

Optimization of Fixed-Point Circuits

Represented by Taylor Series and

Real-Valued Polynomials Including

Analysis of Precision and Range

 Yu Pang

 Department of Electrical and Computer Engineering

 McGill University

 A thesis submitted to McGill University in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

 © Yu Pang, 2010

March, 2010

Acknowledgements

I would especially like to thank my supervisors, Dr.

Radecka and Dr. Zilic who give me an opportunity to do

this research in which I am really interested, and make this

thesis possible in the Department of Computing and

Electrical Engineering at McGill University. I sincerely

cannot help expressing how I should credit this thesis to

their support and guidance.

Very special thanks are also due to my dad and mum

and my wife, Mrs Aolei Cui, and all of my friends in IML

lab for their great support and encouragement in whole

remarkable days.

Many thanks to everybody who ever gave me help and

support.

To Dad and Mum

&

Aolei Cui

 I

Table of Contents

LIST OF TABLES...VI

LIST OF FIGURES..VII

ABSTRACT..XI

CHAPTER 1 INTRODUCTION...1
 1.1 Design Flow..2

1.2 Verification Approach..3

 1.2.1 Simulation..5

 1.2.2 Emulation...6

 1.2.3 Formal Verification..6

1.3 Introduction of Fixed-Point Arithmetic...11

 1.3.1 Fixed-Point Range – Integer Portion..11

 1.3.2 Fixed-Point Resolution – Fractional Portion ..13

 1.3.3 Range & Resolution...14

1.4 Thesis Goal and Contributions...16

 1.4.1 Compositions of AT and Extensions..16

 1.4.2 Imprecise Circuits...18

 1.4.3 Range Analysis...21

 1.4.4 Exploration of Fixed-Point Circuits...22

1.4.5 Contributions...22

CHAPTER 2 BACKGROUND.. 23
 2.1 Function Representations ...24

 2.1.1 Truth Table..24

 2.1.2 Shannon Expansion...25

 2.1.3 Polynomial Representation...26

 2.1.4 Boolean Satisfiability..27

 2.2 Decision Diagrams ..28

 2.2.1 Binary Decision Diagrams...28

 II

2.2.2 Reduced Ordered Binary Decision Diagrams..28

2.2.3 Multi-Terminal BDDs...32

2.2.4 Binary Moment Diagrams..32

2.2.5 Taylor Expansion Diagrams..34

2.2.6 Disadvantages of Decision Diagrams..36

 2.3 Dynamic Analysis...37

 2.4 Static Analysis...41

 2.4.1 Interval Arithmetic...41

 2.4.2 Affine Arithmetic..43

 2.5 Alternate Methods..48

 2.6 Conclusion..50

CHAPTER 3 COMPOSITIONS OF AT AND EXTENSIONS.....................51

3.1 Introduction of Spectral Transforms..52

3.1.1 Spectral Domain... 52

3.1.2 Various Transforms.. 53

3.2 Arithmetic Transform...57

3.2.1 Basic Definition... 57

3.2.2 Utilization of Spectral Techniques.. 60

3.2.3 Calculation of AT Coefficients... 62

3.3 Extensions of the Arithmetic Transform..64

3.3.1 Mixed Arithmetic Transform.. 65

3.3.2 Sequential AT Extensions... 66

3.4 Composition Subroutines..69

3.4.1 Composition of AT and MAT... 69

3.4.2 Composition of ATS and MATS.. 71

3.5 Overall Composition Algorithm..73

3.6 Experimental Results..76

3.6.1 ALU Circuit Implementation.. 76

3.6.2 CSA Circuit Implementation... 77

3.6.3 MAC Transform.. 79

3.6.4 Implementation of Hilbert Transform... 80

 III

3.7 Conclusion...82

CHAPTER 4 BASIC ALGORITHMS..83

4.1 Taylor Series..84

4.2 Algorithm of AT Conversion by Taylor Series...85

 4.2.1 Expansion Formula..88

 4.2.2 Isomorphic AT Terms Combination...89

 4.2.3 Weights of Expanded Terms..90

 4.2.4 Other Discussions..90

 4.2.5 Flow of Conversion Algorithm..93

4.3 Processing Multivariate Polynomials..93

4.4 Imprecision Searching Algorithm...97

 4.4.1 Basic Definitions of Branch Algorithm...97

 4.4.2 Branch-and-Bound Searching Algorithm..98

4.5 Experimental Results...101

 4.6 Conclusion..102

CHAPTER 5 ANALYSIS OF PRECISION PARAMETERS......................103

5.1 Imprecise Arithmetic Computations...104

 5.1.1 Finite Wordlength...104

5.1.2 Arithmetic Transforms and Imprecise Datapaths..................................105

5.2 Function Approximation Error...107

5.3 Input Bit-width and Quantization Error...108

 5.3.1 Effect of Finite Input Bit-width – Interval Analysis...................................108

 5.3.2 Tight-bound Interval Scheme...110

5.4 Quantization of Coefficients and Output..111

5.5 Conclusion..112

CHAPTER 6 ALGORITHMS FOR PRECISION VERIFICATION AND

 OPIMIZATION...113

6.1 Component Comparison...114

6.2 Verification of Implementations..115

 IV

6.3 Finding a Feasible Implementation..117

6.4 Designing Optimized Implementations with Constraints....................118

6.4.1 AT Size as a Cost Function... 119

6.4.2 Error Sensitivity.. 119

6.4.3 Constraint of the Smallest Area... 121

6.4.4 Constraint of the Minimum Delay.. 127

6.4.5 Constraint of Interface Input Bit-width... 128

6.5 Experimental Results...130

6.5.1 Comparison of Two Implementations... 130

6.5.2 Verification of Imprecise Circuits... 133

6.5.3 Finding Implementations with the Smallest Area.................................... 134

6.5.4 Finding Optimized Implementations due to Various Constraints.......... 139

6.6 Conclusion..141

CHAPTER 7 RANGE ANALYSIS...142

7.1 Disadvantages of Traditional Methods..143

7.2 Datapath Analysis..147

7.2.1 AA Expressions.. 147

7.2.2 Determining Quantization Bits for Uncertain Variables.......................... 148

7.2.3 Allocating Bit-widths for All Outputs.. 150

7.3 Algorithm for Calculating Ranges..150

7.4 Experimental Results...153

7.4.1 Filter Polynomial.. 153

7.4.2 Dickson Polynomial... 154

7.4.3 Multivariate Datapaths.. 154

7.4.4 Energy Spectral Density... 155

7.4.5 Area of Optimized Implementations.. 156

7.5 Conclusion..157

CHAPTER 8 COMBINING RANGE AND PRECISION............................158

8.1 Description of Fixed-Point Representation...159

8.2 Analysis of Range and Precision...160

 V

8.3 Algorithm for Finding Optimized Implementations...............................163

8.4 Discussion of Cost Functions...166

8.5 Sequential Fixed-Point Circuits..167

8.6 Extension to Feedback Datapaths...168

8.6.1 Delay Units.. 168

8.6.2 FIR Filters.. 168

8.6.3 Linear Feedbacks - IIR Filters.. 170

8.6.4 Non-linear Feedbacks... 175

8.6.5 Experimental Results.. 178

8.7 Extension to Floating-Point Circuits...180

8.8 Conclusion..184

CHAPTER 9 CONCLUSION AND FUTURE WORK..................................185

9.1 Conclusion..185

9.2 Future Work...187

REFERENCES...188

 VI

List of Tables

Table 3.1 Norm functions for common word encodings.......................................58

Table 3.2 Definitions of the AT and its extensions...69

Table 3.3 Results for the ALU transform..77

Table 3.4 Results of CSA transforms..78

Table 3.5 Results of MAC transforms..80

Table 3.6 Results of Hilbert transforms...81

Table 4.1 Performance of Taylor series conversion..102

Table 6.1 Error and performance of various components on different

 criteria..133

Table 6.2 Checking implementations whether to satisfy the error bound in

 terms of given parameters...134

Table 6.3 Optimized implementations with smallest area and performance
for different error bounds..135

Table 6.4 Result comparison with the paper [45]..136

Table 6.5 Error comparison of AA and our method..137

Table 6.6 Hardware area of optimized circuits...138

Table 6.7 Optimization of imprecise circuits due to constraints......................140

Table 6.8 Hardware delay and area for optimized implementations.............141

Table 7.1 Comparison with AA for the filter polynomial...................................153

Table 7.2 Comparison of our method, AA and improved simulation for

 Dickson polynomial..154

Table 7.3 Comparison with AA for a multivariate datapath.............................155

Table 7.4 Our method vs. AA vs. SMT for energy spectral density.................155

Table 7.5 Area comparison of our method and AA..156

Table 8.1 Performance of the algorithm finding IIR ranges.............................179

 VII

List of Figures

Figure 1.1 A typical ASIC design flow...2

Figure 1.2 Comparison of detection time and cost of design errors..................3

Figure 1.3 Design and implementation verification..3

Figure 1.4 Breakdown of effort..4

Figure 1.5 Different aspects of verification..4

Figure 1.6 Simulation in the development procedure...5

Figure 1.7 The process model of formal verification..7

Figure 1.8 RTL-to-gate equivalence checking..8

Figure 1.9 Idea of model checking..9

Figure 1.10 Comparison of model checking and simulation..............................10

Figure 1.11 Comparison of formal verification tools..10

Figure 1.12 The basic idea of imprecise circuits..18

Figure 1.13 Comparison of two implementations..20

Figure 1.14 Optimized implementation with the smallest area..........................21

Figure 2.1 Shannon expansion in variable xi..26

Figure 2.2 Complete and ordered DD...29

Figure 2.3 Ordered DD..29

Figure 2.4 Two OBDDs of Example 2.5...31

Figure 2.5 An example of ROBDD...32

Figure 2.6 MTBDD for 213 xxf += ..32

Figure 2.7 *BMD for unsigned fractional encoding...33

Figure 2.8 Abstraction of bit-level variables into algebraic symbols..............34

Figure 2.9 A decomposition node in a TED [12]...35

Figure 2.10 An example of an expression represented with TED......................36

Figure 2.11 Design flow of the architecture-level WL optimization

 [19] ...38

Figure 2.12 The tool flow of the method in [20]..38

Figure 2.13 The design flow of dynamic analysis in [21]...................................39

Figure 2.14 Overview of the synthesis framework in [23]..................................40

Figure 2.15 Joint range (x̂ , ŷ) of two partially dependent quantities as
implied by their affine forms..44

 VIII

Figure 2.16 An outline of the methodology in [41]...46

Figure 2.17 The tool of static analysis in [42]..47

Figure 2.18 Synoptix design flow in [47]...49

Figure 2.19 Flow of SMT technique in [55]..49

Figure 3.1 The spectral transform..52

Figure 3.2 Reed-Muller matrix for n = 3 and the polarity vector H =

 (010) ...54

Figure 3.3 A Kronecker transform matrix for n = 3...56

Figure 3.4 Sequentially ordered Haar functions for n = 3.................................56

Figure 3.5 The spectral coefficient ai test structure in [65]................................61

Figure 3.6 ACDD for n=3...63

Figure 3.7 ACDD of f in Example 3.6...64

Figure 3.8 Binary encoding use for composition of ATs......................................65

