-7 214.9 523.5 

B-splines 3 3    20    16 654 2.86e-5 0.375 0.38 
B-splines 3 3    24    20 974 1.79e-6 6.2 0.46 
B-splines 3 3    28    24 1356 1.12e-7 114.4 0.55 

Chebyshev 8 8    20    16 224747 9.15e-4 7.9 75.6 
Chebyshev 8 8    24    20 1007676 5.72e-5 38.73 347 
Chebyshev 9 9    20    16 381267 0.0012 21.1 145 
Chebyshev 9 9    24    20 2147220 7.24e-5 132.6 599 

Filter  4 4 (16,16,16) (16,16,14) 11549 19.39 2.13 55.2 
Filter  4 4 (20,20,20) (18,18,18) 307909 3.83 23.5 221.1 
Filter  4 4 (20,20,20) (20,18,18) 68156 2.36 16 144.5 
DCT 1 1 16 8 512 15.62 0.08 0.24 
DCT 1 1 16 10 512 3.86 0.11 0.27 
DCT 1 1 16 12 512 0.92 0.13 0.29 

Box-Muller (5,4) (4,4) (10,10) (8,8) 219001 0.013 4.65 38.2 
Box-Muller (5,6) (5,4) (12,12) (10,10) 613567 0.0068 18.3 86.5 
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general applications, two elementary functions represented by Taylor series 

and three circuits represented by real-valued polynomials are used as 

benchmarks to assess the effectiveness of the algorithm. 

 

Table 6.2: Checking implementations whether to satisfy  

the error bound in terms of given parameters 

 
  Table 6.2 lists corresponding errors of various functions due to given 

parameters and indicates whether the implementation is suitable to the 

specification on the condition of the error bound. Column 11 shows the 

number of obtained AT terms; Column 12, “Imprecision,” is a summation of 

the four types of errors; time and space requirements are showed in Columns 

14 and 15 respectively, which indicates the performance level of the checking 

algorithm. It is clear that even when the given error bound is small and 

parameters have a large bit size, our algorithm is fast and efficient  

in terms of time and memory requirements. 

 
 

6.5.3 Finding Implementations with the Smallest Area 
Engineers usually try to find the implementation with the smallest area, 

which helps to lower costs. In Figures 6.6 and 6.8 we verify the algorithms 

used to process Taylor series and multivariate polynomials.  

 

(A) Performance of Scheme for Optimized Implementations 
Using traditional methods, simulation cannot find the optimized 

Case Error 
Bound 

n m q o et ei ec eo AT 
Term 

Impre- 
cision 

Satisfied Time
(S) 

Mem
(MB)

sin(X) 5e-4 4 12 13 12 2.48e-5 1.22e-4 2.44e-4 1.22e-4 3301 5.13e-4 No 0.78 1.63 
sin(X) 5e-4 4 15 14 11 2.48e-5 1.53e-5 1.22e-4 2.44e-4 16383 4.06e-4 Yes 2.42 6.47 
sin(X) 2e-4 5 14 15 13 2.76e-7 3.06e-5 7.63e-5 6.1e-5 14912 1.68e-4 Yes 15.5 12.7 
sin(X) 2e-4 4 15 13 14 2.48e-5 1.53e-5 2.44e-4 3.05e-5 16383 3.15e-4 No 4.7 6.28 
exp(X) 2e-3 6 13 12 12 1.98e-4 1.66e-4 7.32e-4 1.22e-4 4095 1.22e-3 Yes 0.47 1.11 
exp(X) 5e-4 6 14 13 14 1.98e-4 8.29e-5 3.66e-4 3.05e-5 6475 6.77e-4 No 0.54 1.77 
exp(X) 5e-4 6 16 14 13 1.98e-4 2.07e-5 1.83e-4 6.1e-5 14892 4.63e-4 Yes 0.89 3.68 
Bspline 1e-3 -- 12 12 10 — 7.12e-5 3.66e-4 4.88e-4   298 9.26e-4 Yes 0.09 0.14 
Bspline 1e-3 -- 13 10 11 — 3.56e-5 1.46e-3 2.44e-4   377 1.74e-3 No 0.13 0.19 
Cheby 5e-3 -- 14 — 8   — 6.54e-3 — 1.95e-3 14912 8.49e-3 No 5.84 5.14 
Cheby 3e-3 -- 17 —  9   — 8.2e-4 — 9.77e-4 89845 1.97e-3 Yes 26.2 28.3 
DCT   4 -- -- 8 --   —  — 15.71 — 512 15.71 No 0.08 0.24 
DCT   4 -- -- 10 --   —  — 3.93 — 512 3.93 Yes 0.11 0.27 
DCT   1 -- -- 12 --   —  — 0.98 — 512 0.98 Yes 0.13 0.29 
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implementations efficiently because all possible parameters should be 

investigated for all input values. We provide a much better technique than 

traditional error bounding techniques which select the precision parameters 

without exhaustive investigation of the interplay between the imprecision 

sources. 

Two elementary functions (cos(x) and exp(x)) given by Taylor series, and 

three circuits (B-spline, Chebyshev and DCT) represented by polynomials with 

one variable are used in Figure 6.6 as benchmarks to assess the effectiveness 

of our algorithm. In Figure 6.8, two circuits (cubic filter and Box-Muller) are 

used to verify the algorithm to find the optimized implementations of 

real-valued polynomials with multiple input variables. 

Column 2 in Table 6.3 gives different error bounds for various functions; 

Columns 3 – 10 list the obtained parameters and corresponding errors for 

implementations optimized for the bounds. Columns 11 and 12 show how 

many nodes are investigated in the whole procedure and the number of 

obtained AT terms; Column 13 gives the total imprecision, which is always 

smaller than the given error bound. Time and space requirements are reported 

in Columns 14 and 15.  

 

Table 6.3: Optimized implementations with smallest area  

and performance for different error bounds 

Circuit   Error 
Bound 

n m q o et ei ec eo Node AT 
Terms 

Impreci-
sion 

Time
 [s] 

Mem
[MB]

cos(x)/S 5e-4 5 13 14 11 2.32e-6 5.96e-5 1.23e-4 2.44e-4 -- 7098 4.29e-4 1.56 1.86
cos(x)/O 5e-4 5 10 17 17 2.32e-6 4.77e-4 1.52e-5 3.82e-6 4  1012 4.98e-4 1.33 1.52
cos(x)/S 3e-4 5 14 13 15 2.76e-6 3.03e-5 2.46e-4 1.53e-5 -- 12910 2.94e-4 2.56 3.01
cos(x)/O 3e-4 4 12 18 17 1.67e-4 1.19e-4 7.69e-6 3.8e-6 7  2509 2.97e-4 1.58 2.13
exp(x)/S 3e-4 8 14 15 13 2.48e-5 8.42e-5 1.07e-4 6.1e-5 -- 9908 2.77e-4 1.98 2.34
exp(x)/O 3e-4 7 14 18 17 1.98e-4 8.42e-5 1.31e-5 3.7e-6 6 6476 2.95e-4 2.37 2.86
B-spline/S 7e-4 -- 11 11 15   -- 2.45e-4 2.43e-4 1.5e-5 --   231 5.03e-4 0.09 0.18
B-spline/O 7e-4 -- 10 12 13   -- 4.91e-4 1.22e-4 6.1e-5 1 175 6.74e-4 0.08 0.11
Cheby/O 3e-2 -- 12 -- 7 -- 2.57e-2  -- 3.91e-3 1 3797 2.96e-2 1.42 1.53 
Cheby/O 1e-2 -- 14 -- 8 -- 6.54e-3 -- 1.95e-3 1 12911 8.49e-3 3.84 5.14 
Cheby/O 3e-3 -- 16 -- 9 -- 1.64e-3 -- 9.77e-4 1 39203 2.62e-3 9 15.2 
DCT/O   20 -- -- 8 -- -- -- 15.71   -- 1 512 15.71 0.08 0.13 
DCT/O   4 -- -- 10  -- --   3.92   -- 1 512 3.92 0.11 0.14 
DCT/O   1 -- -- 12 -- -- --   0.98   -- 1 512 0.98 0.13 0.15 
Filter/S  50 (14, 14, 14) -- 27.6   --   -- -- 47865 27.6 6.7 8.9 
Filter/O  50 (13, 13, 13) -- 49.3   --   -- 21 37636 49.3 11.9 25.4 
Filter/S  35 (15, 14, 15) -- 19.5 --   -- -- 51391 19.5  9.2 12.3 
Filter/O  35   (13, 14, 14) -- 32.4   --   -- 14 45232 32.4 18.9 25.5 
Box-Mul/S 5e-3 (5,6) (12,12) 11 8 1.3e-3 5.8e-4 6.6e-4 1.95e-3 -- 2153903 4.5e-3 2.68 1.58 
Box-Mul/O 5e-3 (5,6) (11,11) 11 10 1.3e-3 2.4e-3 6.8e-4 4.9e-4 13 1620432 4.9e-3 5.22 6.87 
Box-Mul/S 1e-3 (7,6) (12,13) 12 11 4.2e-5 2.8e-4 3.3e-4 2.5e-4 -- 9725892 9e-4 7.46 4.92 
Box-Mul/O 1e-3 (6,6) (12,12) 13 12 3.6e-4 3.2e-4 1.6e-4 1.2e-4 17 5938969 9.6e-4 13.3 17.6 
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In comparison to Figure 6.6, we invoke the sequential method introduced in 

Figure 6.4 to solve Problem 6.3, which is a case of feasible implementation. 

By considering the precision parameters sequentially, it mimics often applied 

schemes for setting precision parameters in isolation. The label “/S” in 

Column 1 indicates that this sequential assignment algorithm is used in Figure 

6.4, while the label “/O” points to the area optimization algorithm here. The 

optimization algorithm traverses more nodes to investigate the real-valued 

polynomials with multiple variables, such as cubic filter and Box-Muller, than 

Taylor series. Please notice that no unique group of parameters satisfies the 

error bound; changing one parameter would affect the others, as in rows 2 and 

3, 4 and 5. These rows have different parameters, and all fit the given error 

bound indicated by Column 2. 

It is clear that, even when the given error bound is small and the parameters 

are large, our algorithm is fast and efficient in memory requirements. It takes 

advantage of appropriate paths to search and traverse the least valid nodes, 

which then leads to very good performance. Our method is not only feasible 

but a highly efficient way to get the best implementation. In many cases the 

optimization algorithm is faster than the sequential algorithm, which indicates 

that finding the best implementation is sometimes more efficient than finding a 

feasible implementation. We are unique in searching for the optimized 

implementation for a given error bound, while other researches mostly 

consider area reduction only in terms of wordlengths. 

 

 Table 6.4: Result comparison with the paper [45] 
 

Research in [45] utilizes a multi-stage approach to get 8-bit and 16-bit 

output precision. Its benchmarks are real-valued polynomials where input 

wordlength is considered – it cannot deal with Taylor series and function 

approximation. We consider not only the input but coefficients and the output. 

Table 6.4 compares results with those in [45] [44]. Our algorithm achieves 

Case Precision Time (s) [25] Area [25] 
(Slices) 

Time (s) Area 
(Slices) 

B-Spline 8 0.12   1368 0.07  1132 
16 0.19   2188 0.15 2056 

DCT 8 0.89   3598 0.08   857 
16 0.51   5069 0.17  1481 

Degree 4 
Polynomial 

8 1.9    803 0.96   763 
16 2.0   1921 1.55  1208 
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higher speed and smaller area. We also notice that benchmarks in [43] and [45] 

have lower degrees than ours. We can handle functions with higher degrees, 

such as Chebyshev polynomials of degree 9. Furthermore, our algorithms are 

able to process functions with multiple variables. Cubic filter and Box-Muller, 

which are more difficult for verification and optimization, are used to prove it. 

We facilitate a more complex exploration of combining as many factors as 

possible when investigating the imprecision and approximation of the 

specification. 