Figure 3.9 Add- and Multiply-Accumulate Loops..68

Figure 3.10 Algorithm of MAT and AT composition...70

Figure 3.11 Algorithm of MATS and ATS composition...72

Figure 3.12 The overall composition algorithm...74

Figure 3.13 A circuit with 4 modules...75

Figure 3.14 Node properties...75

Figure 3.15 Composing the MAT and the AT nodes..75

Figure 3.16 Composing the MAT and the ATS nodes...75

Figure 3.17 Composing the MATS and the ATS nodes...76

Figure 3.18 An ALU model...77

Figure 3.19 4-bit carry select adder...78

Figure 3.20 Implementation of a MAC..79

Figure 3.21 A FIR model to realize Hilbert Transform..81

Figure 4.1 Algorithm of converting Taylor series to AT......................................92

Figure 4.2 Algorithm for converting a multivariate polynomial95

Figure 4.3 Searching the maximum absolute value in AT...................................98

Figure 4.4 Performing the imprecision algorithm in Example 4.5.................100

 IX

Figure 5.1 Imprecision due to the combined sources...107

Figure 5.2 Value description of Xth and X...108

Figure 5.3 Computation of input quantization error...110

Figure 6.1 Comparison of two implementations..114

Figure 6.2 Algorithm of computing imprecision between two implemen-

tations of Taylor series...115

Figure 6.3 Algorithm of verifying the implementation.......................................116

Figure 6.4 A sequential method of fitting the error bound................................118

Figure 6.5 The basic idea of sensitivity [21]...120

Figure 6.6 Algorithm of finding the optimized implementation with the

 smallest area...122

Figure 6.7 Search of optimized parameters in Example 6.1.............................124

Figure 6.8 Algorithm for finding optimized parameters for real-valued
polynomials over multiple variables ...125

Figure 6.9 The error of each variable for the initial node and the final

 node...126

Figure 6.10 Two intermediate nodes from the initial node...............................127

Figure 6.11 n-stage pipelined circuit...127

Figure 6.12 Algorithm of finding parameters for the minimum delay...........128

Figure 6.13 Description of interface input bit-width..129

Figure 6.14 Algorithm of finding parameters for interface input

 bit-width..129

Figure 6.15 Hardware area of Taylor series and real-valued polynomials in

 different Taylor terms and input bits...139

Figure 7.1 Tradeoff between ranges and calculation times..............................143

Figure 7.2 Example performing z=ab+c-b by IA and AA.................................144

Figure 7.3 Data format of the signed factional number....................................148

Figure 7.4 Algorithm of allocating bit-widths..151

Figure 7.5 Algorithm for confirming correlation...151

Figure 7.6 Algorithm of determining the quantization bit-widths for
 uncertain variables...152

 X

Figure 8.1 Exploration of the fixed-point representation..................................159

Figure 8.2 The datapath of Example 8.1..159

Figure 8.3 Fixed-point representation of variable a...162

Figure 8.4 Algorithm of finding the optimized fixed-point implementation.......
...164

Figure 8.5 Finding next satisfying FBs...165

Figure 8.6 A sequential datapath with FFs...167

Figure 8.7 A delay unit with ranges...168

Figure 8.8 Implementation of the FIR filter with k+1 taps...............................169

Figure 8.9 Ranges of a FIR filter............................. ...170

Figure 8.10 A circuit with a feedback..171

Figure 8.11 A circuit like Example 8.5 with the different coefficient.............172

Figure 8.12 Algorithm of finding ranges of IIR filters.......................................173

Figure 8.13 An IIR filter with two taps...174

Figure 8.14 An IIR filter like Example 8.7 with different coefficients...........175

Figure 8.15 A circuit with a non-linear feedback..176

Figure 8.16 Algorithm of finding ranges of circuits with non-linear

 feedbacks..178

Figure 8.17 Range of floating-point numbers...182

Figure 8.18 Non-uniform distribution error in floating-point representation...
 ...182

 XI

Abstract
 In this thesis, our research focuses on fixed-point arithmetic circuits.

Fixed-point representation is important in low power Application-Specific

Integrated Circuits (ASICs) and in Programmable Logic Devices (PLDs).

There are two aspects of the data representation problem: the precision

problem and the range problem. Both of these are addressed in this thesis. We

use the new technique based on Arithmetic Transform (AT) which is a

canonical and efficient representation for digital circuits to avoid the

disadvantages of past methods, and design an efficient algorithm which can

compose detached modules to obtain the overall AT for a complex circuit.

 First the precision problem is processed. The typical imprecise circuits

expressed in terms of Taylor series are addressed in our research. Imprecise

factors including finite terms and input quantization are analyzed by AT, and

algorithms are designed to verify and optimize imprecise circuits in terms of

different constraints. A hybrid method performs range analysis to handle the

range problem and allocates the smallest integer bit-widths. Having devised

the individual methods for precision and range analysis, we then combine the

two together to find the optimized implementation. Furthermore, we extend

the method to analyze floating-point circuits and feedback circuits.

 The proposed algorithms in the thesis overcome disadvantages of past

explorations. They are more flexible in processing both Taylor series and

multivariate polynomials and obtain more precise results, resulting in better

implementations under various constraints.

 XII

Résumé
Dans ce manuscrit, notre recherche se concentre sur les circuits de

l'arithmétique à virgule fixe. La représentation à virgule fixe est un facteur

important dans les applications d’une faible consommation pour les ASICs

(Application Specific Integrated Circuit) ainsi que les circuits logiques

programmables (PLD). Au point de la représentation des données,

généralement, il y a deux aspects de problèmes dont la précision et la gamme.

Dans ce manuscrit, nous adressons principalement à ces deux éléments. Une

nouvelle technique basée sur une transformée arithmétique (AT) est utilisée.

Ceci est une représentation canonique et efficace pour les circuits numériques

qui permet d’éviter les inconvénients des méthodes passées et de concevoir un

nouvel algorithme efficace afin de composer des modules détachés en obtenant

une AT le plus générale pour les circuits complexes.

 Un travail préliminaire sur le problème de précision est effectué. Les

circuits imprécis généraux s’expriment en termes d’une série de Taylor a été

mis en œuvre dans notre recherche. Y compris des facteurs imprécis tels que

les termes finis, la quantification d'entrée qui est analysée par AT ainsi que les

algorithmes qui sont conçus pour vérifier et optimiser les circuits imprécis en

termes de contraintes différentes. Une méthode d’une façon hybride est

effectuée afin de traiter le problème de la gamme et d’allouer un entier le plus

petit de bit-widths. Mise au point sur les différentes méthodes pour la

précision et l'analyse de la gamme, nous combinons les deux ensembles afin

de trouver une implémentation optimisée. En outre, nous étendons la méthode

pour analyser des circuits en virgule flottante et les circuits de rétroaction.

 Les algorithmes proposés dans ce manuscrit est de surmonter les

inconvénients des explorations passées. Ces algorithmes sont plus flexibles

dans le traitement de la série de Taylor et des polynômes à plusieurs variables.

Ceux-ci nous permettent d'obtenir les résultats plus précis ainsi d’entraîner les

meilleures implémentations sous diverses contraintes.

 1

Chapter 1

Introduction

In this chapter, we first introduce the design flow for most

common Integrated Circuits (ICs) and then describe verification

approaches that include simulation, emulation and formal

verification. Then, we state the research goals of thesis aiming at

providing the solutions addressing the following three aspects of

fixed-point circuit design: transform composition of a complex

circuit, optimization of imprecise circuits, and range analysis.

Chapter 1: Introduction

 2

1.1 Circuit Design Flows
 With the development of modern material and production techniques,

integrated circuits (ICs) reached a level of complexity beyond imagination of

even a few years ago. In terms of Moore’s law, the number of transistors

doubled every 18 months. For example, Intel’s Itanium II processor contains

more than 109 transistors. Designing such complex circuits is a great

challenge. The level of difficulties is lifted even higher by the restrictions on

time-to-market. Hence, a systematic approach to design ICs is a must. Figure

1.1 outlines one of more commonly adopted approaches.

An idea for a new product originates usually from market analysis of

customer needs. Then a team led by product managers describes in form of a

specification the new design requirements. Once the specification is well

formulated, the design process starts usually from behavioral modeling. As a

result, initial algorithms are represented in hardware description languages

(HDLs) like VHDL or Verilog, or even in higher abstraction languages, like

SystemC. The correctness of the design refinement at this stage is checked by

the comparison to the specification.

Design Space
Exploration

RTL
Coding

Logic
Synthesis Placement Routing

 Figure 1.1: A typical ASIC design flow

After the behavioral model is verified, engineers generally partition the

whole design into smaller and more refined blocks. Whenever possible, such

blocks are often represented in terms of intellectual property (IP) cores, while

HDL is used to design remaining elements at RTL coding. Once the design

functionality and estimated performance satisfy the specification, the circuit is

ready to be synthesized. This stage, performed automatically, often needs

human intervention is terms of manual modifications necessarily such as

design and insertion of boundary scan and built-in-self-test (BIST). After

satisfying constraints such as timing, area and power, etc, a layout is conceived

for fabrication.

Chapter 1: Intro

 Verificat

correct. It

whether or

specificatio

practice, ve

stated fully

presence ra

 Since err

shown in F

performed

scaling-up,

1.3 illustrat

verification

Specificatio

In gener

oduction

 1.2
ion is a nec

t can be als

r not a pro

on, or cond

erification i

y correct sin

ather than its

rors found l

igure 1.2, e

at each sta

to producti

tes a comp

n.

Figure 1.2:

on

Des ign Ver
(property c

Fi

ral, it is es

Verific
cessary proc

so viewed

oduct, servi

ditions impo

is rarely fu

nce in comm

s absence.

late in a des

arly detecti

age of desig

ion, permea

lete design

Comparison

Architec

rification
checking)

RTL Simu

igure 1.3: Des

stimated, th

3

cation A
cedure aimi

as a quality

ice, or sys

osed at the

lly complet

mon practice

sign process

on is obviou

gn developm

ating almos

flow for th

of detection

cture

lation

Implement
Verificatio
(equivalen

sign and imp

hat product

Approa
ing to check

y process th

tem compl

start of a d

ted while a

e verificatio

s can be pot

usly critical

ment, from

t all steps i

he developm

time and cos

Gate L

tation
on
nce checking)

Gate-level

plementation v

t-developin

aches
k whether th

hat is used

lies with a

developmen

a given circ

on only show

tentially ver

l. Hence, ve

m logic desi

in ASIC des

ment of an

st of design er

Level

l Simulation

Implemen
Verificatio
(logic vs .

verification

ng groups o

he design is

to evaluate

regulation

nt phase. In

cuit is never

ws the error

ry costly, as

erification is

ign, through

sign. Figure

ASIC with

rrors

Swit
Lay

tation
on
schematic)

often spend

s

e

n,

n

r

r

s

s

h

e

h

tch/
yout

d

Chapter 1: Introduction

 4

beyond 70% of the overall design time and cost on checking the correctness of

their design [157]. The graph in Figure 1.4 describes a breakdown of the effort

spent in each step and Figure 1.5 shows different aspects of verification.

RTL and Block Tes t

High-level Des ign

Timing Analys is

DFT

ASIC Testbenches

Beh Model

Simulation

Equivalence
 Checking

Emulation
Support

Emulation
SoftwareVerification

Design

Figure 1.4: Breakdown of effort

Figure 1.5: Different aspects of verification

 From the above figure, it can be seen that time spent on verification at

various stages of a design process is significant. Hence, engineers need a fast

method to achieve the goal. The mainstream verification processes can be

40%

15%

10%

10%

4%

2%

2%

2%

10%

5%

0% 10% 20% 30% 40% 50%

System verification

Functional HDL verification

Establish simulation environment

Architectural verification

Analog

Noise analysis

Testability

Power analysis

Timing verification

Gate‐level verification

Chapter 1: Introduction

 5

divided into three categories: simulation, emulation and formal methods.