 

 

 

 

 

 

 
Table 6.5: Error comparison of AA and our method 

 
Table 6.5 compares the errors obtained by AA and our method for the same 

number of Taylor terms and input bit-widths, listed in Columns 2 and 3. The 

error obtained by our method is far smaller than that of AA, which is an 

indicator of better accuracy compared to past explorations. 

 

(B) Area of Mapped Optimized Hardware 
While the optimization algorithm produces precision parameters for a 

minimal size AT polynomial, the exact area of the resulting circuit depends on 

the technology used in mapping circuits. We perform further experiments with 

mapping on FPGAs to evaluate the real area impact of the proposed 

optimization algorithm. In this section we use the Xilinx Virtex-4 

XC4VLX100-12 FPGA, with the ISE tool (version 8.1), the same device and 

tool as in [45], to obtain a fair comparison of the results.  

 

 

 

 

Case n m AA Ours 
sin(X) 3 9 1.52e-2 1.1e-3 
sin(X) 3 11 1.52e-2 2.7e-4 
sin(X) 4 10 1.57e-2 5.46e-4
sin(X) 4 12 1.57e-2 1.37e-4
sin(X)*exp(X) 4 8 6.7e-2 1.5e-2 
sin(X)*exp(X) 4 11 6.7e-2 1.9e-3 
sin(X)*exp(X) 5  8 8.9e-2 1.48e-2
sin(X)*exp(X) 5 11 8.9e-2 1.87e-3
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Table 6.6: Hardware area of optimized circuits 

 
Table 6.6 compares the area of the FPGA implementations in terms of 

different parameters. All implementations can satisfy the given error bound E, 

shown in the second column. The rows labeled “/I” use the tight-bound 

interval method for input bit-width and coefficient bit-width to improve on the 

sequential algorithm, still labeled with “/S”. This new case produces less input 

and coefficient bits than the sequential algorithm. The rows labeled “/O” 

invoke the optimization algorithm which contains the tight interval method of 

this dissertation. The results achieve ~5% area reduction over the optimization 

algorithm reported in [86] (as “/O”), which uses the plain interval method for 

transcendental functions such as cos (X) and exp (X). The optimization 

algorithm, in combination with the tight interval method, can save the area by 

up to 30% over the sequential exploration of individual precision parameters. 

In the case of real-valued polynomials that do not contain function 

approximation, the optimized algorithm does not benefit from either 

tight-bound interval method, so the results do not show “/I” for real-valued 

polynomials.  

Finally, Figure 6.15 describes an achievable FPGA hardware area for 

benchmark circuits using different combinations of Taylor terms and input bits. 

Such a tabulation facilitates the exploration of trade-offs between precision 

and complexity. For comparison, Figure 6.15(b) shows B-spline and 

Chebyshev polynomial results from [45]. Results from our optimization 

algorithm require less hardware area. When mapped to the same FPGA with 

the same synthesis tools, our benchmarks – such as B-Splines or the 

Circuit  E Taylor Terms Input [bits] Coef. [bits] Area [Slice] Saving 
cos(X)/S 3e-4 5 13 14 1037 -- 
cos(X)/I 3e-4 5 12 15 965 6.9% 
cos(X)/O 3e-4 4 12 16 746 28.1% 
exp(X)/S 3e-4 8 14 15 1179 -- 
exp(X)/I 3e-4 8 14 13  1136 3.6% 
exp(X)/O 3e-4 7 14 16  933 20.9% 
Cheby/S 3e-3 -- 20 -- 1906 — 
Cheby/O 3e-3 -- 16 -- 1439 24.5% 
DCT/S  4 -- -- 14 1162 — 
DCT/O  4 -- -- 10  894 23.1% 
Filter/S  35 -- (15,15,15) -- 3036 7.6% 
Filter/O  35 -- (13,14,14) -- 2725 17% 
Muller/S 1e-3 (7,6) (13, 14) 13 4327 -- 
Muller/I 1e-3 (7,6) (12, 11) 12 3986 7.9% 
Muller/O 1e-3 (6,6) (12, 12) 13 3759 13.1% 
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Chebyshev polynomial – reduce the area achieved in [45] by 20% while 

obtaining the same precision. 
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Figure 6.15: Hardware area of Taylor series and real-valued 

polynomials in different Taylor terms and input bits 
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In this section, we verify that the algorithms can handle more constraints in 

2500

3000

2000

ar
ea

 (s
lic

e)

16 18 20 24 3228

Chebyshev
Polynomial

4000

5000
Degree 4
polynomial in [16]

B-Spline
 in [16]

B-Spline

5000

5500

4500

4000ar
ea

 (s
lic

e)

(12,12) (14,14) (16,16) (18,18) (20,20) (22,22)

(5,5)(5,5)

(6,6)
(6,6)

(6,6)

(7,7)Box-Muller



Chapter 6: Algorithms for Precision Verification and Optimization 

 140

terms of area, delay and interface input, as shown in Figures 6.6, 6.12 and 

6.14. 

 

          Table 6.7: Optimization of imprecise circuits due to constraints 

 
The constraints are listed in Column 3, and Column 4 shows calculated 

optimized parameters; Columns 5 - 8 indicate each error, and the column 

labeled “Imprecision” (which is smaller than the given error bound) is a 

summation of the four types of errors; time and space requirements are shown 

in Columns 11 and 12. The performance indicates the optimization algorithms 

are highly efficient, while the algorithms can calculate different 

implementations in terms of the three constraints.  

We map the obtained logic to Xilinx Virtex5 FPGAs by their ISE tool. Table 

6.8 lists the mapped area and delay for each implementation from Table 6.7. 

Columns 5 and 6 show the mapped results of delay and area respectively. The 

implementations in Rows 3 and 6 have the minimum delay, while those in 

Rows 4 and 7 have the smallest area on the condition of the same error bound. 

Clearly, the optimized implementations save significant area or delay for 

circuits compared to other feasible implementations. Less area and less delay 

means less power dissipation and faster calculation speed, and these are 

important factors in microchips. This demonstrates the necessity of finding an 

implementation with the smallest area or delay in real applications. 

 

 

 

 

Case Error 
Bound 

Constraint Optimized 
Parameters 

et ei ec eo Impre- 
cision 

AT 
Term 

Time
(s) 

Mem
(MB)

cos(x) 5e-4 fixed input (12) (4,12,13,14) 1.67e-4 1.19e-4 1.83e-4 3.05e-5 4.99e-4 2510 0.14 0.1 
cos(x) 5e-4     delay (4,11,14,18) 1.67e-4 2.39e-4 9.14e-5 1.91e-6 4.99e-4 1486 0.31 0.43
cos(x) 5e-4     area (5,10,17,17) 2.32e-6 4.77e-4 1.52e-5 3.82e-6 4.98e-4 1012 0.55 0.48
exp(x) 1e-4 fixed input (17) (7,17,16,16) 2.48e-5 1.04e-5 5.34e-5 7.63e-6 9.62e-5 41225 0.56 1.41 
exp(x) 1e-4 delay (7,15,17,17) 2.48e-5 4.15e-5 2.67e-5 3.81e-6 9.68e-5 16383 0.41 0.95
exp(x) 1e-4     area (8,14,19,17) 2.76e-6 8.29e-5 7.63e-6 3.81e-6 9.71e-5 12910 1.7 0.91
B-spline 5e-4 fixed input (11) (-,11,11,16)   — 2.45e-4 2.43e-4 7.63e-5 4.95e-4   67 0.17 0.3 
B-spline 5e-4    area (-,10,16,19)   — 4.91e-4 7.63e-6 9.53e-7 4.99e-4   56 0.14 0.13
Cheby 3e-3 fixed input (18) (-,18,-,8)   — 4.1e-4 — 1.95e-3 2.36e-3 45685 11.6 19.7
Cheby 3e-3    area (-,16,-,9)   — 1.64e-3 — 9.77e-4 2.62e-3 39203 9 15.2
Filter 50 fixed input 

(15,14,-) 
(15,14,12) — 42.6 —   — 42.6 42827 3.25 4.71

Filter 50    area (13,13,13) — 49.3 — — 49.3 37636 11.9 25.4
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Table 6.8: Hardware delay and area for optimized implementations 

 

 

                6.6 Conclusions 
  We proposed a series of algorithms to handle imprecise circuits in this 

chapter. A comparison algorithm was described to compute imprecision 

between two components, and a verification algorithm was then proposed to 

verify whether a given implementation satisfies the error bound. We 

determined that a sequential method can find a feasible implementation to fit 

the given error bound, while optimization algorithms are designed to obtain 

optimized implementations in terms of different constraints, including the 

smallest area, minimum delay and interface input bit-width. We saw that these 

algorithms can process both Taylor series and multivariate polynomials, and 

cover various applications of imprecise circuits. The experiments used several 

arithmetic circuits as benchmarks to verify these algorithms and the results 

were satisfactory.  

  

Case E Constraint Parameter Delay (ns) Area (Slices) 
exp(x) 1e-4 fixed input (7,17,16,16) 11.85 1662 
exp(x) 1e-4 delay (7,15,17,17) 9.13 1536 
exp(x) 1e-4 area (8,14,19,17) 10.1 1389 
B-spl 5e-4 fixed input  (-,11,11,16) 6.37 422 
B-spl 5e-4    area (-,10,16,19) 5.76 396 
Cheby 3e-3 fixed input  (-,18,-,8) 13.58 1758 
Cheby 3e-3    area (-,16,-,9) 12.23 1439 
Filter 50 fixed input  (15,14,12) 14.9 2646 
Filter 50    area (13,13,13) 13.79 2435 
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Chapter 7  

Range Analysis 
 
 

 

 

Range analysis is an important task for obtaining the best cost 

and performance of arithmetic circuits. The traditional methods, 

either simulation-based or static, have the disadvantages of low 

efficiency and coarse bounds leading to the use of unnecessary bits. 

We propose a new method of performing fixed-point range analysis 

that combines several techniques to efficiently obtain exact ranges. 
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7.1 Disadvantages of Traditional Methods 
In Chapters 5 and 6, we analyzed precision and proposed a series of 

algorithms to process the design and verification of imprecise circuits. In this 

chapter we address range and allocate integer bit-widths. Allocating bit-widths 

in a datapath is a necessary step in the synthesis because of its direct impact on 

resources and delay. Manual or sub-optimal methods might over- or 

under-allocate bit-widths. Too few bits will cause overflow, while too many 

are not cost efficient. Therefore, an automatic way of finding the most 

appropriate bit-widths is a significant contribution in the high-level synthesis 

of datapaths. 

In obtaining the optimal allocation of bit-widths, the data representation that 

exposes the variable ranges plays a key role. If we can find the exact ranges 

for all intermediate variables we can achieve the smallest bit-widths, which 

will reduce both the circuit area and the delay. Chapter 2 explored past 

attempts at this. In the range analysis so far, there is a clear separation among 

the solutions that deal with the quality of the result versus those where the 

computation time has been the focus, without the explicit possibility to exploit 

the specifics of a given problem. Dynamic methods and SMT focus on tight 

ranges, while IA and AA are designed to shorten the calculation time. Figure 

7.1 compares the time requirement for each method. 

 

Exact
Range

Time

Under-allocated
Bit-width

Over-allocated
Bit-width

Simulation Simulation

E

SMT AA IA

TimeSmall SmallLarge
 

Figure 7.1: Tradeoff between ranges and calculation times 

 
The error E, defined as the largest difference between the true and the 
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resulting range values, reflects the method accuracy. The goal is to obtain the 

smallest value of E whilst maintaining the one-sided error, i.e., not 

underestimating the bit-width. From the figure, SMT, AA and IA may 

overestimate ranges, which may generate additional bits for data 

representation.  

 
Example 7.1: Use of IA and AA in range calculation. Consider the 

implementation of a function z=ab+c-b with the range of signals as shown in  

square brackets in Figure 7.2.  