1.2.1 Simulation-based Verification
 Simulation is a process in which a given design is exercised by a certain set

of inputs [150]. Its idea is straightforward to comprehend, and the aim is to

produce a set of test vectors (stimuli) used to check the design correctness.

These test sets are called testbenches (set of input vectors, expected outputs,

environment constraints, etc.). More precisely, based on the module response,

which is compared to the specification, the correctness of the design is

assessed. Simulation can be used throughout the whole development process.

Figure 1.6 describes the idea.

 Specfication

Simulation

Comparison

Simulation

RTL Description Logic Gates Description Layout
Extraction

Comparison

Simulation

Comparison

Figure 1.6: Simulation in the development procedure

Although the simulation method has obviously strong points, such as

simplicity and easy testbench programming, there are some shortcomings we

should note. First, sometimes it is not feasible to simulate all input sequences

to completely verify a design. Suppose we want to test a 32-bit adder in this

case - there are 264 combinations. If it requires 1 test/us, it will take 1012 years

to simulate that many vectors. Secondly, result comparison is often incomplete

and it is difficult to compare results from different models and simulators. If

the system grows larger, the number of possible states grows exponentially

with increased number of possible event combinations. Furthermore,

simulation can be effective to show the presence of bugs, but it is hopelessly

inadequate for showing their absence.

Chapter 1: Introduction

 6

1.2.2 Emulation
Hardware emulation is a process that uses a piece of hardware, typically a

special purpose emulation system, to imitate the behavior of a hardware

system under design. As a special case, in-circuit emulation is very fast as it is

performs a working target system in place of a yet-to-be-built chip, so the

whole system can be debugged with live data.

High end hardware emulators provide a debugging environment with many

features that can be found in logic simulators, and in some cases they even

surpass their debugging capabilities [151]:

 The users can set a breakpoint and terminate the emulation process to

inspect the design state, interact with the design, and resume emulation.

The emulator always stops on cycle boundaries.

 The users can watch all signal or memory contents in the design without

probes before the run. While visibility is provided for past time events, an

emulator can access the backward time steps which may be limited in

some cases by the depth of the emulator’s trace memory.

 The users can even back up time (if they save checkpoints) and re-run.

1.2.3 Formal Verification

Formal verification is a process of proving or disproving the correctness of

intended algorithms underlying a system with respect to a certain property

using formal methods of mathematics. It can be used for verifying systems

such as cryptographic protocols, combinational circuits, digital circuits with

internal memory, and software expressed as source code [155].

 A formal proof is necessary to verify systems based on an abstract

mathematical model and the correspondence between the mathematical model

and the nature of the system known by construction. Then formal verification

is the process of constructing a proof that a target system will behave in

accordance with its specification. Basis of formal methods, which distinguish

them from simulations are:

 Formal reasoning is used to prove that an implementation satisfies a

specification,

Chapter 1: Introduction

 7

 Correctness of a formally verified hardware design holds regardless of

input values,

 Exhaustive exploration of all possible behaviors is conducted,

 A counter-example (proof) is presented if the property is incorrect

while if correct, all behaviors are verified;

 Figure 1.7 describes the formal verification model. A verifier is utilized to

check whether the system model matches the system specification. If so, the

verifier sends signal of correctness; if not, the verifier gives a counterexample.

correct not correct
counterexample

Mathematical
ModelSpecification

Formal Verifier

Figure 1.7: The process model of formal verification

Further on, formal verification schemes have many advantages:

 Complete with respect to a property,

 Avoid generating expected output sequences,

 Helpful to detect and trace errors.

 Since formal verification is based on model methods which are applied

when a circuit description is given by propositional temporal logic, the three

most widely model-based methods are equivalence checking, model checking

and theorem proving. Equivalence checking formally proves that two

representations of a circuit design exhibit exactly the same behavior. Generally,

a wide range of possible definitions of functional equivalence covers

comparisons between different levels of abstraction.

 Sequential equivalence checking considers machine equivalence, which

defines two synchronous design specifications functionally equivalent if

they generate exactly the same sequence of output signals for all valid

sequences of input signals clock by clock.

 A more general problem than equivalence checking is used to compare the

Chapter 1: Introduction

 8

functions specified for the instruction set architecture (ISA) with a register

transfer level (RTL) implementation, ensuring that the both models

executing any program will cause an identical update of the memory

contents.

 A system design flow requires comparison between a transaction level

model (TLM) and its corresponding RTL specification. The interest in this

mode of checking increases in a system-on-a-chip (SoC) design

environment.

RTL
VHDL/Verilog

HDL Synthesis Generic LibraryRTL-to-Gate

Unoptmized
Netlist

Optimized & Mapped
Netlist

Technology
library

Logic Equivalence
Checker

Figure 1.8: RTL-to-gate equivalence checking

Figure 1.8 illustrates the case of verification whether the RTL design and the

modified netlist are equivalent. Because post-process often includes activities

such as insertion of scan chain and some modifications, all these activities can

not change the original function so equivalence checking can solve the

problem.

Given a model of a system, model checking is a process of automatic test

whether this model meets a given specification. The system can be hardware

or software, and the specification generally contains safety requirements such

as critical states that may possibly crash the system.

 The system model and the specification must be described in some precise

mathematical language in order to solve such a problem algorithmically. The

specification is formulated using a suitable language, and the verification

Chapter 1: Introduction

 9

process checks whether a given structure satisfies a given logical formula. The

general concept can be applied to all kinds of logics and suitable structures. A

simple model-checking problem is to verify whether a given structure satisfies

a given formula in the propositional logic and it is useful to check circuit

properties such as safety and liveness property. Model checking has

characteristics:

 Searches the entire solution space, for possibly infinite duration

 Responds with YES or NO (if it terminates)

 Increasingly used in industry

 Can be automated for smaller blocks or when applied earlier in the

flow

Figure 1.9 illustrates the basic idea of model checking.

Behavior Model /
RTL Design

Finite State
Machine

Properties

Model
Checker

True Couterexamples

Figure 1.9: Idea of model checking

 From above figures, we see that although model checking and simulation

can both verify RTL description, simulation relies on the testbenches, while

model checking relies on mathematical reasoning represented by properties

and constraints. Figure 1.10 describes their difference.

Chapter 1: Introduction

 10

Model Checker

Properties
(liveness, safety)Behavior/RTL Constraints

True/Counterexamples

Simulator

Behavior/RTL Testbench

Simulation
Outputs

Figure 1.10: Comparison of model checking and simulation

 Theorem proving decides whether a conjecture is a logical consequence of

a set of statements (the axioms and hypotheses), which is used to prove that an

implementation fits a specification by mathematical reasoning. The

implementation and the specification are both expressed as formulas in a

formal logic, and the necessary relationship - logical equivalence or logical

implication - is described as a theorem to be proven within the context of a

proof calculus. A proof system comprises a set of axioms and interface rules

such as simplification, induction, rewriting. Authors in [159] describe how to

express PSL’s syntax and semantics in the PVS theorem prover and prove the

correctness of a set of rewrite rules.

 Formal Verification Tools
Supplier Tool Name Class of Tool HDL Design

Level
Commercial Tools
Synopsys Formality Euqiv.

Checking
VHDL/Verilog RTL/Gate

Cadence Affirma Euqiv.
Checking

VHDL/Verilog RTL/Gate

Cadence FormalChec
k

Model
Checking

VHDL/Verilog RTL

IBM RuleBase Model
Checking

VHDL RTL

Abstract
Hardware

Lambda Theorem
Proving

VHDL/Verilog RTL/Gate

Public Domain Tools
CMU SMV Model.

Checking
Own Language RTL

Berkely VIS Model/Equ.
Check

Verilog RTL

Cambridge HOL Theorem
Proving

SML Universal

Figure 1.11: Comparison of formal verification tools

Chapter 1: Introduction

 11

Figure 1.11 lists some typical tools. Although a variety of tools have been

developed to perform formal verification, simulation is still a predominant

method in verification because of the advantages of simple operation and

relatively straightforward task of writing of testbenches.

 1.3 Introduction of Fixed-Point Arithmetic
 Fixed-point arithmetic is of importance in low power designs, embedded

systems and PLDs. Although floating-point data with single or double

precision can construct algorithms more accurately, generally for signal

processing algorithms such as FFT and DCT initiated from real values,

significant processor overhead is required to perform floating-point

calculations resulting from the lack of hardware based floating-point support.

This disadvantage confines the effective iteration of an algorithm. In order to

improve mathematical throughput or increase the execution rate, calculations

can be performed by fixed-point representations which require a virtual

decimal place in between two bit locations for a given length of data [133].

 The labeling convention of the representation is as follows:

 Q [IB] . [FB] (1-1)

 where IB = # of integer bits and FB = # of fractional bits.

 Total number of bits used to represent the fixed-point number is yielded by

the addition of integer bits IB and factional bits FB. The sum of IB+FB is

known as the wordlength (WL) and this sum often corresponds to variable

widths supported on a given processor. The fixed-point format includes two

sections of integer and fractional content for the purpose of exploration.

1.3.1 Fixed-Point Range – Integer Portion
 A fixed-point number is viewed as two distinct parts, the integer content and

the fractional content. The integer range sets the number of IB, Eqn. (1-1),

required to represent the integer portion of the number. IB itself can only hold

Chapter 1: Introduction

 12

integer values because of the binary nature of a bit. Two different methods of

calculating the number of integer bits match two types of numbers, unsigned

and signed.

A) Unsigned Integers
 The Equation (1-2) describes the unsigned integer by the minimum and

maximum of any IB number.

 0 2 1IBr≤ ≤ − (1- 2)

 IB can be obtained by solving the required number as:

 2[log (1)]IB r≥ +

where r is the floating-point variable being ranged. The square bracket is the

ceiling function.

Example 1.1: Consider an unsigned variable r = 4.346:

 IB = 2[log (4.346 1)]+ = [2.43] = 3

 Three bits are required for the integer portion of r.

B) Signed Integers
 The previous equations cannot represent signed variables. The changed

following equation denotes the definition for the integer contents of signed

numbers (r±):

 122 11 −≤≤− −− IBIB r

Please note that the signed integer type is asymmetrical about zero. For

instance, a signed 8-bit value ranges from -128 to 127. By solving for the

negative constraint of the equation:

 rIB ≤− −12

we get: 1)]([log2 +−≥ rIB

By solving for the positive constraint: 12 1 −≤ −IBr

we get: 1)]1([log2 ++≥ rIB

Example 1.2: If rmin = -2 and rmax = 2,

 21]2[log1)]([log| 2min2min
=+=+−≥ rIB r

Chapter 1: Introduction

 13

 31]3[log1)]1([log| 2max2max
=+=++≥ rIB r

IB must be 3 bits to satisfy the two constraints concurrently.

 In the case of signed data type, the positive constraint is tighter than the

negative constraint because of the asymmetry. It is common for users to define

variable magnitude constraints that are symmetric about zero (for instance,

55 ≤≤− r). The computation for IB can be generated uniformly by the

equation:

 1)]1])[(max([log maxmin,2 ++= rrabsIB

Example 1.3: Compute a signed variable 43.443.4 ≤≤− r ,

 41]45.2[1]43.5[log1)]1)43.4,43.4[(max([log 22 =+=+=++−= absIB

1.3.2 Fixed-Point Resolution – Fractional Portion
 The number of FB sets the resolution for a fixed-point variable. The

resolution ε of a fixed-point number is given by the following equation

[134]:

 FB2
1

=ε

 Therefore the number of FB required by a particular resolution is defined as:

]1[log2 ε
=FB

Example 1.4: A signed variable r= -3.2782, ≤ε 0.0001,

 14]288.13[]10000[log]
0001.0
1[log 22 ====FB

 The resolution is limited for a given wordlength and dynamic range of a

variable. The WL of the variable must be increased to provide this resolution if

a higher resolution is needed for a given range [134].

Chapter 1: Introduction

 14

1.3.3 Range & Resolution
 The integer and fractional parts of the number for a fixed WL consist of the

full range and resolution. The combined range and resolution for an unsigned

fixed-point number is defined by [133]:

 FB
IBr −=

−≤≤ 2|)12(0
ε

The combined range and resolution for a signed fixed-point number is defined

as [133]:

FB
FBIBIB r −=

−−− −≤≤−
2

11 |)22(2
ε

The integer and fractional bits are combined together and used to determine a

standard WL that is large enough to hold all integer and fractional bits as:

 FBIBWLrequired +≥

 A representation U(IB, FB) where IB + FB = N for unsigned format is

denoted to calculate the value of a fixed-point format. For an unsigned format,

in the U(IB, FB) representation, the nth bit, counting from right to left and

beginning at 0, has a weight of 2n / 2FB = 2n-FB. Please notice that if n = FB the

weight is 1. The value of a particular N-bit binary number x in a U(IB, FB)

representation is given by the expression [134]:

 ∑
−

=

=
1

0
2)2/1(

N

n
n

nb xx

where xn is the bit n of x. The range representation is from 0 to (2N-1) /2FB =

2IB –2-FB. For instance, the 8-bit unsigned fixed-point representation U(5,3) has

the form

 b4b3b2b1b0 . b-1b-2b-3

where the bit bk has a weight of 2k. Since FB is 3, the binary point is to the

right of the third bit from the right (counting from zero), and hence the number

has five integer bits and 3 fractional bits. This representation has a range of

from 0 to 25 – 2-3 = 32 – 0.125 = 31.875.

Example 1.5: U(6,2). This number has 6+2=8 bits and the range is from 0 to

26 – 1/22 = 63.75. The value 4Bh (0100, 1011b) is:

 (1/22) (20 + 21+23+26) = 18.75

 Consider an N-bit binary word x as U(N,0). The one’s complement of x is

defined to be an operation that inverts every bit of the original value x. This

Chapter 1: Introduction

 15

can be performed in the U(N,0) representation by subtracting x from 2N-1.

That is, if we denote the one’s complement of x as x~ , then:

 x~ = 2N -1- x

The two’s complement of x, denoted as x̂ , is determined by taking one’s

complement of x and then adding one:

 x̂ = x~ +1 = 2N – x

Example 1.6: The one’s complement of the U(8,0) number 05h (0000,0101) by

hex representation is FAh (1111, 1010). The two’s complement of the U(8,0)

number 05h (0000,0101) is FBh (1111, 1011).

 Considering signed two’s complement fixed-point representation, we denote

such a representation A(IB,FB) that IB = N-FB-1. The following expression

gives the value of a specific N-bit binary number x in an A(IB, FB)

representation:

∑
−

=
−

− +−=
2

0
1

1]22)[2/1(
N

n
n

n
N

NFB xxx

 Notice that the number of bits in the magnitude of the sum above has one

less bit than the equivalent prior unsigned fixed-point representation. These

bits are the N-1 least significant bits because the most significant bit in a

signed two’s complement number is often referred to as the sign bit.

Example 1.7: A(11, 2). This number has 11+2+1=14 bits and the range is

from -211= -2048 to +211-1/4 = 2047.75.

 Fundamental rules of fixed-point arithmetic are listed as follows [134].

 Unsigned wordlength: the number of bits required to represent U(IB, FB)

is IB+FB.

 Signed wordlength: the number of bits required to represent A(IB, FB) is

IB+FB+1.

 Unsigned range: The range of U(IB, FB) is FBIBx −−≤≤ 220 .

 Signed range: The range of A(IB, FB) is FBIBIB x −−≤≤− 222 .

 Addition operands: Two binary numbers must keep the same scale in

order to be added. That is, X(a, b) + Y(c, d) is only valid if X=Y (either

Chapter 1: Introduction

 16

both A or both U) and a =c and b= d.

 Addition result: The scale of the sum of two binary numbers scaled x(a, b)

is x(a+1,b), the sum of two N-bit numbers requires N+1bits.

 Unsigned multiplication: U(IB1, FB1) * U(IB2, FB2) = U (IB1 + IB2,

FB1+ FB2).

 Signed multiplication: A(IB1, FB1) * A(IB2, FB2) = U (IB1 + IB2+1, FB1+

FB2).

1.4 Thesis Goal and Contributions

The investigation of fixed-point representation includes two problems:

range and precision. In our research, we try to explore the two problems

concurrently, and propose new methods for verifying and optimizing

fixed-point circuits.

1.4.1 Composition of AT and Extensions
The main technique in our exploration is Arithmetic Transform (AT), which

is defined in the spectral domain. The exploration of the function description

in a spectral domain aims at elevating the classical problems with the Boolean

function domain where a truth table is used. Each entry to the table describes

precisely the behavior of the function at a single point, and bears no relation to

the function behavior in the other points of the domain. For some applications

this is satisfactory, however, other like circuit verification would benefit much

more if partial information about the whole function could be included in a

function value at each point of its domain. In fact, it is possible to give an

alternate representation of a function where the information about the function

is much more global in nature. This alternate representation is in the spectral

domain, where a number of function properties are much more easily deduced

than in the Boolean domain. However, it must be stressed that the overall

information content of a given function is identical regardless of the domain

considered (functional or spectral), and data in one domain can be uniquely

Chapter 1: Introduction

 17

recreated from the data in the other. In spite of that, the meaning of the

function parameters at each individual point of the two domains is dissimilar.

In particular, the discrete nature of the data in the functional domain will

generally be replaced by data in the spectral domain, which is global in nature,

being influenced by the complete functional performance of the circuit or

network under consideration. Therefore finding the spectral transform of the

circuit is an important step to verification [56].

A straightforward way to compute the AT requires a multiplication with a

matrix of size that is exponential in number of primary inputs. This is clearly

an impractical proposition. Other methods, such as conversion from diagrams,

usually focus on the whole circuit [92]. If a complex circuit comprises many

smaller modules, it is hard to get its transform directly, and then the methods

mentioned are invalid [94].

A complex circuit generally consists of modules such as adders, multipliers

and similar, for which the transforms are easily obtained. If we can take

advantage of the relatively simpler transforms to form the transform of the

complex circuits, the gain would be significant. It was shown earlier [70] that

AT could be composed out of transforms of circuit blocks by help of several

extensions to AT, and we extend that work by constructing efficient algorithms

and transform representations. In addition, since the AT representation only

contains primary inputs and outputs, if engineers know the overall transform

of the complex circuit in advance, compared to the compositional AT

representation, they should be identical, and hence the composition procedure

can perform equivalence checking. Therefore the process of constructing AT

composition becomes very important. Because basic AT cannot represent

sequential circuits, extensions are necessary for the purpose of the

composition.

In this thesis, we explore AT and its extensions proposed by Zilic and

Radecka [70] [158] then develop several subroutines to compose the detached

transforms of smaller modules which exist within a bigger circuit, and finally

integrate these subroutines into a fast algorithm for the construction of AT and

its extensions.

Chapter 1: Introduction

 18

1.4.2 Imprecise Circuits
 Here we focus our attention on a large category of circuits which cannot be

exactly represented. We will refer to these as imprecise circuits, as

implementations do not match specifications exactly since they are only

realized approximately. When dealing with arithmetic circuits, the imprecision

of these circuits creates added complexity for the design and verification phase.

In such cases, implementations realize intended specifications only to the

certain degree of precision, adding yet another dimension to the already

complex process of design verification. Also it is not compulsory to require

them to be identical as some imprecision reason should and could be tolerated.

While verifying arithmetic circuits, if the error measured as a difference

(imprecision) between them is within an acceptable range, the implementation

is deemed suitable to the specification. Mathematical forms of expressing

imprecision are related to the type of implemented designs. For example, for

arithmetic circuits, the error can be described in some arithmetic form, and is

therefore referred as an arithmetic error. Figure 1.12 denotes the basic idea of

imprecise circuits. The solid line represents the specification, and the dotted

lines represent the implementations. The implementations approximate the

specification but not exactly overlap.

Figure 1.12: The basic idea of imprecise circuits

Mathematical forms of expressing imprecision are related to the type of

implemented designs. For example, for arithmetic circuits, the error can be

described in some arithmetic form, and is therefore referred as an arithmetic

error.

The current verification methods, such as equivalence checking cannot be

applied: in some cases, many output bit values may differ, while the

Chapter 1: Introduction

 19

implementation might still be considered correct if the difference of the

specification and the implementation is within a given arithmetic precision.

Consider, for example, the representation of value 1.0. It is approximation

0.111… can be made arbitrarily precise by increasing the wordlength, yet all

the bits are incorrect. On the other hand, the change of a single, most

significant bit can change the arithmetic value by 100%.

Further, when verifying the precision, we must explore yet another problem

dimension, i.e., the imprecision for the whole domain of definition. In the

thesis, we address the problem by the following two aspects.

(A) Component Comparison

The functionality of many circuits, particularly signal processing ones, can

be described or approximated by polynomials. For instance, many algorithms

use a common arithmetic function such as sin(X). This function, being a

real-type and infinite, cannot be realized precisely, and hence some kind of

approximation is needed, like, for example, the following one:

 X - X3/3! + X5/5! - X7/7!....

Here X is within the range [-1, 1] for convergence.

In many cases the implementation of the specification function, like the

above is not build from scratch. More realistic problem is to realize the

function by, for example, using only 6 terms and 16-bit inputs approximation,

where there is an existing module to implement sin(X) by 5 terms and 12-bit.

The existing implementation can be used, as long as the difference between

the requirement and the library element is not beyond the given error bound.

However, to minimize the error of such a substitution, the Taylor terms and

bit-width must be both optimized.

We will approach the Taylor terms and input bit-width optimization

simultaneously, and try to provide a uniform platform, which is easily

operated and applied. Our goal is to match and verify the precision of real

DSP/arithmetic modules such as DCT. For this purpose, we present a method

for matching imprecise datapath circuits expressed by Taylor series and extend

it to handle word-level polynomials. Such representations are selected based

on the fact that Taylor expansions provide a representation of arithmetic

functions, which not only can be made arbitrarily close to the desired

Chapter 1: Intro

(specified)

imprecise d

Transforms

implementa

Figure 1.

that is, the

component

6.1.