Using IA is easy to get the ranges for each output. For example, dI = ab is 

calculated as [min(-1*4, -1*10, 2*4, 2*10) , max(-1*4, -1*10, 2*4, 2*10)]= 

[-10, 20]. In AA, an ordinary interval [xmin, xmax] for an input variable can be 

converted into an equivalent affine form 0 1Ax x x ε= +  with 

max min
0 2

x xx +
=             

max min
1 2

x xx −
=         (7-1)   

The intermediate signal or the output is represented as a first degree  

polynomial: 

0 1 1 2 2 ...A n ny y y y yε ε ε= + + +  

where y0, y1, ... yn are floating-point numbers and 1 2, ... nε ε ε  are symbolic 

variables whose values are only known to lie in the range[-1,+1]. 

b = [-1,2]

zA= [-34, -4]

a = [4,10]c= -22

dA=[-13,20]

eA=[-35, -2]

Input
Variables

Intermediate
Variables

Output
Variable

dI=[-10,20]

eI =[-32, -2]

zI = [-34, -1]

d =[-10,20]

e=[-32, -2]

z = [-31, -4]
 

Figure 7.2: Example performing z=ab+c-b by IA and AA 

In affine forms, we get: 
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aA=7+3 1ε            bA =0.5+1.5 2ε            cA = -22 

dA = aAbA = 3.5+1.5 1ε +10.5 2ε + 4.5 1 2ε ε  = 3.5+1.5 1ε +10.5 2ε + 4.5 3ε  

eA = dA + cA = -18.5+1.5 1ε +10.5 2ε + 4.5 3ε  

zA = eA - bA = -19+1.5 1ε + 9 2ε + 4.5 3ε  

 
Figure 7.2 describes the exact ranges and the ranges obtained by IA and AA 

respectively. We observe that by AA the intermediate variable e must be 

represented by 7 signed integer bits since its range is beyond [-32, 31] by 6 

signed integer bits, and the primary output is also using 7 bits; however, 6 bits 

are enough for the exact ranges to represent e and z since their ranges are [-32, 

-2] and [-31, -4]. The reason is as 1 2 3ε ε ε=  in aAbA, so the term 1 2ε ε  is 

dependant of the two variables 1ε  and 2ε , but AA uses a new variable 3ε  

as a substitution. This new variable is independent of 1ε  and 2ε , hence AA 

has to extend the range.  

  Note that AT can encode intervals, as required in range analysis. It is easy 

to represent an entire domain, that is, [0, 2N-1] for unsigned integers and [-2N, 

2N-1] for sign extended integers. AT can represent them compactly as 
1

0
2

N
k

k
k

x
−

=
∑  

and 
2

1
0

(1 2 ) 2
N

k
N k

k
x x

−

−
=

− ∑ . For example, the expression of 8x3+4x2+2x1+x0 

represents the entire domain [0, 15]. However, in order to represent the subset 

of [0, 13], the expression, needs a larger polynomial, 8x3+4x2+2x1+x0 

-14x3x2x1-x3x2x1x0. Obviously, the subset generates a much more complex 

expression, and if there are operations such as multiplication and 

exponentiation, a number of AT terms will be generated leading to  

a need for a branch-and-bound search.  

Considering the features of AT, Example 7.1 provides useful information for 

range analysis: 

 AA can get the tighter range than IA. For instance, the range of the final  

output z in the datapath obtained by AA is tighter than that of IA. 

 IA is not always worse than AA. Observing the intermediate variables “d” 

and “e” in Figure 7.2, IA gets the tighter ranges than AA, because there is 

no correlation existing in the two intermediate outputs d = ab and e = ab-c. 
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Correlation is the concept defined in [42], meaning that if the value of a 

term in a polynomial changes, the other terms will follow the change. If the 

polynomial exhibits no correlation, IA is better than AA; otherwise, AA is 

better. 

 AA can represent the arbitrary input range compactly while AT might not, 

so the input is better to be represented by AA. We note that if the uncertain 

variable ε in AA takes an entire range (say normalized to [-1, 1]), AT may 

easily represent it.  

 The worst case is when the unit quantity of range leads to an additional bit. 

For example, if the exact range of e is [-32, -2] and if the lower bound 

moves by 1, leading to -33, an additional bit will be generated. Since the 

intermediate variables cannot obtain the exact range, the datapath 

propagates the coarse ranges backward to lead the inexact result. Of course, 

the additional bits are useless and cause unnecessary area and deteriorate 

the performance.  

In terms of the above analysis, we conclude that the advantages of IA, AA 

and AT are complementary and can be used together, as long as they are 

employed in suitable conditions. Hence, a hybrid algorithm for the static range 

analysis and bit-width optimization is appealing. In this chapter, we introduce 

the methods that try to achieve the exact ranges and the short calculation time 

concurrently, by tackling every (sub-)problem in a precise, yet efficient way, 

depending on its nature. We develop a hybrid engine that can get exact ranges 

while reducing the calculation time as much as possible by analyzing the 

correlation between the variables, which then lends itself to a selection of a 

best approach for a given (sub-)problem. The method combines advantages of 

IA, AA and AT with high efficiency. It is capable of obtaining the exact ranges 

and allocating the smallest bit-widths to find optimized implementations with 

the smallest area. 
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           7.2 Datapath Analysis 
In order to develop the hybrid engine, it is useful to analyze the polynomial 

representing a datapath. We use Example 7.1 to assist the explanation of the 

analysis. 

 
 

7.2.1 AA Expressions  
The datapath of Example 7.1 has three primary inputs, two intermediate 

outputs and one primary output. The three primary variables a, b and c are 

represented by AA in terms of Eqn. (7-1) as: 

aA=7+3 1ε        bA=0.5+1.5 2ε         cA= -22 

The first intermediate variable is d = ab. It is easy to confirm that there is no 

correlation in the polynomial since a and b are independent, and the two 

variables only occur once in the polynomial, so the range of d can be 

calculated by IA, that is, [-10, 20]. Although it is simple to get the range of d, 

the AA expression is necessary since in the future the expression may be used. 

So we get: 

dA=aA bA = (7+3 1ε ) (0.5+1.5 2ε ) =3.5+ 1.5 1ε +10.5 2ε + 4.5 1 2ε ε      

Then the next intermediate variable in the datapath is e = ab+c. By 

scanning the polynomial, there is also no correlation, so the range of e is 

calculated by IA, that is, [-32, -2]. The AA expression of e is:     

eA = dA – cA = -18.5 +1.5 1ε  +10.5 2ε  + 4.5 1 2ε ε  
  The final step is to determine the range of the primary output z =ab + c - b. 

The polynomial has correlation because the variable b occurs two times in the 

polynomial, so the two terms of “ab” and “-b” have correlation. The case is 

much more complex than the cases without correlation. The AA expression of 

z is: 

                   zA = -19 +1.5 1ε  + 9 2ε  + 4.5 1 2ε ε      
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7.2.2 Determining Quantization Bits of Uncertain 

Variables 
  As 1ε  and 2ε  belong to [-1, 1], AT can represent the scope approximately 

by m bits as a signed fractional number, i.e., 
1

0
1

(1 2 ) 2
m

i
i

i

x x
−

−

=

− ∑  in Figure 7.3. 

 
sign 0.5 0.25 0.125

x0 x1 x2 x3… 

                  Figure 7.3: Data format of the signed factional number 

 
  If we can determine the value of m, the output is represented compactly and 

the approximation can be evaluated. So the next step is to choose the 

appropriate bit-widths for 1ε  and 2ε . 

  From the Example 7.1, the worst case occurs if the approximation error is 

beyond 1, when it is possible to generate an additional bit. The uncertainty 

must be limited to 1 unit to avoid this case, and the inequality becomes: 

1 2 1 2| 1.5 | | 9 | | 4.5 | 1err err errε ε ε ε+ + <
r r r r

 

1ε
r

 and 2ε
r

 are quantized uncertain variables to replace 1ε  and 2ε . So 

there is the inequality: 

1 2| 4.5 | 1errε ε <
r r

  ⇒   4.5[1- (1-2-m+1)2 ] <1 

The reason to choose the term “ 1 24.5ε ε
r r ” first is because the term has 

second-order uncertainty while terms such as 11 .5ε
r  and 29ε

r  have 

first-order uncertainties. The order of uncertainty for a monomial is defined as 

the degree summation of uncertain variables in the monomial. The preferential 

choice of the term with highest order uncertainty is helpful to decrease the 

calculation complexity. Obviously when all bits in the data format are 1, the 

fractional number has the largest approximation error 2-m+1, or else 2-m for 

other values. For instance, in the Figure 7.3 to approximate “1”, while x1, x2 

and x3 are all 1, the error is 2-3 = 0.125, and in other values the error is 2-4 = 

0.0625. While the maximum error is 2-m+1, the value of 1ε
r

is 1-2-m+1 and 1 2ε ε
r r

equals to (1-2-m+1)2. Therefore, the maximum error of the term 1 24.5ε εr r is 
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represented as 4.5[1- (1-2-m+1)2]. Here we assume that 1ε
r

 and 2ε
r

 have 

uniform bit-widths m. 

By solving the inequality, the value of m is 5, that means, 1ε
r

and 2ε
r

both 

have 5 bits at least to satisfy that the approximation error is restricted to 1 unit. 

Substituting 1ε
r

= 2ε
r

= 0.9375 as five bits, the real value is 4.5 * 0.93752 = 

3.955. 

  We conclude that the real maximum error is 4.5 – 3.955 = 0.545 so the left 

error space is 1-0.545 = 0.455. Then we explore the term 1.5 1ε
r

. The 

inequality is 1.5 * 2-m+1 < 0.455. So 1ε
r

 must have three bits at least. 

Considering 5 bits in the term 1 24.5ε ε
r r  and 3 bits in the term 11 .5ε

r , 1ε
r

 

should be 5 bits to satisfy the two terms at the same time. So we get 11 .5ε
r = 

1.5 * 0.9375 =1.40625.  

  The real maximum error for the term 11 .5ε
r  is 1.5-1.40625 = 0.09375 so 

the left error space is 1-0.545-0.09375=0.36125. The final term 29ε
r must 

satisfy the inequality 9 * 2-m+1 < 0.36125.  

The bit-width of 1ε
r  is 6 in the inequality and in combination with the 

bit-width in the term 1 24.5ε εr r , we obtain the final bit-width of 2ε
r

is 6. At last, 

we determine the two uncertain variables have 5 and 6 bits. The expression of 

z is changed as: 

z = -19 +1.5
4

0
1

(1 2 ) 2 i
i

i
x x −

=
− ∑ + 9

5

0
1

(1 2 ) 2 i
i

i
y y −

=
− ∑ + 4.5

4 5

0 0
1 1

[(1 2 ) 2 ][(1 2 ) 2 ]i i
i i

i i
x x y y− −

= =
− −∑ ∑                    

By invoking the conversion algorithm and the branch searching algorithm, 

the lower bound and the upper bound are -4.7881 and -30.3814. Since the 

bounds are approximate to the exact bounds, and the absolute values of 

uncertain variables are smaller, the calculated bounds should be covered by the 

exact bounds, so we get the exact bounds of the primary output are [-31, -4].  

If the term 1 24.5ε εr r  is not chosen first, 1ε
r and 2ε

r both need 8 signed bits 

for representations. Although the obtained range of z is same, the calculation 

time increases much more since more quantization bits burden the conversion 

algorithm and the branch searching algorithm. Hence, the first choice of the 

term with higher uncertain degree is very significant. 
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7.2.3 Allocating Bit-widths for All Outputs 
It is easy to allocate the bit-widths After all intermediate ranges have been 

obtained. The integer bit-width (IB) is calculated as:  

IB = [log2 (max(|xlow|, |xupp| ))] + α               (7-2)        

where 

               mode(log2|xupp|, 1) ≠ 0 

                     mode(log2|xupp|, 1) ≠ 0 

  In Eqn. (7-2), xlow and xupp represent the lower and the upper bound of the 

obtained range, and the square bracket is the ceiling function. The intermediate 

outputs and the primary output all have signed 6 bits since their ranges are 

restricted in the scope [-32, 31]. Compared to AA, e and z save one bit;  

compared to IA, the final output range is much tighter.  