(B) Precis

From th

another opt

in logic sy

specificatio

within the a

 Given an

and input b

the implem

algorithms

fits the spec

An appro

such as sin

simulation-

specificatio

oduction

function, b

designs. Th

s that can

ations easily

.13 describe

e maximum

s can be sub

sion Verifi
e design p

timization r

ynthesis. In

ons exactly,

allowed imp

n implemen

bit-width, en

mentation a

to compute

cification ac

oximate imp

n(X) by fix

-based, or dy

on and the im

but also giv

herefore, we

assist engin

y.

es two com

m error, is s

bstituted by

Figure 1.13:

fication an
perspective,

resource, sim

n particular,

one can se

precision.

ntation with

ngineers ha

and the sp

e the imprec

ccording to

plementation

xed-point c

dynamic met

mplementat

20

ve an elega

e devise a

neers to co

mponents wit

smaller than

y each other

Comparison

d Optimiz
however,

milar in nat

 as implem

earch for th

h a group of

ave interest

pecification

cision and v

the given e

n is require

circuits. Tra

thods, to an

tion. In esse

ant solution

flexible too

ompute imp

th differenc

n the given

. This probl

n of two imple

zation
the imprec

ture to the

mentations

he least exp

f parameter

to know w

n. So we

verify wheth

error bound.

ed to realize

aditionally,

nalyze the im

ence, one ha

n to the ver

ol based on

precision b

ce. If their i

n error boun

lem is solve

ementations

cision can

notion of “

do not nee

pensive imp

rs such as T

what differen

need to d

her the imp

.

e a real-valu

one mostl

mprecision b

as to explor

rification o

n Arithmetic

etween two

imprecision

nd, the two

ed in section

provide ye

don't cares”

ed to match

plementation

Taylor terms

nce between

develop fas

plementation

ued function

ly relies on

between the

re the whole

f

c

o

n,

o

n

et

”

h

n

s

n

st

n

n

n

e

e

Chapter 1: Introduction

 21

domain the function definition, with many precision parameters investigated

concurrently to get the imprecision. We propose a new method in terms of

Arithmetic Transform (AT) to analyze these parameters statically, to ascertain

whether the existing implementation is suitable to the specification. Please

note that many satisfying implementations can fulfill one specification, and it

is very much worth finding the implementation with the smallest hardware

cost. In Figure 1.14, the three dotted lines represent three implementations

which all satisfy the specification represented by the solid line, but only one

implementation has the smallest area. How to find out this optimized

implementation is attractive in practical engineering.

satis fied

satis fied
(optim ized)

Figure 1.14: Optimized implementation with the smallest area

In the thesis we try to analyze the factors generating imprecision such as

function approximation and finite bit-widths, and develop a series of

algorithms to process imprecise circuits included comparison, verification and

optimization. This problem is solved in section 6.2 – 6.4.

1.4.3 Range Analysis
 Range analysis is a significant step in RTL synthesis which directly

influences cost and performance. This topic is always hot and attractive to

engineers. Traditional methods have obvious disadvantages of low efficiency

and coarse bounds, which lead to infeasibility and additional bits for data

representation. In order to overcome these disadvantages, we propose a new

method to calculate ranges for each intermediate output and the final output in

the datapath. This method can obtain exact ranges and allocate the smallest

integer bit-widths for the datapath, so the optimized implementation with the

smallest hardware area can be achieved. This problem is solved in Chapter 7.

Chapter 1: Introduction

 22

1.4.4 Exploration of Fixed-Point Circuits

 After investigating the precision and the range separately, we explore the

fixed-point representation with both integer bit-width (IB) and fractional

bit-width (FB). The case is more complex and the most important problem is

how to determine the fractional bit-width in the datapath and estimate the error.

Based on the above analysis, we propose an efficient method to allocate

appropriate IB and FB for the inputs and all outputs in the datapath in order to

obtain the optimized implementation.

 As blind spots in past explorations, circuits with feedbacks – such as IIR

filters – are of importance. We analyze feedback circuits and propose

algorithms to detect stability and find ranges. Furthermore, sequential circuits

are investigated and the process of fixed-point representation is extended to

floating-point representation. These problems are solved in Chapter 8.

1.4.5 Contributions

 On the whole, the main contributions of the thesis are in:

 designing an algorithm to obtain the spectral transform for a complex

circuit

 proposing algorithms to verify and optimized imprecise circuits

 proposing an algorithm to calculate ranges of a datapath

 conceiving an algorithm to find the optimized fixed-point implementation

with integer and fractional bit-widths

 designing an algorithm to explore imprecise arithmetic circuits with

feedback.

 23

Chapter 2

Background

In this chapter, we review function representations including

truth tables, Shanon expansion and polynomial representation. We

pay special tribune to decision diagrams, as they play an important

role in many classical verification methods. Most commonly used

diagrams include OBDDs, MTBDDs, BMDs and TEDs. Finally, as

usual methods to handle imprecise circuits rely on dynamic

analysis and affine arithmetic, we conclude this chapter with the

introduction of the mathematical background of these methods.

Chapter 2: Background

 24

With VLSI (Very Large Scale Integration) technologies and the design

techniques developing rapidly, microchips are utilized prevalently in many

areas of human activities. The integration density increases fast beyond

billions of transistors bringing forward a problem: how to build a right system

to fit requirements? Thus hardware verification theory emerges as an

important element of the overall design process. There were many

corresponding explorations in past decades. In this chapter we will review

some typical theoretical background dealing with function representations and

verification.

 2.1 Function Representations
 Digital combinational circuits rely on the repreentation of Boolean functions,

either by means of computation or evaluation processes. Truth tables belong to

the first group, while decision diagrams belong to the second one.

2.1.1 Truth Table

A truth table is a mathematical table used in logic — specifically in

connection with Boolean algebra, Boolean functions, and propositional

calculus — to compute the functional values of logical expressions on each of

their functional arguments, that is, on each combination of values taken by

their logical (input) variables. In particular, truth tables can be used to tell

whether a propositional expression is true for all legitimate input values, that is,

logically valid.

Example 2.1: The truth table of the 2-bit unsigned adder with inputs x = x1x0

and y = y1y0, and output z = z2z1z0 is presented below.
 x1x0y1y0 z2z1z0
 0 0 0 0 0 0 0
 0 0 0 1 0 0 1
 0 0 1 0 0 1 0
 0 0 1 1 0 1 1

Chapter 2: Background

 25

 0 1 0 0 0 0 1
 0 1 0 1 0 1 0
 0 1 1 0 0 1 1
 0 1 1 1 1 0 0
 1 0 0 0 0 1 0
 1 0 0 1 0 1 1
 1 0 1 0 1 0 0
 1 0 1 1 1 0 1
 1 1 0 0 0 1 1
 1 1 0 1 1 0 0
 1 1 1 0 1 0 1
 1 1 1 1 1 1 0

 Truth tables are useful in many synthesis applications, as well, as

verification due to their canonical property. In fact, equivalence checking of

two Boolean functions can be done by comparing truth tables of corresponding

functions.

 A truth table has 2N rows for an N-input function, hence the size and time

complexity are always exponential in the number of primary inputs.

Consequently, the truth table as a binary function representation is impratical

for verificaiton of even modertate size circuits.

2.1.2 Shannon Expansion
 In mathematics, Shannon expansion is a method by which a Boolean

function can be represented by the sum of two sub-functions (co-factors) of

the original. It provides a way for deriving a Boolean function recursively.

Definition 2.1: The cofactor of a Boolean function f(x0, x2, …, xi, …, xn-1) with

respect to variable xi is),...,1,...,,(110 −= nx xxxff
i

. Similarly, the

cofactor with respect to variable ix is),...,0,...,,(110 −= nx
xxxff

i
.

 Each Boolean function can be represented by its cofactors through Shannon

expansion.

Theorem 2.1: A Boolean function BBf n →: can be represented as

),,...,,(21 nix xxxxff
i
= =)()(

iiii xixixixi fxfxfxfx +⋅+=⋅+⋅

Chapter 2: Background

 26

One way of representing the Shannon’s expansion is by means of a

multiplexer selects between the two cofactors, depending on the value of a

splitting variable xi.

0 1 xi

ixf

ixf

f

Figure 2.1: Shannon expansion in variable xi

Example 2.2: Given a function of '''''' zyxzyxzxyxyzf +++= , we can

re-write the function in terms of any two variables — namely, a variable and

its complement: xx gxxgf ''+= . Simply apply the distributive theorem to

the function about x:)'()'''(' zyyzxyzzyzyxf ++++= . Now we have

expanded the function f about the variable x. The work [154] describes a

method based on Shannon expansion for low- power and testable circuit

synthesis.

2.1.3 Polynomial Representation
 Positive and negative Davio expansions are other two expressions of

Boolean functions by means of cofactors and the XOR operation.

Definition 2.2: The positive Davio expansion of a Boolean function f(x0, x2, …,

xi, …, xn-1) with respect to variable xi is:

)(),...,...,,(110 iii
xxixni ffxfxxxxff ⊕⋅⊕== −

Similarly, the begative Davio expansion is:

)(),...,...,,(110 iii xxixni ffxfxxxxff ⊕⋅⊕== −

 The two representations adopt XOR operations over two cofactors. They

are useful for polynomial expressions and decision diagrams representations.

Chapter 2: Background

 27

 If all variables are decomposed by positive Davio expansion, another

canonical representation of Boolean functions is obtained as Reed-Muller

transform [4], [5], [6]. RM transform is used in technology mapping by

symmetry detection, which will be introduced in section 3.1.2.

2.1.4 Boolean Satisfiability

Boolean Satisfiability (SAT) is often used as the underlying model for a

significant and increasing number of applications in electronic design

automation (EDA) as well as in many other fields of computer science and

engineering. Satisfiability determines whether the variables of a given Boolean

formula can be assigned in such a way as to make the formula evaluate to

TRUE. Another importance is to determine whether no presence of such

assignments would imply that the function expressed by the formula is

identically FALSE for all possible variable assignments. In this latter case, we

say that the function is unsatisfiable, or else it is satisfiable [152] .

 The SAT is a decision problem in complexity theory, whose instance is a

Boolean expression written using operations of AND, OR, NOT, variables, and

parentheses. The question is that given the expression, whether some

assignment of TRUE and FALSE values to the variables will make the entire

expression true. In particular, satisfiability searches are most often applied to

Boolean functions represented as product of sums. The search for a function

variables assignment, which would make all the clauses true, is proven to be

NP-Complete [152].

Example 2.3: After converting Boolean equations from Example 2.1 into

product-of-sums, we obtain the following set of clauses:

 The set of input assignments satisfying the above equations is empty. This

fact is easy to verify by checking the multiplier truth table, which holds no

input (x1, x0, y1, y0) assignment resulting in all the output bits (z2, z1,z0) being

equal to one.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++++++++++++++

+++++
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

))((
))()()()()((

))()()()((
),,,(

0000

01010101101011101011

1001110101

0

1

2

0101

yxyx
yyxxyyxxyxxyyxyxxyyx

yxyxyxyyxx

z
z
z

yyxxf

Chapter 2: Background

 28

2.2 Decision Diagrams
Decision diagrams are the binary function representations that explore

evaluation process. They do not need to compute the response of input stimuli

and evaluate a function based on a set of binary-valued decisions.

2.2.1 Binary Decision Diagrams
Binary decision diagram (BDD) [7] was already introduced in 1959 as a

data structure that is used to represent a Boolean function. Furthermore, under

the name of Branching Programs they were intensively studied in theoretical

computer science. Within the following years the importance of BDDs for

VLSI CAD was realized by several groups, and an increasing number of BDD

algorithms and successful applications were reported.

 On a more abstract level, BDDs can be considered as a compressed

representation of sets or relations. Unlike other compressed representations,

operations are performed directly on the compressed representation, i.e.

without decompression. BDDs are based on the Shannon expansion. Generally,

bit-level decision diagrams are constructed in terms of one of the three

Boolean function decompositions:

 Shannon:
ii xixi fxfxf ⋅⊕⋅=

 positive Davio:)(
iii xxix ffxff ⊕⋅⊕=

 negative Davio:)(
iii xxix ffxff ⊕⋅⊕=

Definition 2.3: “A Decision Diagram (DD) over a set of Boolean variables Xn

and a non-empty terminal set T is a connected, directed acyclic graph G=(V,

E) with exactly one root and the following properties:

 A vertex in V is either a non-terminal or a terminal vertex.

 Each non-terminal vertex v is labeled with a variable from Xn, called the

index index(v) of v and has exactly two successors in V , denoted by

low(v), high(v).

 Each terminal vertex v is labeled with a value Tvvalue ∈)(and has no

successors.” [7]

Chapter 2: Background

 29

Example 2.4: Consider Decision Diagrams in Figure 2.2 and 2.3. The graph

in Figure 2.2 represents a complete tree that by definition is also a complete

and ordered DD. The DD in Figure 2.3 is also ordered, but not complete.

Since both DDs are ordered they are also free.

x1

x2

x3x3

x2

x3 x3

1 0 1 0 1 1 1 0

 Figure 2.2: Complete and ordered DD

x1

x2

x3

0 1

0 1

1

1

0

0

Figure 2.3: Ordered DD

Definition 2.4: “A BDD is a DD over Xn and terminal set T={0, 1}. If the

BDD has a root vertex v, then the BDD represents a Boolean function fv

defined as follows:

1. If v is a terminal vertex and value(v)=1 (value(v)=0), then fv=1 (fv = 0).

2. If v is a non-terminal vertex and index(v)= xi, then fv is the function

).,...,(),...,(),...,(1)(1)(1 nvhighinvlowinv xxfxxxfxxxf ⋅+⋅=

flow(v) (fhigh(v)) denotes the function represented by low(v) (high(v)).” [7]

2.2.2 Reduced Ordered Binary Decision Diagrams

BDDs have obvious limitations because of exponential sizes which confine

Chapter 2: Background

 30

applications. Some extensions have been proposed to overcome these

limitations. Recently, (especially in the area of verification) DDs have also

been used to represent Pseudo-Boolean functions, i.e., function of the form f :

ZBn → . The simplest extension of BDDs, ROBDDs (Reduced Ordered

Binary Decision Diagrams), has two restrictions:

 Appearance of the variable keeps in the same order along each path from

the root to a terminal.

 No isomorphic sub-trees or redundant vertices exist.

Definition: 2.5: “Let π be a total order on the set of variables x1,…xn. An

ordered binary decision diagram (OBDD) with respect to the variable order

π is a directed acyclic graph with exactly one root which satisfies the

following properties:

 There are exactly two nodes without outgoing edges. These two nodes are

labeled by the constants 1 and 0, respectively, and are called sinks.

 Each non-sink node is labeled by a variable xi, and has two outgoing

edges, which are labeled by 1 and 0, respectively. These edges are called

the 1-edge and the 0-edge, respectively.

 The order, in which the variable appear on a path in the graph, is

consistent with the variable order π , i.e., for each edge leading from a

node labeled by xi to a node labeled by xj it holds xi < jxπ .” [7]

An OBDD is a read-once branching program with an additional ordering

restriction on the variables. The computation path of an input a = (a1 ,…, an)

∈Bn is the path from the root to a sink in the OBDD which is defined by the

input. More precisely, the computation path begins in the root, and in each

node labeled by xi the path follows the edge with label ai.

Example 2.5: Let π be the variable order x1 < x2 <x3. Figure 2.4 illustrates

two OBDD representations of the function 21321321),,(xxxxxxxxf += with

respect to the orderπ .

Chapter 2: Background

 31

x1

.

.

.

1 0

x2 x2

x3 x3 x3 x3

1

1

11

1
1 1

x1

.

.

.

1 0

x2 x2

x3x3

1

1 1

11

Figure 2.4: Two OBDDs of Example 2.5

Definition 2.6: “Two OBDDS of P1 and P2 are isomorphic if there is a

bijective mapping φ from the set of nodes of P1 to the set of nodes of P2 such

that, for each node v, the two nodes v and)(vφ are sinks with identical labels,

that means var(v)=var()(vφ),))(())((vhighvhigh φφ = ,))(())((vlowvlow φφ = .

An OBDD is called reduced if

1. it does not contain a node v with high(v) = low(v), and

2. there does not exist a pair of nodes u, v such that the sub-OBDDs rooted in

u and v are isomorphic.”[7]

Example 2.6: Consider a Boolean function f = x1x2x3 + x4x5x6 +…+ xn-2xn-1xn.

The ROBDD G1 for f with variable ordering x1, x2…xn-1, xn is given in Figure

2.5. The size of the corresponding graph is given by |G1| = n. Since f depends

on all n variables the ROBDD has optimal size.

Chapter 2: Background

 32

x1

xn-2

x7

x5

x2

x4

.

.

.

xn-1

0 1

x3

x6

xn

Figure 2.5: An example of ROBDD

2.2.3 Multi-Terminal BDDs
Another extension of BDDs to aim on handling word-level values is to

introduce non-Boolean terminals, i.e, to allow integers in terminal nodes. The

resulting DDs are called Multi-Terminal BDDs (MTBDDs) [8] if in each node

an (integer-valued) Shannon decomposition is carried out.

Example 2.7: A MTBDD for function f=3x1+x2 is given in Figure 2.6.

x1

x2x2

0 1 3 4

Figure 2.6: MTBDD for f=3x1+x2

2.2.4 Binary Moment Diagrams
Binary Moment Diagrams (*BMDs) [9] [10] [11], which belong to the class

of word-level decision diagrams, are generalizations of the BDD to linear

functions over domains such as Boolean, but also to integers or to real

Chapter 2: Background

 33

numbers. They can deal with Boolean functions with complexity comparable

to BDDs, but also some functions that are dealt with very inefficiently in a

BDD are handled easily by BMD, most notably multiplication. The most

important properties of BMD is that, like with BDDs, each function has

exactly one canonical representation, and many operations can be efficiently

performed on these representations. The main features that differentiate BMDs

from BDDs are using linear diagrams instead of pointwise diagrams, and

having weighted edges. No node may have all decision parts equivalent to 0

(links to such nodes should be replaced by links to their always part). No edge

may have weight zero (all such edges should be replaced by direct links to 0).

Weights of the edges should be coprime. Without this rule or some equivalent

of it, it would be possible for a function to have many representations, for

example 4x+4 could be represented as 4*(1+x) or 1*(4+4x).

 *BMDs are particularly effective for representing digital systems at the

word level, where sets of binary signals are interpreted as encoding integer

(fixed point) or rational (floating point) values. Common integer and floating

point encodings have efficient representations as *BMDs, as do operations

such as addition and multiplication. *BMDs can also represent Boolean

functions as a special case, with size comparable to BDDs .

Example 2.8: A *BMD for the fractional coding (3 bits) is illustrated as:

∑
=

−==
3

1
123123 2:],,[:),,(

i
i

i
enc xxxxxxxf

x3

x2

x1

0 1

0.125

0.5
0.25

Figure 2.7: *BMD for unsigned fractional encoding

 Edge weighting leads to a much more concise representation of a function.

As an illustration, Figure 2.7 describes the representations of *BMD for the

Chapter 2: Background

 34

same function.

2.2.5 Taylor Expansion Diagrams
 A new type of diagram, Taylor Expansion Diagram (TED) [12] – [15], has

been developed to solve the problem of word-level computation, such as

A[0:n-1]+B[0:n-1], requiring the decomposition of the function with respect

to each bit-level variable A[0],…,A[n-1],B[0],…,B[n-1]. It is unnecessary to

expand the word-level variables when treating them as algebraic symbols.

Figure 2.8 depicts the decomposition with respect to the word-level variables

A and B. If we group the nodes corresponding to the individual bits of these

variables, we can abstract the integer variables and use them directly in the

design. The figure describes the idea of symbolic abstraction of variables from

bit-level components [12].

b0

b1

1

2

a0

a1

10
1

2

*BMD: A*B

2b1+b0 B[1:0]

2a1+a0 A[1:0]

B

A

10

TED: A*B

Figure 2.8: Abstraction of bit-level variables into algebraic symbols

Assume a regular algebra (R, *, +) over real numbers R with integer

coefficients on a real differentiable function f(x,y,…). Using the Taylor series

expansion with respect to a variable x, the function f can be represented as

[14]:

.....).,0(
2
1,...),0(...),0(...),(''2' +=+=+== yxfxyxxfyxfyxf

where f’(x=0, y…), f’’(x=0, y…),etc., are first, second, and higher order

derivatives of f with respect to x. The derivatives of evaluated at x=0 are

Chapter 2: Background

 35

independent of variable x, and can be further decomposed w.r.t. the remaining

variables, one variable at a time. The resulting recursive decomposition can be

represented by a decomposition diagram called the Taylor Expansion

Diagram.

Definition 2.9: “The Taylor Expansion Diagram, is a directed acyclic graph

(φ , V, E, T), representing a multi-variable polynomial expression φ . V is the

set of nodes and E is the set of directed edges connecting the nodes. T is the

set of terminal nodes. Every node Vv∈ has an index var(v) which identifies

the decomposing variable. The variable of the TED are ordered. The function

at node v is determined by the taylor series expansion at the point var(v)=0.

The edge emanating from a node v point to its children nodes which

correspond to the derivative of the function with respect to the variable var(v).

The out-degree of a terminal node Tv∈ is 0. The function computed at a

terminal node is an integer constant c.”[14]

Vx

f

1
x x2

x3

f(0) f'(0) f' '(0)/2
f'' '(0)/3!

Figure 2.9: A decomposition node in a TED [12]

The decomposition is applied recursively to the subsequent children nodes.

The kth derivative of a function f rooted at node v with var(v)=x is referred to

as a k-child of v; f(x=0) is a 0-child,)0(' =xf is a 1-child,)0(
!2

1 '' =xf is

a 2-child, etc. Notice the implicative terms associated with each arc: x0=1 for

the 0-edge, x1=x for the 1-edge, x2 for the 2-edge, etc.

TEDs are a new canonical, graph-based representation for arithmetic

expressions, which can be exploited to facilitate equivalence checking of

high-level specifications of digital designs in terms of the compactness and the

canonicity properties. TEDs handle algebraic variables as real numbers. Figure

2.10 shows an example of TED representation for a simple algebraic expression.

Chapter 2: Background

 36

Note the additive and multiplicative weights assigned to the edges. The

computation of the derivatives, and hence the children of f, performed

recursively, is trivial for polynomial functions.

A

C

B B

0 1

3

A3+3AC+AB+3BC

Figure 2.10: An example of an expression represented with TED

2.2.6 Disadvantages of Decision Diagrams
 The canonicity and ease of composition that OBDDs and MTBDD provide

make them ideal for matching small combinational circuits. In order to handle

complex circuits such as multiplication, the potentially exponential size of

BDD structures makes comparison of BDDs time consuming and memory

intensive. BMDs and TEDs manipulate the complex circuits by easing the

requirement of memory and time. They have been used to verify the

functionality of linear circuits [141]. However, they can only yield information

on whether or not an implementation matches a specification exactly, but offer

no path for quantifying the degree to which the two offer. Therefore, if two

functions are similar but not exactly equal, BMDs and TEDs structures may

implement drastically different arithmetic functions, while two very different

diagrams may implement the same mathematical operation with different

degrees of precision. Also, BMDs and TEDs are unsuitable for use in

non-linear functions because of the resulting exponential complexity in the

worst case [77], and hence decision diagrams are not suitable to be used to

explore imprecise circuits.