Our method combines techniques of IA, AA and AT. If the polynomial has 

no correlation, it adopts IA to calculate the range; if not, using AA gets 

compact expressions while AT is applied to handle correlation. The step of 

quantizing the uncertain variables in AA expressions keeps trace to the 

correlation, hence the accuracy is guaranteed. Therefore, the method avoids 

their disadvantages and integrates each advantage, and hence it can process the 

worst case to obtain exact ranges.    

 

 

7.3 Algorithm for Calculating Ranges 
  Figure 7.4 describes the algorithm to allocate bit-widths in a datapath. It 

first retrieves the polynomial description, and gets the AA expression for 

future utilization. If the polynomial has no correlation, IA is used to get the 

exact range so the bit-width is determined; if not, the uncertain variables are 

quantized in AA expression, the conversion algorithm is invoked to convert 

the expression to an AT, and the branch-and-bound searching algorithm finds 

the upper and the lower bounds. Finally, the bit-width of the output is 

allocated. 

 

1
2

a ⎧
= ⎨
⎩
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Figure 7.4: Algorithm of allocating bit-widths  

 
The two key steps in Figure 7.4 are how to confirm correlation and quantize 

uncertain variables. Figure 7.5 describes how to check whether a polynomial 

has some correlation. The symbol n represents the number of input variables in 

the polynomial and the symbol t[i] records occurred times of the variable vi. If 

all variables occur only once, the function clearly exhibits no correlation.  
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Algorithm for confirming correlation 

 

Confirm_correlation (f) 

{  for (p=0; p<terms_num; p++)   // loop all terms 

{ for (i=0; i<n; i++) 

if (variable vi is present) 

      t[i]++;   // count appearances for the variable 

   }   

   for (i=0; i<n; i++)  

{  if (t[i] >1)   // the polynomial f has correlation 

     return corr_flag = 1;    

}  
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  In Example 7.1, the algorithm scans the intermediate variable d and finds 

that the variables a and b only occur one time in the polynomial, so no 

correlation exists; similarly, the variable b occurs two times in the expression 

of z, so the polynomial has correlation and IA cannot obtain its range directly. 

AA and AT are used to process the case. The important step is determining the 

quantization bits for each uncertain variable. Figure 7.6 describes the 

subroutine.  

The subroutine sorts the terms in the AA expression. The terms with higher 

uncertain degrees are explored with higher priority. Considering the worst case, 

the initial error space is set to 1 unit, so the initial bit-widths of uncertain 

variables can be procured. The error space is reset and the sub-routine 

continues to handle the next term. After all terms are processed, the final 

bit-widths of corresponding uncertain variables are the maximum obtained 

bit-widths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.6: Algorithm of determining quantization bit-widths for uncertain variables 

Determine_uncertain (AA_Expre) 

{  for (p=0; p<terms_num; p++)  

// loop all terms in AA_Expre 

   { if (current_term.degree < next_term.degree) 

       Move_forward (next_term); 

   }  // sort terms with higher uncertain degrees;   

   error_space = 1; 

   for (p=0; p<terms_num; p++)  

// loop all sorted terms  

   {  )])./_1(1(log1[ deg/1
2

ree
p coefftermspaceerrorm −−−= ; 

   error_space = error_space - term.coeff * [1- ree
m

i

i deg
1

1

)2(∑
−

=

− ]; 

   store mp in corresponding uncertain variable ε ; 

} 

for (i=0; i<uncertain_var_num; i++) 

qi = max (bit-widths for the uncertain variable iε ); 

   return q;  } 
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The initial error space limits the deviation of the obtained ranges - the unit 

value can cause the worst case to make the obtained ranges not equal to the 

exact ranges. The efficient AT conversion and branch-and-bound searching are 

instrumental to the high efficiency in performing the range analysis. 

 

 

              7.4 Experimental Results 
We implement the algorithm by C++. The benchmarks are described by 

Verilog HDL augmented with the datapath representation and range 

information. We try several benchmarks to assess its performance. 

Experiments are done on a 512MB, 2.4GHz Intel Celeron machine under 

Linux. 

 
 

7.4.1 Filter Polynomial 
  Image processing applications often use polynomial filter with presentation 

given by:  

                 F = a1x4 + a2x3 + a3x2 

  Here we consider an example as (X∈[-20, 10]):  

F = 4X4 + 16X3 + 20X2 

   The implementation has four intermediate variables. 

q1 = X2        q2 = q1X           q3 = q2X  

q4 = 4q2 + 16q3            z = q4 + 20q1 

 

 

 

 

 

Table 7.1: Comparison with AA for filter polynomial 

 
 

Output Our Method AA 
Range Bit Range Bit 

q1 [0, 400]  9 [-350, 400] 10 
q2 [-8000, 1000] 14 [-8000, 7750] 14 
q3 [0, 160000] 18 [-158750,160000] 19 
q4 [-108,512000] 20 [-511000,534000] 21 
z [0, 520000] 19 [-511000,542000] 21 
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7.4.2 Dickson Polynomial 
Dickson polynomials have important applications in coding and 

communication areas. The definition for n>0 is:  

D0(x, a) = 2        Dn(x, a) =  

   

The polynomial contains two variables. Here we explore the implementation 

of the 4th order polynomial over real numbers (assume x∈[-50, 50], a∈[-20, 

40]):  

  D4(x, a) = x4 -4x2a + 2a2 

  The implementation has 5 intermediate variables from q1 to q5:  

   q1 = x2        q2 = q1
2           q3 = 4q1a 

 q4 = 2a2           q5 = q2 – q3       z = q5 + q4  

 

Table 7.2: Comparison of our method, AA, improved simulation  

and AT for Dickson polynomial 

 
 

7.4.3 Multivariate Datapaths  
  Here, a datapath is always expressed by a polynomial with multiple 

variables. The polynomial with 3 integer variables is:  

F = 30A2– 60AB - 40BC  

  Here A∈ [-20, 30], B∈ [10, 40] and C∈ [-10, 30]. The case is broken 

intermediately into: 

             q1 = 30A2         q2 = 60AB       q3 = 40BC 

Output Our Method            AA    Time (s) 
Range Bit Range Bit Ours Sim AT 

q1 [0,2500] 12 [-2500, 2500] 13 0.03 0.03 0.08
q2 [0，6250000] 23 [-6250000, 

6250000] 
24 0.04 0.14 1.56

q3 [-200000,400000] 20 [-400000, 
400000] 

20 0.06 0.2 0.25

q4 [0, 3200] 12 [-2800, 3200] 13 0.03 0.03 0.27
q5 [-6399,6450000] 24 [-6450000, 

6450000] 
24 1.15 > 60 1.87

z [-3199,6453200] 24 [-6453200, 6453200] 24 1.4 > 60 2.35

pnp
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pn
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    q4 = q1 – q2            z = q4 - q3 
 
                     

 

 

 

Table 7.3: Comparison with AA for a multivariate datapath 

 
 

7.4.4 Energy Spectral Density  
  The benchmark of energy spectral density [55] calculates: 

)()(
2
1)( * wFwFw
π

φ =  

where F(w) is the FFT of discrete signals. The experiments use an 8-point with 

each of the 8 inputs a complex number in [−128,128] + [−128,128]i. 

Table 7.4: Our method vs. AA vs. SMT for energy spectral density 

 
  We use the AA method introduced in [42] for comparison. In Table 7.1 to 

7.3, the intermediate variables’ and the primary outputs’ ranges are exact and 

far tighter than those of AA. Table 7.2 compares execution time with the 

methods of improved simulation and pure AT. Since the pure AT method 

generates more terms and spends time in conversion and the search, while the 

improved simulation has to calculate many points and compare them to found 

bounds, their execution time is much longer than our method. Table 7.4 

compares our results with those obtained by SMT [55]. Using a benchmark 

from [55], our method can get the exact ranges, while SMT obtains more 

Output 
Our Method AA 
Range Bit Range Bit 

q1 [0, 27000] 15 [-25650, 27000] 16 
q2 [-48000, 72000] 18 [-57000,72000] 18 
q3 [-16000, 48000] 17 [-28000, 48000] 17 
q4 [-45000, 60000] 17 [-82500, 69000] 18 
z [-93000, 76000] 18 [-131500, 97000] 19 

   
Output 

    Our Method            AA        SMT 
Range Bit Range Bit Range Bit 

0 [0, 2097152] 22 [-1835008, 2097152] 22 [-1, 2097153] 22 
1 [0, 1984106] 21 [-2373666, 2635814] 23 [-1, 1984106] 21 
2 [0, 1790022] 21 [-2269321, 2531463] 23 [-1, 1790022]  21 
3 [0, 2052757] 21 [-2373666, 2635814] 23 [-1, 2052757]  21 
4 [0, 2097152] 22 [-1835008, 2097152] 22 [-1, 2097153]  22 
5 [0, 1957096] 21 [-2373666, 2635814] 23 [-1, 1957096]  21 
6 [0, 1790023] 21 [-2269321, 2531463] 23 [-1, 1790023]  21 
7 [0, 2029555] 21 [-2373666, 2635814] 23 [-1, 2029555]  21 
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precise ranges than AA. Regarding the SMT results, since there are negative 

quantities, the bit-widths could require one additional bit, but as authors 

estimate that the function will only have positive values, the additional bit is 

omitted in their reporting. Reported runtime in [55] is on the order of 100s of 

seconds, while we spend 8.9 seconds for the same benchmark.  

 
 
7.4.5 Area of Optimized Implementations 

As the exact area of the resulting circuit depends on the technology used in 

mapping circuits, we perform further experiments with mapping to FPGAs. 

We map the circuits to Xilinx Virtex5 FPGAs using ISE tool, version 8.1, to 

evaluate the real area impact of the proposed algorithm in Table 7.5. Again, the 

implementations obtained by AA are used as comparison.  

 
 

 

 

 

 

 

 

Table 7.5: Area comparison of our method and AA 

 
The input bit-widths of the three benchmarks increase, reflecting in the area 

increase. Column 4 indicates the saving ratio. There are four variables which 

save bits in the filter benchmark, while another two benchmarks only have 

three variables, so the filter has larger area saving ratio. With the increase of 

the input ranges, the saving ratio decreases because the auxiliary area caused 

by additional bits reduces. Our method can achieve the optimized 

implementations with area smaller for around 6% - 12%. The delay of 

implementations is compared in Column 5 - 7. Due to the he smaller 

bit-widths, we are able to decrease delay around 6%- 10%. Hence, the hybrid 

method is helpful to both area and delay. The calculation time of AA is close to 

Circuit Area (Slices)      Delay (ns) 
Ours  AA Saving Ours AA Saving 

Filter  686 772 11.1% 23.5 26 9.62% 
Filter  725 805 9.96% 24.6 26.9 8.55% 
Filter  756 820 7.77% 25.4 27.5 7.64% 
Dickson 809 897  9.8% 31.3 33.5 6.57% 
Dickson 845 926 8.7% 32 33.9 5.6% 
Dickson 877 948  7.5% 32.4 34.1 4.99% 
MultiVar 532 574 7.3% 27.4 29.9 8.36% 
MultiVar 557 596 6.5% 27.9 30.2 7.62% 
MultiVar 588 623 5.6% 28.7 30.7 6.51% 
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1 second while our method requires 3 – 6 seconds. The increase in 

computation time pays off, as the obtained ranges are far tighter.  

 

 

                 7.5 Conclusions 
Range analysis is an important step in RTL synthesis since it directly 

impacts cost and performance. Previous methods, including the improved 

simulation-based techniques, are of low efficiency, while the AA-based 

methods reach coarse bounds. The coarse ranges may generate unnecessarily 

additional bits, leading to more costly circuits. In this paper, we propose a new 

method to calculate ranges statically. It combines techniques of IA, AA and AT 

to find ranges efficiently, while at the same time the obtained ranges can be 

exact, hence avoiding the generation of additional bits. The key to our hybrid 

method is the ability to handle the correlation. Each intermediate output can 

obtain the smallest satisfying bit-width based on the ranges; therefore, the 

optimal implementation with the smallest hardware area can be achieved. The 

experiments indicate that the method is much closer in computation time to the 

approximate methods such as AA-based rather than more exhaustive 

SMT-based, while at the same time optimizing the bit-widths, which 

necessarily leads to the efficient area and delay characteristics obtained by 

synthesis.  
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Chapter 8  
Combining Range and Precision 

 
 

 

 

  We discuss fixed-point circuits together with range and precision 

in this chapter. The important aspects lie in how to allocate 

appropriate integer and fractional bit-widths, and estimate the 

error. It is necessary to conduct the mathematic model of the circuit 

in order to get the optimized implementation. We analyze precision, 

and propose an algorithm to calculate range and optimize the 

allocation of fractional bit-width. Furthermore, circuits with 

feedbacks and floating-point representation are investigated.  
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8.1 Fixed-Point Representation 
We have discussed precision and range corresponding to fractional bit-width 

(FB) and integer bit-width (IB) respectively in above chapters. A fixed-point 

representation often has IB and FB concurrently. Figure 8.1 describes the two 

problems in the fixed-point representation.  

 

Fixed-point
Specification

(IB, FB)

Range Precision
 

Figure 8.1: Exploration of the fixed-point representation 

 
Example 8.1: A datapath with three primary inputs a, b and c is shown in 

Figure 8.2. The numerical bounds are given in the square brackets.  

b= [-2.8, 5.6]a= [-3.6, 4.2]

Intermeidate
Variable

Output
Variable

d

Input
Variables

c= [-2.5, 2.7]

e  

Figure 8.2: The datapath of Example 8.1 

  The datapath has one intermediate output d and one primary output e 

where d=ab and e=d+c. All variables need to be represented by the 

fixed-point format both with IB and FB.  

 
Important problems in the example are stated as follows: 

 How to get the value bounds for all variables? 

 How to allocate the bit-widths for all variables included the primary 

inputs? 
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 How to estimate the error for the primary output? 

 How to get the optimized implementation? 

The above four questions are most significant to all fixed-point circuits. 

Since the primary inputs have FB, we can conclude that the primary output 

also has FB. In real applications, engineers generally give the error bound to 

make the maximum difference between the exact value and the true value of 

the primary output restricted in the bound. The interplay of the four problems 

results in hardness of analysis. Determination of IBs relies on the values 

bounds of all variables, while determination of FBs and optimization rely on 

the error bound.  

  Past explorations only focus one aspect. For instance, authors in [55] 

investigate how to get ranges and then allocate IB, but they do not explore the 

precision so cannot allocate FB. The paper [42] analyzes both range and 

precision, and allocates IB and FB. But it has no capability to get the 

optimized implementation with the smallest hardware area. Exploring the four 

problems concurrently is difficult. In this chapter, we analyze range and 

precision, and propose an algorithm to allocate IB and FB, and then obtain the 

optimized implementation.  

 

 

     8.2 Analysis of Range and Precision 
  Now we use the Example 8.1 to help analysis of range and precision. The 

Chapter 7 has already given the algorithm that combines IA, AA and AT in 

Figure 7.3 to get the exact ranges. The algorithm represents primary inputs as 

AA expressions, and then checks whether the polynomial representing the 

datapath has correlation between monomials. If not, IA is invoked to get 

ranges; otherwise, it quantizes the uncertain variables, and the algorithms of 

AT conversion and branch searching are invoked to find ranges. The hybrid 

method has high efficiency and can get exact ranges to allocate smallest IB for 

all variables. Using the hybrid method in the Chapter 7, the minimum and the 

maximum integer parts of the intermediate variable d are -21 and 24 

respectively, while for the primary output e they are -23 and 26. Therefore, the 
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IBs for the two output are both 6 (included the sign bit). 

  So the main problem changes to how to analyze precision. It is easy to 

know the biggest error is 2-FB-1 if the fractional part has the length of FB.  

 
Example 8.2: Given the range of [0, 14.95], IB is 4 and let FB be 3. We can 

evaluate the precision is 2-4 = 0.0625. The maximum value “14.95” can be 

coded to “15” and the error is 0.05. There is a special case. If the range is [0, 

15.95], since the IB is only 4, the maximum value “15.95” is coded as 15.875, 

the error is 0.075 and beyond 2-4. In this case, the reason is that the IB 

restricts the coding to represent 16, so the largest error is not 2-FB-1 but 2-FB. 

 
 Generally, we do not consider the special case that the integer part equals 

2N-1.  If it occurs, as long as the IB increases one bit, the special case is 

cancelled. So we explore the biggest error 2-FB-1. Let a%  represent the exact 

value and a represent the true value. We get:  

       a%= a + 12 aFB− −
1ε                 b%= b + 12 bFB− −

2ε        (8-1)   

where FBa is the FB of a. Hence, the error at x due to finite precision effects is 

given by  

                          Ea = 12 aFB− −
1ε    

For multiplication: d% = a% b%  = ab + a Eb + b Ea + Ea Eb + 12 dFB− −
3ε  

              ⇒ Ed = a Eb + b Ea + Ea Eb + 12 dFB− −
3ε  

The primary output: 

 e%= d% + c%  = ab + a Eb + b Ea + Ea Eb + 12 dFB− −
3ε + c + Ec + 12 eFB− −

5ε  

⇒ Ee = a Eb + b Ea + Ea Eb + 12 dFB− −
3ε + Ec + 12 eFB− −

5ε  

Note that Ee would be at its maximum when the signals a and b are at their 

absolute maximum, that is, a = 4.2 and b = 5.6. We get the following 

maximum error at the output e% : 

max(Ee)=4.2* 12 bFB− − +5.6* 12 aFB− − + 22 a bFB FB− − − + 12 dFB− − + 12 cFB− − + 12 eFB− −   (8-2)  
We first assume all variables with uniform FBs, so get: 

        max(Ee) = 6.4 * 2-FB + 0.25 * 4-FB  < 0.01 

Solving the inequality, the FB is 10 which means if all variables have 10 bits 

for fractional representations, the error of the primary output can be limited in 
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the error bound. However, the uniform FBs do not lead to the optimized 

implementation. The Chapter 6 introduces how to use the AT size as the cost 

function to find the optimized implementation with the smallest area. 

Therefore, we need to represent the datapath by AT.  

  The sign bit is assumed to be the most significant bit (MSB) of the input 

vector. Figure 8.3 describes the fixed-point representation of a.  

 
 

               Figure 8.3: Fixed-point representation of variable a 

 
  Since the range of a is [-3.6, 4.2], the IB is 3 and one bit sign, so the AT 

representation is: 

        AT(a) = 
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The first part in Eqn. (8-3) represents the sign and integer number, while the 

second part represents the fractional number.    

  In Chapter 6, we introduce using AT size to indicate the area because AT 

size is in a good correspondence to the overall circuit area. The datapath is 

represented by AT as: 

 AT(d) = AT(a) * AT(b)  
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The AT size of the datapath is calculated by:  

                   |AT(f)| = |AT(d)| + |AT(e)|                (8-4)        

It requires the smallest |AT(f)| to obtain the optimized implementation with 

the smallest area. The uniform FBs for all variables are FBa = FBb = FBc = 

FBd =FBe =10 and the maximum error of the primary output is represented as 

Eqn. (8-2): 

max(Ee) = 2.1* 2 bFB− +2.8* 2 aFB− +0.25* 2 a bFB FB− − +0.5* 2 dFB−
 

+ 0.5* 2 cFB− +0.5* 2 eFB−  

IB FBsign

aFBa+3 aFBa+2 aFBa+1 aFBa aFBa-1 ...... a0
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  A searching algorithm is proposed in Figure 6.6. Observing the Eqn. (8-4), 

FBa and FBb have more impact on the AT size than FBc and FBd. Hence, 

starting from the uniform FBs, that is, FBa =FBb =FBc =FBd =FBe =10, the 

algorithm first decreases FBa and computs the AT size, until the calculated 

error of e is beyond the error bound. Then the algorithm backtracks to search 

FBb. After all possible implementations are found, the algorithm compares 

their AT sizes, and the implementation with the smallest AT size is the best one. 

In Example 8.1, the satisfying sequence is (each value in a bracket represents a 

variable FB): 

(10, 10, 10, 10, 10)→  (9, 10, 10, 10, 10)→ (8, 11, 11, 12, 13) →  (8, 11, 11, 

13, 12)→ (8, 11, 12, 11, 13)→ (8, 11, 12, 13, 11)→  (9, 9, 11, 12, 13)→  (9, 9, 

11, 13, 12)→ (9, 9, 12, 11, 13)→ (9, 9, 12, 13, 11) 

  The above implementations all satisfy the error bound. By calculating their 

AT sizes, the implementation of (9, 9, 11, 12, 13) has the smallest AT size, so it 

is the optimized implementation. Finally, the bit-width allocation of the 

optimized implementation is: 

a (4, 9)    b (4, 9)    c (3, 11)   d (6, 12)   e (6, 13) 

The first value is IB including the sign bit and the second is FB in the bracket.  

 

 

8.3 Algorithm for Finding  

Optimized Implementations 
  We propose an algorithm to allocate bit-widths for all variables in the 

datapath to satisfy the given error bound and get the optimized implementation 

with the smallest area in terms of the above analysis in this section.  

 

 

 

 

 

Problem 8.1: Finding the optimized implementation for a fixed-point datapath 

Inputs:    imp, E 

Constraints:  imprecision < E 

Outputs:   bit-widths of all variables 

Goal:   minimum |AT(f)| 



Chapter 8: Combining Range and Precision 

 164

  The inputs of the algorithm comprise the datapath structure and the error 

bound. The constraint restricts that the error of the primary output cannot 

break through the error bound. The AT size of the datapath is used as an 

indicator to the area, and the optimized implementation demands the smallest 

size.  

   

 

 

 

 

 

 

 

 

 

 
        Figure 8.4: Algorithm of finding the optimized fixed-point implementation 

 
Figure 8.4 describes the algorithm. It first invokes the algorithm introduced 

in Chapter 7 to get exact ranges of all variables, and allocates IBs (Step 1). 

Then the algorithm constructs the expression of the primary output and gets 

the uniform FBs (Step 2 and 3). After that, the AT size expression is obtained 

(Step 4). By analyzing the expression, the algorithm determines the variable 

searching order (Step 5). A loop begins in Step 6 in terms of the searching 

order, and decreases the variable FB with highest priority and calculates the 

error until the error is beyond the error bound (Step 6 - 9). Then, FBs of other 

variables will be updated (Step 10). The algorithm calculates the AT size, and 

stores it for the obtained satisfying FBs (Step 11 and 12); while the loop is 

finished, all AT sizes are compared to find the smallest one, so the optimized 

FBs are found.  

 
Example 8.3: Starting from the first group with the uniform FBs (10, 10, 10, 

Design_Opt_Imp (imp, E) 
1. {  IBs = Calculate_Range (imp); 
2.    Construct expression e of the primary output; 
3.    FB = Uniform_FB (e);  
4.    Construct expression of AT size |AT(f)|; 
5.    Determine the searching order V;  
6.    for (i=0; i< var_num; i++) 
7.    {  e = Calculate_error (--FBvi); 
8.       if (e < E)   continue;  
9.       else  ++ FBvi ;  
10.       Re-compute FBs of other variables;  
11.       |AT(f)| = Calculate_AT_size (AT(f), FBs); 
12.       Store (FBs, |AT(f)| ); 

} 
13.     Compare (|AT(f)| ); 
14.     return FBopt;  

} 
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10, 10), Figure 8.5 describes how to find the satisfying group (8, 11, 11, 12, 

13).  