Chapter 2: Background

 37

2.3 Dynamic Analysis
 Decision diagrams are explored in formal verification as a part of

equivalence and model checking, but they have no ability to process the

fixed-point representation. The usual method to handle fixed-point designs is

through the dynamic analysis which uses appointed vectors as specific inputs.

The major elements include the tested circuit and a group of vectors. A

testbench represents stimuli to the circuit under verification. The results of the

circuit simulations with the stimuli indicate whether the implementation is

suitable for the specification. The simple idea makes it prevalently used. In

fact, historically, dynamic analysis is the oldest technique to verify digital

designs. The major draw back of this class of methods is the requirement to

enumerate all possible input values in order to verify a circuit in 100%.

 The exhaustive test vectors are usually infeasible for dynamic analysis

because of huge execution time. A practical testing method requires as few

vectors as possible to cover as many faults as possible, so the technique of test

generation has been developed. ATPG (Automatic Test Pattern Generation) is a

technology to distinguish between the correct circuit behavior and the faulty

circuit behavior caused by defects. Obviously, the processed objects are

precise designs and it is difficult to handle or optimize imprecise designs by

these methods. Varieties of explorations adopt dynamic analysis and avoid

exhaustive vectors to optimize imprecise designs, which are introduced next.

Authors in [18] - [25] rely on the straightforward technique to get

optimization of a bit-width. In [19] Kung et al. develop a combined word-level

(WL) optimization and high-level synthesis algorithm to minimize the

hardware implementation cost and significantly reduce the optimization time.

Their algorithm initially finds the WL sensitivity or minimum WL of each

signal throughout fixed-point simulations of a signal flow graph. Then it

performs the WL high-level synthesis where signals having the similar WL

sensitivity are assigned to the same functional unit. Finally, the algorithm

conducts the final WL optimization by iteratively modifying the WLs of the

synthesized hardware model. Figure 2.11 [19] depicts the design flow of

optimization.

Chapter 2: Background

 38

Data flow
graph

Signal grouping

Scaling factor
determination

Minimum WL
determination

Scheduling and
binding

Optimal WL
search

Synthesize
architecture

Figure 2.11: Design flow of the architecture-level WL optimization [19]

 Willems and Bursgens [20] present a tool that allows an automated,

interactive transformation from floating-point ANSI-C into a bit-true

specification. The tool quantizes the input value and analyzes quantization

effects on an algorithmic level. Then it invokes the simulation-based

fixed-point algorithm to target the described specification. The main

disadvantage of the above method is that it requires a large set of input vectors,

and hence a long simulation time is unavoidable.

Figure 2.12: The tool flow of the method in [20]

Chapter 2: Background

 39

 Gaffar et al. [21] offer a uniform treatment for bit-width optimization of

fixed-point designs. They utilize automatic differentiation to compute the

sensitivities of outputs to the bit-width of the various operands in the design.

This sensitivity analysis enables to explore and compare fixed-point and

floating-point implementation for a particular design. As a result they can

automate the selection of the optimal number representation for each variable

in a design to optimize area and performance. Figure 2.13 describes its design

flow.

 Design Description System Generator
Design

BitSizeCost Function Runtime Data

Annotated Dataflow GraphVerification Output

System Generator

VHDL Synthesis
Matlab Simulation

Xilinx Tools

FPGA Configuration Bitstream

Comparison

Output Error

Figure 2.13: The design flow of dynamic analysis in [21]

 C. Shi et al. [22] set up a statistical model to estimate hardware resource in

terms of perturbation theory. A tool that automates the floating-point to

fixed-point conversion (FCC) process for digital signal system is described

based on a simulation tool, Simulink. The tool automatically optimizes

fixed-point data types of arithmetic operators, including overflow modes,

integer word lengths, fractional word lengths, and the number systems. The

Chapter 2: Background

 40

approach is based on statistical modeling, hardware resource estimation and

global optimization based on an initial structural system description.

 Nayak et al. [23] propose a precision analysis algorithm to determine the

minimum number of bits required by an integer variable, and present a

framework to generate an efficient hardware for signal processing applications.

Their range optimization relies on data range propagation, while precisions are

analyzed and optimized by the DFG which is an acyclic graph representation

of a circuit. A memory packing algorithm is proposed to generate faster

hardware requiring less execution time. Figure 2.14 illustrates the framework.

Input Matlab
Code

Matlab AST

Type-Shape
Analysis

Scalarization Levelization

Dependence
Analysis

Precision and
Error Analysis

Memory
Packing

Output VHDL
Code

Figure 2.14: Overview of the synthesis framework in [23]

 Though dynamic analysis provides bit-widths closer to the optimal set for

those particular stimuli, it is not a perfect solution since a large set of stimuli

signals is required to analyze a design with sufficient confidence. This

possibly leads to prohibitively long simulation time without guarantees for

alternative input stimuli encountered in practice. Hence, often not only low

efficiency of the overall process can be encountered, but the above methods

can become infeasible for some cases. Therefore, other methods should be

explored.

Chapter 2: Background

 41

 2.4 Static Analysis
Static analysis such as interval arithmetic and affine arithmetic can avoid

tedious simulation. This section introduces static methods to handle

fixed-point circuits represented by polynomials.

2.4.1 Interval Arithmetic
In mathematics, a (real) interval is defined as a set of real numbers with the

property that any number that lies between two numbers in the set is also

included in the set. For example, the set of all numbers x from the interval [0,1]

include 0 and 1, as well as all real numbers between them. Interval arithmetic

(IA) is a method developed by mathematicians in 1950s and 1960s as an

approach to putting bounds on rounding errors in mathematical computation.

Among many contributors, we distinguish Hansen, who in [26] introduced

basic ides of interval arithmetic and Kearfott, who in [27] presented some

important applications of interval computations. In general, the advances in

interval arithmetic led to the development of numerical methods that yield

very reliable results.

Where classical arithmetic defines operations on individual numbers,

interval arithmetic defines a set of operations on intervals. An operation <OP>

on two intervals is defined as:

]},[],,[|{],[],[21212121 yyyxxxyOPxyyOPxx ∈∈><=><

The operand <OP> can, for example, represent addition or multiplication.

For practical applications the above notation can be simplified to:

Addition:],[],[],[22112121 yxyxyyxx ++=+

Subtraction:],[],[],[22112121 yxyxyyxx −−=−

Multiplication:

)],,,max(),,,,[min(],[],[22122111221221112121 yxyxyxyxyxyxyxyxyyxx =∗
Division:

]),/[1(],[],/[],[21212121 yyxxyyxx ∗= ,

where]/1,/1[],/[1 2121 yyyy = if],[0 21 yy∉

With the help of these definitions, it is already possible to calculate the

Chapter 2: Background

 42

range of simple functions, such as f(a,b,x) = ax+b. If, for example a = [1,2], b

= [5,7] and x = [2,3], it is clear that
]13,7[]7,5[]32,21[]7,5[])3,2[]2,1([),,(=+∗∗=+∗=xbaf

Interval methods can also apply to functions which do not just use simple

arithmetic, and we must also use other basic functions for redefining intervals

as known monotonicity properties. The range of values is easy to determine

for monotonic functions in one variable. If RRf →: is monotonically

rising or falling in the interval y1, y2∈ [x1, x2], then one of the following

inequalities applies for all values in the interval such that y1 ≤ y2 :

f(y1) ≤ f(y2) or f(y1) ≥ f(y2)

The range corresponding to the interval [y1, y2] ⊆ [x1, x2] can be calculated by

applying the function to the endpoints y1 and y2:

f([y1, y2]) = [min{f(y1), f(y2)}, max{f(y1), f(y2)}]

Using the above equation, the following basic features for interval functions

can easily be defined:

• Exponential function:],[2121],[xxxx aaa = a ≥ 1,

• Logarithm:],[2121],[x
a

x
a

xx
a LogLogLog = for positive intervals [x1,

x2] and a >1,

• Odd powers: [x1, x2]n = [x1
n, x2

n] for odd n⊆ N.

The methods of classical numerical analysis cannot be transferred

one-to-one into interval-valued algorithms, as dependencies between

numerical values are usually not taken into account.

In order to work effectively in a real-life implementation, intervals must be

compatible with floating point computing. The earlier operations were based

on exact arithmetic, but in general fast numerical solution methods may not be

available. The range of values of the function f(x,y) = x + y for x∈ [0.1, 0.8]

and y∈ [0.06, 0.08] are for example [0.16, 0.88]. Where the same calculation

is done with single digit precision, the result would normally be [0.2, 0.9]. But

[0.16, 0.88]∉ [0.2, 0.9], so this approach would contradict the basic principles

of interval arithmetic, as a part of the domain of f([0.1, 0.8], [0.06, 0.08])

would be lost. Instead, it is the outward rounded solution [0.1, 0.9] which is

used.

The required external rounding for interval arithmetic can thus be achieved

Chapter 2: Background

 43

by changing the rounding settings of the processor in the calculation of the

upper limit and lower limit. Alternatively, an appropriate small interval [21 ,εε]

can be added.

Interval arithmetic is used in association with error analysis to control

rounding errors arising from each calculation. The advantage of interval

arithmetic is that after each operation there is an interval which reliably

includes the true result. The distance between the interval boundaries gives the

current calculation of rounding errors directly:

Error = abs(a − b) for a given interval [a,b].

2.4.2 Affine Arithmetic
Affine arithmetic (AA) is a model for numerical analysis introduced first by

Stolfi and Figueiredo, [32] [33]. In AA, the quantities of interest are

represented as affine combinations (affine forms) of certain primitive variables,

which stand for sources of uncertainty in the data or approximations made

during the computation. It is meant to be an improvement on interval analysis

(IA).

In affine arithmetic, each input or computed quantity x̂ is represented by a

formula:

nnxxxxx εεε ++++= ...ˆ 22110

where x0, x1, ... xn are floating-point numbers and nεεε ..., 21 are symbolic

variables whose values are only known to lie in the range [-1,+1]. We call x0

the central value of the affine form x̂ ; the coefficients xi are its partial

deviations, and the iε are the noise symbols. Thus, for example, a quantity

x̂ which is known to lie in the range [3,7] can be represented by the affine

form kx ε25ˆ += .

The key feature of AA is that the same symbol iε may contribute to the

uncertainty of two or more quantities (inputs, outputs, or intermediate results)

x̂ and ŷ arising in the evaluation of an expression. The noise symbols can

be shared which indicates some partial dependency between the underlying

quantities x and y, determined by the corresponding coefficients xi and yi. Note

Chapter 2: Background

 44

that the signs of these coefficients are not meaningful in themselves, because

the sign of iε is arbitrary; but the relative sign of xi and yi defines the

direction of the correlation. For example, suppose that the quantities x and y

are represented by the affine forms:

x̂ = 17 − 3 1ε + 2 3ε + 4 4ε ŷ = 9 − 1ε + 2ε - 2 4ε

From this data, x lies in the interval x̂= [8, 26] and y lies in ŷ = [5, 13], i.e.,

the pair (x, y) lies in the grey rectangle of Figure 2.16; however, since the two

affine forms include the same noise variables 1ε and 4ε with non-zero

coefficients, they are not entirely independent of each other. In fact, the pair (x,

y) lies in the dark grey region of Figure 2. 15, which is the set of all possible

values of (x̂ , ŷ) when the noise variables 1ε , .. 4ε are independently. This

set is the joint range of the forms x̂ and ŷ , denoted < x̂ , ŷ >.