The FBa is first decreased to get the group (9, 10, 10, 10, 10) and the 

calculation of the error is within the error bound, so the new group is 

satisfying. Then the algorithm continues to cut down FBa and finds that the 

group (8, 10, 10, 10, 10) cannot satisfy the error bound. However, the error 

caused by FBa is within the error bound, so the algorithm increases FBb to get 

the group (8, 11, 11, 10, 10). The new group does not satisfy the error bound, 

but the error addition caused by FBa and FBb is smaller than the bound, then 

FBc is increased to form the group (8, 11, 11, 11, 10). The procedure is 

continued until the group (8, 11, 11, 12, 13) is reached. Since the error is 

limited in the bound, the group satisfies the error bound. The searching 

process is repeated until all satisfying groups are found. Figure 8.5 lists all the 

traversed groups and the satisfying groups are marked by gray color.   

10,10,10,10,10

9,10,10,10,10

8,10,10,10,10

8,11,11,10,10

8,11,11,11,10

8,11,11,12,10 8,11,11,12,11

8,11,11,12,12

8,11,11,12,138,11,10,10,10

 
Figure 8.5: Finding next satisfying FBs  

 
If the coefficients also have fractional numbers, we can use the same 

multiplication analysis like d%  to process precision and search them together 

with other variables, so in the datapath all fixed-point variables can be 

allocated appropriate bit-widths to get the optimized implementation.  
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      8.4 Discussion of Cost Functions 
  In above analysis, AT size is a cost function to estimate hardware cost and 

choose the optimized implementation. There are other cost functions besides 

AT size. The usual one employs factorization. Given a polynomial to describe 

the specification, factorization allows us to find the optimized implementation 

with the smallest area. For example, the polynomial of c = ab + b2 has two 

word-level variables a and b. The direct implementation needs two multipliers 

and one adder. However, if using factorization method to change the form as c 

= b(a+b), the implementation only needs one multiplier and one adder. In this 

example, factorization plays as a cost function to shrink the number of 

multipliers.  

  However, factorization has an obvious disadvantage. For example, given 

two implementations of Taylor series with the first implementation having 5 

finite terms and 12-bit inputs, and the other with 6 terms and 10-bit inputs. 

They both have Horner forms and structures as Figure 6.11. Although the 

second implementation has one more stage, the input bit-width is smaller, that 

is, the multiplier size is 10*10 and smaller than the first one with multiplier 

size of 12*12.  

The case generates a problem: which factor has more impact on area, stage 

or multiplier size? The cost function of factorization (counting the number of 

multipliers) cannot answer the question because it is too coarse to estimate the 

cost. That is the reason why we use AT size as a cost function in Taylor series.  

 More commonly, given a specification represented by a polynomial, it can 

be minimized by many ways. Factorization is one possibility. However, as 

there is not a unique answer how to conduct factorization, we must be very 

careful here, as different approaches may have different multiplier sizes. For 

instance, using factorization needs a 12*12 multiplier, and another 

implementation needs two multipliers as 6*6 and 9*9, so the question is how 

to determine which implementation is better? Of course AT size can solve the 

problem. So there is a prerequisite to use factorization as a cost function, that 

is, all implementations must keep same size of multipliers. 

  It is possible to combine factorization and AT size. Consider an example:  d 

= ab +b2+ac with different bit-widths of a, b and c. There are three 
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implementations: 

 Direct implementation with 3 multipliers and 2 adders 

 Factorization by b:   d= b (a+b) +ac  with 2 multipliers and 2 adders 

 Factorization by a: d= a(b+c)+b2   with 2 multipliers and 2 adders 

The first one may need more area so factorization is possibly leading to the 

optimized implementation. Consider the latter two implementations. They 

have same numbers of multipliers and adders. Comparing AT sizes in the two 

implementations, we can choose the one with smaller AT size. That means, 

factorization and AT size can play together. In this case factorization is a 

coarse cost function and then using AT size refines it.  

 

 

 8.5 Sequential Fixed-Point Circuits 
 The above analysis and past explorations of fixed-point representations are 

based on combinational circuits. Given a datapath with FFs like Figure 8.6, the 

analysis of range and precision depends on the lengths of the FFs.  

 

b= [-2.8, 5.6]a= [-3.6, 4.2]

Intermeidate
Variable

Output
Varialbe

d

Input
Variables

c= [-2.5, 2.7]

e

FFs

FFs

g

h
 

Figure 8.6: A sequential datapath with FFs 

 
  If the lengths of the FFs equal to the lengths of their inputs, that is, (dIB= eIB, 
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dFB= eFB) and (gIB= hIB, gFB= hFB), the analysis of range and precision is the 

same as the combinational circuit without FFs. Otherwise, the sequential 

circuit may cause overflow, and the analysis expression is different with the 

combinational circuit. For instance, d and e are two different variables so they 

have their own precision expressions. Therefore, the analysis of sequential 

fixed-point designs has no special essence. 
 

 

8.6 Extension to Feedback Datapaths 
  Past explorations cannot process the datapaths with feedbacks. The usual 

datapaths with feedbacks are IIR (infinite impulse response) filters which 

apply to DSP. In this section, we propose algorithms to find ranges of circuits 

with feedbacks.  

 
 
8.6.1 Delay Units 

 A feedback circuit always includes delay units that consist of registers, so 

analyzing the characteristic of delay units is the first step. Figure 8.7 describes 

the relationship of the input range and the output range.  
 

z-1x [xmin, xmax] y [ymin, ymax]
 

Figure 8.7: A delay unit with ranges  

 
Since the delay unit only has the shift operation and cannot change the input 

value, its output keeps the same range as the input range, that is, ymin = xmin and 

ymax = xmax. Here xmin and xmax, ymin and ymax represent the lower bounds and the 

upper bounds of the input and the output respectively. 

 
 
8.6.2 FIR Filters 
  First, we explore FIR (finite impulse response) filters. The impulse response 
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is finite because it settles to zero in a finite number of sample intervals. The 

difference equation of Eqn. (8-5) defines the output of an FIR filter based on 

the input: 

                      
0

[ ] [ ]
N

i
i

y n h x n i
=

= −∑                     (8-5)         

where x[n] is the input signal, hi are the filter coefficients and N is the filter 

order which are commonly referred to as taps. The Z-transform of the impulse 

response yields the transfer function of the FIR filter: 

 

 

  FIR filters are inherently stable because all the poles are located within the 

unit circle. The absence of feedbacks means that any rounding errors are not 

compounded by summed iterations. The same relative error occurs in each 

calculation which makes implementation simpler. The main disadvantage of 

FIR filters is that a lot of taps  cause considerably more computation 

especially when low frequency (relative to the sample rate) cutoffs are needed. 

Figure 8.8 describes an implementation of the FIR filter with k+1 taps. 

 

        

Z-1 Z-1 Z-1......

+

y[n]

x[n]

h0 h1 h2 hn-k

x[n-1] x[n-2] x[n-k]

 
Figure 8.8: Implementation of the FIR filter with k+1 taps 

 
  Given the range of the input x, calculating ranges of intermediate variables 

and the primary output is easy. The ranges of the intermediate variables are 

calculated by the multiplication of the coefficients and the range of the 

primary input, and the range of the primary output is calculated by the addition 

of intermediate ranges. 

 
Example 8.4: The following circuit is a FIR filter with three taps. All ranges 
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are described in the square brackets. 

z-1 z-1
x [-5, 10]

0.1 0.3
-0.2

y [-4, 5]

a [-5, 10] b [-5, 10]

c [-0.5, 1]

d [-1.5, 3]

e [-2, 4]

f [-2, 1]

 

Figure 8.9: Ranges of a FIR filter 

  In the figure, the delayed variables a and b have the same ranges as the 

primary input x. The ranges of the intermediate variables c, d and f equal to 

the range of x multiplying the tap coefficients, and the range of the primary 

output y equal to the summation of the ranges of e and f.  

 
 
8.6.3 Linear Feedbacks – IIR Filters 
  Calculating the ranges of FIR filters without feedbacks is a simpler task 

compared to the much more complex case of IIR filters. IIR systems have an 

impulse response function that is non-zero over an infinite length of time. A 

condensed form of the difference equation is: 
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where R is the feedforward filter order, and bi are the feedforward filter 

coefficients; S is the feedback filter order, and ai are the feedback filter 

coefficients. The Z-transform of the impulse response yields the transfer 

function of the IIR filter: 
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 The first part in Eqn. (8-6) is the same as Eqn. (8-5) so the ranges are easy to 

find. We focus on the second part as feedbacks possibly leading to unstability, 

meaning that the range of the output is not convergent and will increase (or 

decrease) to infinity (or become infinitesimal). 
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Example 8.5: The following circuit has a feedback. The primary input x is 

limited in the range [-5, 10], and the output z has the expression of z =2(x+ 

z-1). It is obvious that the circuit is unstable since the range of z has no 

limitation.  

x [-5, 10]

2 z-1

z  

Figure 8.10: A circuit with a feedback 

Now we analyze why the circuit is unstable. We assume the circuit is stable 

and the range of z is [r0, r1] (r1 > r0). In terms of the above analysis of delay 

units, z-1 has the same range of z and they are considered as same variables 

since z-1 is driven completely by z, so the expression representing the datapath 

is: 

         2(2.5+7.5 1ε + 2
0101

22
εrrrr −

+
+

) = 2
0101

22
εrrrr −

+
+

 

    ⇒         5+15 1ε  = 2
0101

22
εrrrr −

−
+

−  

Since the assumption requires the convergence of z, the parts with certainty 

and the parts with uncertainty in the left and the right of the above equation 

should equal respectively:   

5
2

01 =
+

−
rr

                 15
2

01 =
−

−
rr  

By solving the two equations, we obtain r1= -10 and r0=20. The results violate 

the assumption r1 > r0  so the circuit is unstable and the output has no 

convergent range.  

 
  Example 8.5 describes how to explore whether the circuit with linear 

feedbacks is stable by AA. Now we amend the multiplicand coefficient in the 

Figure 8.10 to re-calculate the output range.  
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Example 8.6: The output z has the expression of z =0.25(x+ z-1). 

x [-5, 10]

0.25 z-1

z
 

Figure 8.11: A circuit like Example 8.5 with the different coefficient 

We get the expression by AA forms:  
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8
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8
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8
15

8
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By solving the equations, we get r1 =
3

10  and r0 =
3
5

− . The results fit the 

assumption of r1 > r0 that denotes the circuit is stable. Using this initial range 

to replace the unknown variable z-1 in the polynomial 0.25(x+ z-1) gets the 

final output range [
3
5

− , 
3

10 ] which is the same as the initial range. .The 

experiment proves the circuit is convergent to the range.  

 
Based on the two examples, we propose a method in Figure 8.12 to explore 

whether IIR is stable and calculate the ranges in the datapath if stable. It uses 

AA forms to express the implementation, and partitions the forms into parts of 

certainty and uncertainty after simplification (Step 2 - 4). Here CL and CR 

represent the certainty expressions in the left and the right of the AA form 

while UL and UR are the uncertainty expressions. The initial range is obtained 

by solving the equations of certainty and uncertainty (Step 5). If the condition 

r1 > r0 is satisfied, the initial range replaces the unknown feedback variable 

and the algorithm re-calculates the final output range (Step 7). Please note that 

the Step 7 is necessary since the initial range may under-estimate the bounds 
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so it needs refinement.  

 
   

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 
 
 
 
 
 
 

 

 

 

 

                 Figure 8.12: Algorithm of finding ranges of IIR filters 

 

Example 8.7: An IIR filter is described in the Figure 8.13. It has two taps with 

coefficients 0.2 and -0.3.  

 

Find_Linear_Range (imp) 

{ 

1.  Assume the range (r0 , r1); 

2.  AA_form = AA_Express (imp, r0 , r1);  

3.  Simplify (AA_form); 

4.  ({CL, UL}, {CR, UR}) = Partition (AA_form); 

5.  (r0 , r1) = Solve (CL= CR , UL = UR);  

6.   if (r1 < r0)   return “The circuit is unstable!”;  

else    

7.   {  (r0 , r1) = AA_Range (imp, r0 , r1); 

return range (r0 , r1); 

} 

} 

AA_Express (imp, r0 , r1) 

{   Using AA to replace known inputs; 

AAout = (r1 + r0)/2 +ε (r1 - r0)/2 ; 

Replace all feedback variables with AAout ; 

return AA_form;  

} 

AA_Range (imp, r0 , r1) 

{   loop all uncertain terms in the expression 

{  if (term.coeff < 0)      uncertain_var = -1; 

   else   uncertain_var = 1;  

   r1 += term.coeff * uncertain_var; 

} 

r0 = -r1 + constant;   r1 += constant; return (r0 , r1) 

} 
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Figure 8.13: An IIR filter with two taps 

The expression of the IIR filter is:  x+ 0.2* z-1 - 0.3* z-2 = z      
Using the AA form of z replaces z-1 and z-2 to get the representation in terms of 

step 2  

in Figure 8.13: 
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The results are r1 =9.09 and r0 = -4.56 so the filter is stable and the output has 

the convergent range. The initial range replaces the unknown variables z-1 and 

z-2 by the AA form 2.27+ 6.83 2ε  in the expression of x+ 0.2* z-1 - 0.3* z-2, so  

the polynomial changes to: 

21221 683.05.7273.2)83.627.2(*3.0)83.627.2(*2.05.75.2 εεεεε −+⇒+−+++  

The coefficient of the term “ 15.7 ε ” is positive so the algorithm sets 11 =ε  

while sets 12 −=ε  to get r1. Based on Step 7, the final output range is 

re-calculated as [-5.91, 10.46]. The ranges of the two intermediate variables 

can be calculated by the coefficients of taps as a=[-0.1.82, 2.09], b=[-3.14, 

1.77]. The range of the intermediate variable c cannot be calculated directly 

by the range addition of a and b because the two variables are both driven by 

z so present correlation leads to a coarse range. Using IA to calculate the 

range of c by range subtraction of z and x obtains [-0.91, 0.45]. By 

experiments, the output range is [-5.901, 10.447], after 14 iterations and the 

experiments prove the correctness of the calculated results.   

 

z-1

z-1

0.2

-0.3

zx [-5, 10]

c
a

b
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Example 8.8: An IIR filter is described like Example 8.7 in the Figure 8.13. It 

has two taps with coefficients 0.2 and 0.3.  

z-1

z-1

0.2

0.3

zx [-5, 10]

a [-2, 4]

b [-3, 6]  
Figure 8.14: An IIR filter like Example 8.7 with different coefficients 

The expression of the IIR filter is:  x+ 0.2* z-1 + 0.3* z-2 = z 

The representation of AA forms is:   

2
0101

2
0101

2
0101

1 22
)

22
(*3.0)

22
(*2.05.75.2 εεεε rrrrrrrrrrrr −

+
+

=
−

−
+

+
−

−
+

++

                    
⇒   2

0101
1 44

5.75.2 εε rrrr −
+

+
=+  

5.2
4

01 =
+ rr

                     5.7
4

01 =
− rr  

The results are r1 =20 and r0 = -10 so the filter is stable and the output has 

the convergent range. Using the initial range to replace the unknown variables 

z-1 and z-2 by the AA form 2155 ε+  in the polynomial of x+ 0.2* z-1 + 0.3* z-2, 

and the final output range is re-calculated as [-10, 20] which is the same as 

the initial range. By experiments, the output range is [-9.96, 19.92], and the 

two intermediate variables a and b have ranges [-1.98, 3.978] and [-2.96, 

5.95] respectively after 13 iterations. The experimental results are quite 

suitable to the calculated results.  

 
 

8.6.4 Non-linear Feedbacks 
  Consider a circuit with a non-linear feedback in the Figure 8.15. The 

expression is z = x + (0.25* z-1) 2. 
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x [-1, 2]

0.25

z-1

z

a

b

c

Forward
Path

Backward
Path

 

Figure 8.15: A circuit with a non-linear feedback 

 
If using the above method processing the non-linear feedback, we obtain: 

                    2
0101 )(323264 rrrr +−+=  

                 2
01

2
0

2
101 )()(2)(32128 rrrrrr −−−−−=  

 Obviously solving the two equations is difficult, so we need to develop a 

new method to handle the circuits with non-linear feedbacks. First we 

introduce a lemma. 

 
Lemma 8.1: If all intermediate variables have convergent ranges, the primary 

output is also convergent; vice versa, if the primary output has a convergent 

range, all intermediate variables are convergent.  

Proof: Convergent ranges of input passing through basic operations of 

multiplication and addition in a datapath results in a convergent output, that 

is,  
econvergenceconvergenceconvergenc →×  

econvergenceconvergenceconvergenc →+  

 So traversing the entire datapath creates a convergent primary output.  

 
  In Figure 8.15, we assume the primary output z is convergent. We split the 

datapath into the forward path and the backward path, and the feedback is 

included in the backward path. By Lemma 8.1, the variables a and b should be 

both convergent. The expression of the non-linear variable c is c = b2. Based 
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on the knowledge of power series, when the range of b lies in [-1, 1], the 

variable c obtains the range [0, 1] and forms a closure space to b, that is,

)()( brangecrange ⊆ , to guarantee convergence of the non-linear feedback. 

By the addition of x in the forward path, we obtain that the range of z is [-1, 3] 

labeled as zforward. We go back to the variable a from b, and conclude that the 

range of a is [-4, 4], and then we obtain that the range of z is [-4, 4] labeled as 

zbackward. The convergence requires the condition of backwardforward zz ⊆  because 

if the condition is violated, the real range of z will increase in each iteration 

and ultimately reach infinity (or infinitesimal). Now the ranges of zforward and 

zbackward satisfy the condition, we confirm that the circuit is stable.  

The different ranges of zforward and zback denote that the obtained ranges are 

coarse and they need to be refined. Let z = zforward then a loop calculation of z 

starts. Each loop begins to go through the backward path to get the range of c, 

and then follows the forward path to obtain the new range of z. The threshold 

value “0.01” is set. In two consecutive iterations, if the error of the two 

obtained ranges is smaller than the threshold, that is, |znew – zold| < threshold, 

the loop calculation is stopped. In this example, after four loops the threshold 

condition is reached, so finally we get the convergent range of z as [-0.944, 

2.341]. Figure 8.16 describes the algorithm to find ranges for circuits with 

non-linear feedbacks. 

The algorithm first splits the datapath to two sub-paths as the forward path 

and the backward path. The coarse range of the feedback variable is calculated 

in terms of the non-linear feedback expression. Then two ranges of the output 

are obtained due to the forward path and the backward path by the subroutine 

Calculate_range introduced in Chapter 7. Comparing the two ranges, if 

the circuit is stable, the algorithm starts a loop calculation until the error 

between the two consecutive obtained ranges is limited in the threshold. 

Therefore, the convergent range of the primary output is found.  
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Figure 8.16: Algorithm of finding ranges of circuits with non-linear feedbacks   
 
 

8.6.5 Experimental Results 
We implement the algorithm in Figure 8.12 in C++. Several benchmarks are 

sued to assess its performance. Experiments are done on a 512MB, 2.4GHz 

Intel Celeron machine under Linux. Using the variable y represents the first 

part in Eqn. (8-5) and the primary output is z.  

A) Butterworth Filters 
Butterworth filters are also known as "maximally flat" filters because they 

have no passband ripple. They also have a monotonic response in both the 

stopband and passband. The indicators of (wp, ap, ws, as) represent passband 

frequency, amplitude error, stopband frequency and stopband attenuation. 

The first Butterworth filter has indicators (0.2π , 1dB, 0.35π , 10dB), and 

the coefficients from smaller orders to larger orders are: 

b = (0.0456, 0.1027, 0.0154)    a = (1.9184, -1.6546, 0.6853, -0.1127) 

  The second Butterworth filter has indicators (0.2π , 3dB, 0.6π , 40dB), and 

Find_Nonlinear_Range (imp, threshold, input_range) 

{ 

(forward_path, backward_path) = Split (imp); 

feedback_range = Converge (feedback_expression); 

zforward = Calculate_range (forward_path, input_range);        

zbackward  = Calculate_range (backward_path, feedback_range);  

if ( backwardforward zz ⊄ )   return “The circuit is not stable.”;  

else  

{  znew = zforward ;   

while (|znew – zold| ≥ threshold ) 

  {  zold = znew ;  

     feedback_range = Calculate_Range (backward_path, zold);  

    znew = Calculate_Range (forward_path, input_range, feedback_range);

  } 

  return znew ; 

} 
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the coefficients are: 

b = (0.0473, 0.0709, 0.0473, 0.0118)  

 a = (1.8778, -1.6214, 0.663, -0.1087) 

The third Butterworth filter is a bandpass filter which has indicators ((0.3π - 

0.4π ), 3dB, (0-0.2π , 0.5π ), 18dB), and the coefficients are: 

b = (-0.042, 0.021)    a = (1.491, -2.848, 1.68, -1.273) 

B) Chebyshev Filters 
Chebyshev filters are analog or digital filters having a steeper roll-off and 

more passband ripple or stopband ripple than Butterworth filters. 

  The first Chebyshev filter has coefficients: 

b = (9.055E-5, 0, -0.00027, 0, 0.00027, 0, -9.055E-5) 

a = (5.765, -13.899, 17.936, -13.067, 5.095, -0.831) 

The second Chebyshev filter corresponds to the indicators (0.2π , 1dB, 0.3

π , 15dB) and has the coefficients: 

b = (0.0073, 0.011, 0.0073, 0.0018)    

 a = (1.5548, -2.9809, 2.2925, -0.5507) 

C) Cauer Filters 
A Cauer filter has a feature of equalized ripple behavior in both the 

passband and the stopband. The indicators of the Causer filter are (0.1π , 

0.1dB, 0.5π , 32dB) and the coefficients are given: 

b = (-0.724, 0.0984, 0, 0.00027, 0,-9.055E-5) 

           a = (3.3553, -4.3439, 2.5578, -0.5771) 

Table 8.1: Performance of the algorithm finding IIR ranges     
  

  Table 8.1 describes the ranges of the benchmarks. Column 2 denotes the 

input ranges, and the intermediate ranges and the primary ranges are shown in 

Column 3 and 4. Column 6 describes the real obtained ranges by simulation 

after iterations whose number is listed in Column 5. Column 7 and 8 indicate 

IIR  Input Range Range of y Output Range z Time 
(s) 

Memory 
(MB) 

Butter [-500, 1000] [-81.85, 163.7] [-511.9, 1023.1] 0.12   0.16 
Butter [-2000, 1000] [-354.6, 177.3] [-1970.3, 985.3] 0.15   0.19 
Butter [-5000, 10000] [-210, 105] [-2100, 4200] 0.15   0.2 
Cheby [-4E+5, 1E+6] [-504.8, 504.8] [-504800, 504800] 0.26   0.25 
Cheby [-3000, 2000] [-82.2, 54.8] [-120.9, 80.6]  0.16   0.2 
Cauer [-500, 800] [-500.3, 312.7] [-63309, 39602] 0.18   0.17 
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the algorithm performance of time and memory. From the table, we can find 

that the real ranges approximate the calculated ranges very well, and the 

requirements of time and space are satisfiable. Using simulation will spend 

huge time by a lot of iterations such as Row 5 and is hard to determine the 

lower bound and the upper bound. However, the algorithm can complete the 

job very easily.   

 

 

8.7 Extension to Floating-Point Circuits 
  If the radix point (decimal point, or, more commonly in computers, binary 

point) can "float", that is, it can be placed anywhere relative to the significant 

digits of the number, the representation refers to the term “floating-point”. 

Because the position of the radix point is indicated separately in the internal 

representation, floating-point representation can thus be thought of as a 

computer realization of scientific notation. 

The floating-point representation can support a much wider range of values 

than the fixed-point representation. For example, a fixed-point representation 

that has eight decimal digits, with the decimal point assumed to be positioned 

after the sixth digit, can represent the numbers 123450.67, 87654.32, 2345.00, 

and so on, whereas a floating-point representation (such as the IEEE 754 

decimal32 format) with eight decimal digits could in addition represent 

12.3456789, 123.4567, 0.0001234567, 1234567000000000, and so on. The 

floating-point format requires a little more storage (to encode the position of 

the radix point), so the floating-representation can achieve greater range at the 

expense of precision when stored in the same space.  

Floating point numbers are used to obtain a dynamic range for representable 

real numbers without having to scale the operands. Floating point numbers are 

approximations of real numbers and it is not possible to represent an infinite 

continum of real data into precisely equivalent floating point value.  

Logically, a floating-point number consists of [156]: 

 A signed digit string of a given length in a given base (or radix). This is 

known as the significand, or sometimes the mantissa or coefficient. The 
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radix point is implicitly assumed to always lie in a certain position within 

the significand — often just after the most significant digit. The length of 

the significand determines the precision to which numbers can be 

represented. 

 A signed integer exponent is a scale to modify the magnitude of the 

number. 

A floating point number system is completely specified by specifying a 

suitable base β, significand (or mantissa) M, and exponent E. A floating point 

number F has the value  

                       F = M βE 
β is the base of exponent and it is common to all floating point numbers in a 

system. Commonly the significand is a signed - magnitude fraction. The 

floating point format consists of a sign bit S, e bits of an exponent E, and m 

bits of an unsigned fraction M, as shown below:  

           
S Exponent E Unsigned SignificandM

 
The value of such a floating point number is given by:  

                  F = (-1)SM βE 
The most common representation of exponent is as a biased exponent, 

according to which  E = Etrue + bias, where bias is a constant and Etrue is the 

true value of exponent. The range of Etrue using the e bits of the exponent field 

is: 

122 11 −≤≤− −− etruee E  

The bias is normally selected as the magnitude of the most negative exponent; 

i.e. 2e-1, so that  

120 −≤≤ eE  
When comparing two exponents, which is required in the floating point 

addition for example, the sign bits of exponents can be ignored and they can 

be treated as unsigned numbers. This is an advantage of using biased 

exponent.   
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Representable
Negative Numbers

Representable
Positive Numbers

Negative
Underflow

Positive
Underflow

Negative
Overflow Positive

Overflow

< -21 27
> -2-126 < 2-126 > 2127  

Figure 8.17: Range of floating point numbers 

  Not only cannot all real numbers be expressed exactly, there are whole 

ranges of numbers that cannot be represented. Consider the real number line as 

shown in Figure 8.17. The number zero can be represented exactly because it 

is defined by the standard. The positive numbers that can be represented fall 

approximately in the range 2-126 to 2+127. 

Numbers greater than 2+127 cannot be represented; this is called positive 

overflow. A similar range of negative numbers can be represented. Numbers 

to the left of that range cannot be represented; this is negative overflow.  

 
Example 8.9: S=0, E=3 bits, M = 4 bits. Then the bias is 2E-1 -1 =3. The 

maximum range is: 

0 1 1 1 1 1 1 1
   

(-1)0 1.1111 27-3 = 1.1111 24 = 11111 = 3110 

The minimum range, assuming exponent 000 is reserved for zero.  

0 0 0 1 0 0 0 0
 

(-1)0 1.0000 21-3 = 1.0000 2-2 = 0.01 = 0.2510 

 
  The precision of floating-point numbers is not like fixed-point numbers 

which have uniform error as 2-FB-1. The error in each exponent value is 

different. Figure 8.18 describes the error with non-uniform distribution for 

Example 8.9.  

 
......

0.25 0.25+2-6 0.5 0.5+2-5

......

1 1+2-4

..... ........

16 16+20 31

......

      Figure 8.18: Non-uniform distribution error in floating-point representation 

 
  In the figure, there are 2M = 16 values in each exponent interval, and the 

smallest error is 2-7, that is, 
1(2 1 )2

E M−− − +  in the left axis, while the largest error is 
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12 12
E M− − − = 2-1 in the right axis. We can obtain the expression of each interval 

error as 12c bias M− − − . Here c is the coded value of the interval, and bias is 

calculated as 2E-1-1. For example, the interval “2” includes values from 2 to 

2+15*2-3. “2” is coded as “100” and bias is “011”, so they correspond to the 

values of “4” and “3” respectively. The interval error is calculated as 24-3-1-4 = 

2-4.  

  In terms of the above analysis, we can perform range and precision analysis 

for floating-point circuits. The range analysis is the same as the Chapter 7, and 

the hybrid method is also suitable for floating-point circuits to find exact 

ranges. Precision analysis is a bit different with the fixed-point circuits. Given 

the input range as [r1, r2], Eqn. (8-1) represents the relation between the exact 

value and the real value for fixed-point circuits. Since the floating-point 

representation has no uniform distribution error, the coefficient of the 

uncertain variable must set the largest error value: 

                           a%= a + 12c bias M− − − ε    

Here c is chosen the larger coded value in the two intervals of r1 and r2, that is, 

if | r1| > | r2|, we choose the interval coded value of r1; if not, we choose the 

interval coded value of r2.  

 
Example 8.10: The floating-point representation is as Example 8.9. The input 

range is a= [-7.5, 13]. Since the absolute values of the lower bound and the 

upper bound are 7.5 and 13 respectively, we choose the interval value of 13. 

Because the value “13” is located in the interval of “8”, the interval coded 

value is 110 as c=6, so the coefficient of the uncertain variable is 12c bias M− − −  

= 2-2. The expression of the exact input value is changed to a%= a + 2-2ε .  

  
  After we amend the input expression, the method of performing precision 

analysis in section 8.2 can also be used for floating-point datapath. So we 

extend the fixed-point process to the floating-point process. 
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8.8 Conclusions 
  Fixed-point representations often comprise integer and fractional bit-widths. 

The problems of exploring fixed-point circuits include range analysis and 

precision analysis. Since the circuits cannot get the exact fractional numbers, 

the satisfying implementation must fit the error bound, that is, the maximum 

error of the primary output is restricted by the bound. In order to find the 

attractive optimized implementation with the smallest area, it is necessary to 

obtain ranges and construct the precision models. The AT size plays an 

indicator to describe area. We propose an algorithm to find the optimized 

implementation in this chapter. It invokes the algorithm in Chapter 7 to get 

ranges and allocates IBs, and then calculates uniform FBs. Starting from the 

FBs, the algorithm searches all satisfying implementations and calculates their 

AT sizes. The implementation with the smallest AT size is the optimized one 

that can fit the error bound and have the smallest area.  

 The circuits with feedbacks are more complex to find ranges like IIR filters. 

We handle FIR filters without feedbacks only with delay units, and then 

propose a method to process IIR filters with linear feedbacks. The method can 

explore whether IIR filters are stable and calculate the ranges if stable. 

Furthermore, we analyze the circuits with non-linear feedbacks.  

Sequential datapaths with FFs are investigated to extend combinational 

models based on previous chapters. Floating-point representation is different 

with non-uniform error distribution. We analyze floating-point representation 

and develop the mathematical models for error distribution, then extend the 

methods processing fixed-point representation to the floating-point datapath.  
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Chapter 9  
Conclusions and Future Work 

 
 

 

 

                   9.1 Conclusions 
 As the complexity of integrated circuit increases rapidly, the challenge of 

time-to-market arises. In the overall design procedure, verification plays a 

significant role since it concentrates on most steps from system specification 

to manufacturing. Verification often requires beyond 70% time and capital in 

the whole ASIC design process. Because of its importance, engineers are 

forced to explore verification techniques. Simulation as a main technology has 

advantages of easy operation but low efficiency is the fatal weakness, so 

formal verification emerged. Various bit-level and word-level decision 

diagrams adapt to equivalence checking and model checking.  

  Fixed-point data format is suitable for a number of implementations of 

digital circuits. Traditional methods of dealing with imprecise fixed-point 

circuits have disadvantages in both verification and optimization. In our 

exploration, we adopt a spectral technique, that is, Arithmetic Transform, to 

investigate fixed-point circuits. Basic AT only represents combinational 

circuits, so three transform extensions have been proposed. The total four 

types of transforms form a complete group to represent complex 

combinational and sequential circuits, and every circuit can be represented by 

one type. Because obtaining a circuit transform is a significant step for 

verification, various spectral transformation methods have been explored. The 

most straightforward method relies on matrix multiplication, and a fast 

algorithm has been proposed. These methods all compute the transform 

directly. We design a new algorithm to obtain transform of a complex circuit 
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by composing transforms of detached blocks in the circuit. It is a method 

based on traversing the sub-block topology, to provide an efficient way to get 

the transforms for complex arithmetic circuits.  

  The fixed-point representation often includes IB and FB. First, we explore 

them separately. As a big category, imprecise circuits need to be explored 

carefully. They are different with common circuits because they have a feature 

that the implementations do not match the specifications exactly, so decision 

diagrams have no capability to handle them. Many methods have been 

developed. Dynamic analysis based on simulation is usually used to 

investigate range and static analysis is applied such as IA and AA to avoid its 

disadvantage. They primarily handle optimization of input bit-width but do not 

consider other factors, so AT is introduced in the work to make up the 

weakness.  

We explore imprecise circuits such as ones realizing Taylor series-based 

algorithms, and construct mathematical expressions for each imprecise factor 

due to AT representations. A series of algorithms that can process function 

approximation and bit-widths concurrently and handle Taylor series and 

real-valued polynomial with multiple variables are designed for verification 

and optimization due to various constraints.   

  Imprecise circuits do not confine the utilization of AT. We develop a fast and 

accuracy-guaranteed method to perform range analysis for arithmetic circuits 

by mixed techniques. The method can find the maximum value and the 

minimum value for each intermediate output in the datapath in terms of given 

input ranges, and allocate the smallest bit-width. Since the method does not 

extend the range and handles polynomials statically, it can obtain exact ranges, 

and avoid low efficiency simulation. The obtained smallest bit-widths lead to 

the optimized implementation with the smallest area.  

  Finally, we combine range and precision together. In the datapath of 

fixed-point representation, given the error bound, the most important problem 

is confirming the bit-widths include IBs and FBs for all variables. The 

appropriate bit-widths must fit the error bound, and lead to the implementation 

with the smallest area. We propose an algorithm to solve the problem. It can 

allocate the smallest IBs, and find non-uniform FBs to satisfy the error bound 

and obtain the optimized implementation with the smallest area. 
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             9.2 Future Work 
  Exploring range value and component difference are always hot topics. 

They refer to circuit optimization with smaller area or faster speed and keep 

attracting engineers. We resolve the problem for fixed-point circuits and obtain 

good results. In the future, we will continue to explore optimized 

implementations in different constraints, and extend the method to process 

floating-point circuits and more subtle error models will be investigated.  

  In the area of formal verification, the derived transformations for 

compositional verification encourage verification for Intellectual Property (IP) 

cores. It would be helpful if a set of appropriate benchmarks are devised to 

quantify the quality of such methods. Additionally, although highly promising, 

AT might not be the only transformation that is appropriate for the formal 

verification applications presented in this thesis. The greatest opportunities in 

verification lie in the combination of the two approaches: simulation-based 

and formal. A study of suitable data structures and their concrete 

implementations would complement the research presented here. 
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