8 26

5

13

Figure 2. 15: Joint range (x̂ , ŷ) of two partially dependent quantities

 as implied by their affine forms

 In order to evaluate a formula with AA, we need to replace each elementary

operation z ← f(x, y) on real quantities x and y by a corresponding procedure

ˆ ˆˆ (,)z f x y← , which uses affine forms of those quantities and returns an affine

form for the result z. By definition, there are:

nnxxxxx εεε ++++= ...ˆ 22110

nnyyyyy εεε ++++= ...ˆ 22110

Therefore, the result ẑ is a function of the unknown variables iε as:

 0 1 1 0 1 1ˆ ˆˆ (,) (... , ...)n n n nz f x y f x x x y y yε ε ε ε= = + + + +

Example 2.10: Consider the multiplication of two affine forms ˆ ˆẑ xy← , where

Chapter 2: Background

 45

21 3420ˆ εε +−=x and 31230ˆ εε ++=y . Please notice that the operands

are partially correlated through the shared noise symbol 1ε . The product of

ˆˆxy is:

ˆ ˆẑ xy= = 600 - 80 1ε +90 2ε + 20 3ε – 8 2
1ε – 4 1 3ε ε + 6 1 2ε ε + 3 2 3ε ε

 = 600 - 80 1ε +90 2ε +20 3ε – 8 4ε – 4 5ε + 6 6ε +3 7ε

Using the form of ẑ , we can estimate the range of ẑ is [389, 811]. The

actual range of ˆˆxy is [403, 756], so the obtained range by AA is (811-389) /

(756 – 403) = 1.2 times wider than the exact range. If using IA for comparison,

z = [13, 27] * [27, 33] = [351, 891], that is (891 – 351) / (756 – 403) = 1.53

times wider than the exact range. The reason is AA can partly process the

correlation between x̂ and ŷ implied by the shared symbol 1ε . The

correlated terms −120 1ε and +40 1ε nearly cancel out in the AA

computation, but are added with the same sign in the IA computation.

C.Fang et al. [39] [40] take advantage of affine arithmetic modeling to

analyze range and precision from fixed-point implementations of DSP

algorithms. The resulting numerical error estimates are comparable to detailed

statistical simulation, but achieve speedups of four to five orders of magnitude

by avoiding actual bittrue simulation. Authors in [41] [43] propose an

approach that optimizes the bit-widths of fixed-point and floating-point

designs. Range analysis depends on a combined affine and interval arithmetic

approach to reduce the number of bits. Precision analysis involves a

coarse-grain and fine-grain analysis. The best representation in fixed-point or

floating-point is then chosen based on the range, precision and latency. Figure

2.16 illustrates the methodology.

Chapter 2: Background

 46

C/C++ Program

Simulation-Error
Function Generation

Guaranteed-Error
Function Generation

Coarse Precision
Analysis

Fine Precision
Analysis

Scheduling
Floating-point Units

Range
Optimization

Cost Table
Generation

Word-length Optimized Fixed /
Floating-Point Design

Figure 2.16: An outline of the methodology in [41]

 The algorithm starts from generating cost and error functions and then

analyzes range. The next stage is precision analysis. A coarse-grain analysis

produces uniform bit-widths. These results are then refined to produce

non-uniform bit-widths. The last stage is floating-point scheduling before the

source code is reconstructed to a given C/C++ design.

 Authors in [42] use AA to investigate bit-width due to truncated and

rounded data, and explore hardware area and delay in FPGA on the condition

of different bit-width. Figure 2.17 introduces the tool of static analysis.

Chapter 2: Bac

 The algo

optimize th

by the pre

propose a t

with fixed-

accuracy. T

First, the co

about the n

results. Se

wordlength

functions. T

developed f

genetic alg

applied to o

ckground

orithm gen

he fractional

cision anal

tool, Length

-point arith

The tool ad

ode is analy

number of

econd, aggr

hs rapidly w

Third, a me

for data-par

gorithm wit

obtain near-

Figure 2.17:

nerates error

l bit-width.

lysis. Osbor

hFinder, for

hmetic base

dopts a mul

yzed and loo

iterations c

ressive heu

while meeti

ethod which

rtitioning w

th selective

-optimal res

47

The tool of st

r function

An optimiz

rne et al.

optimizing

d on analy

lti-stage ap

ops are sele

can be extr

uristics are

ing require

h is capabl

with a variab

-crossover

sults.

tatic analysis

and cost fu

zed fixed-p

[45] extend

g wordlength

ytical error

proach, wit

ected to inst

racted to g

e used to

ments from

e of reduci

ble wordleng

and high m

s in [42]

unction resp

point design

d the work

hs of hardw

models tha

th four nov

trument, so

generate mo

produce n

m the guara

ing the sear

gth reductio

mutation pr

pectively to

n is obtained

k in [42] to

ware designs

at guarantee

vel features

information

ore accurate

non-uniform

anteed error

rch space is

on. Fourth, a

robability is

o

d

o

s

e

s.

n

e

m

r

s

a

s

Chapter 2: Background

 48

In [93], authors set up models for error source dependence. In these models,

the dependence is approximated by linear functions (AA) or by general

polynomials (Taylor series methods), which are proved optimal. They also

describe that the optimal way to decrease the excessive bit-width is to use

implicit polynomial dependence.

Affine arithmetic is potentially useful in every numeric problem where one

needs guaranteed enclosures to smooth functions, such as solving systems of

non-linear equations, analyzing dynamical systems, integrating functions

differential equations, etc. Additionally, AA has many applications in areas

such as computer graphics, optimization and curve drawing in [35], [36], [37],

[38]. Here it is used to handle range analysis and bit-width optimization.

 2.5 Alternate Methods
Constantinides et al. [46] present an approach to the wordlength allocation

and optimization for linear DSP systems. The tool Synoptix [47] - an

optimization technique targeting linear time-invariant digital signal processing

systems using a novel resource binding technique is proposed. It is based on

saturation arithmetic to perform the range of bit-width optimizations and

allows the user to tradeoff implementation area for arithmetic error at system

outputs.

Chapter 2: Background

 49

simulink
signal
scaling

wordlength
optimization

error
constraints

bit-true
simulator

synthesis
of HDL

vendor
synthesis

completed
design

HDL
libraries

library
cost models

multiple
wordlength
 libraries

Figure 2.18: Synoptix design flow in [47]

Figure 2.18 describes the tool flow. The input to Synoptix is a

Simulink block diagram, and the output is a structural description in VHDL.

Third-party tools are then used to perform the low-level logic synthesis,

placement, and routing of the designs.

Kinsman and Nicolici [55] introduce the theory of SAT-Modulo (SMT) to

explore ranges. SMT first uses the coarse bounds obtained by IA, and then

refines them by inserting constraints. More precise bounds than AA can be

obtained, so determine smaller bit-widths for an implementation. Based on the

scheme, an SMT engine can be used to prove/disprove validity of a bound on a

given expression by checking for satisfiability.

Affine
Arithmetic

Interval
ArithmeticRange

Precision

 Specification
 (Scientific
 Calculation) Range

Refinement

Initial
ranges

SAT-Modulo

Figure 2.19: Flow of SMT technique in [55]

 Ahmadi and Zwolinski [54] address the bit-width assignment in hardware

Chapter 2: Background

 50

implementation in the context of high-level synthesis. They introduce a

symbolic noise analysis (SNA) to surpass the pessimism of IA, which is based

on modeling of the error bounds by an assumed probability distribution

function over a known range. In comparison to SNA which assumes the error

distributions more localized, IA is pessimistic by assuming the uniform

distribution. The proposed method is used in combination with models of

power consumption, circuit area and delay. Results demonstrate a considerable

saving in costs when these optimizations are applied.

2.6 Conclusions
In this chapter, we introduced the usual Boolean function representations

such as decision diagrams. Although decision diagrams such as TEDs are

suitable to equivalence checking and model checking, they cannot be applied

to imprecise circuits or to bit-width optimization. Dynamic analysis is a

common method and many explorations are based on it, but its low efficiency

confines its applications. Static analysis has been developed to overcome this

limitation. IA is the usual method of finding ranges and AA is a derivation

which can calculate more precise ranges than IA.

These explorations only get one optimization of bit-width such as [42] or

hardware area such as [51]. Another disadvantage is that they do not consider

the function approximation so they are not capable of investigating these

factors concurrently. In our research, we overcame this disadvantage and

simultaneously processed bit-widths and various constraints as well as

approximations for Taylor series and real-valued polynomials.

 51

Chapter 3

Compositions of AT and
Extensions

 Arithmetic Transform (AT) must be extended to represent

combinational circuits and sequential circuits efficiently. We state

past methods of calculating AT coefficients, and then address the

use of AT and its extensions to express word-level quantities and

sequential elements. Since a circuit transform can express

properties of the circuit distinctly and help engineers to penetrate

its essence straightforwardly, obtaining an overall transform by

symbolic compositions of individual blocks’ transforms becomes

most significant. For the purpose of running time and memory, the

best algorithm is proposed for a compositional verification of the

complex datapath.

Chapter 3: Compositions of AT and Extensions

 52

 3.1 Introduction of Spectral Transforms
As a main method exploring the fixed-point circuits in our research,

Arithmetic Transform (AT) is a spectral representation different with Boolean

representations. So we introduce the spectral domain and the basic AT

definition at first in this Chapter.

3.1.1 Spectral Domain
 It is common to use the product and sum operators of the Boolean algebra

together with negation to define such functions － for example, f(x1, x2, x3) =

321 xxx + 321 xxx . The use of Boolean algebra for the manipulation and analysis

of switching circuits is well known. Part of the problem with the definition in

the Boolean domain is that each of the entries in the truth table for f tells us

precisely the behavior of the function at a single point but nothing of its

behavior for any other points. It is possible to give an alternate representation

of a function where the information about the function is much more global in

nature. This alternate representation is in the spectral domain, and a number of

properties are much more easily deduced in the spectral domain than in the

Boolean one [56]. Spectral techniques are very powerful tools for logic

functions to express the principle of linearity and superposition.

The basic idea of the spectral domain and how to get there is illustrated in

Figure 3.1. In order to avoid losing information, the transform should be

reversed, that is, we can move to and from the spectral domain without any

loss of information.

Conventional
Boolean data

Appropriate
transform

Original Boolean
data re-expressed as

a different set of
numbers

The Boolean domain The transform The spectral domain

Figure 3.1: The spectral transform

 The information content in the functional and spectral domains will be

identical, and the data in either domain is uniquely recreatable from the data in

Chapter 3: Compositions of AT and Extensions

 53

the other, but the meaning of the parameters in the two domains will be

dissimilar. In particular, the discrete nature of the data in the function domain

will be generally influenced by the complete functional performance of the

circuit or network under consideration. The following section outlines several

usual spectral transforms.

3.1.2 Various Transforms
A) Reed-Muller Transform
Definition 3.1: In matrix notation, positive polarity Reed-Muller (PPRM)

expressions for functions in GF(2) are given by:

 RM(f) = Rn F

where F is the truth table for the Boolean function f and

 ⎥
⎦

⎤
⎢
⎣

⎡
=

−−

−

11

1 0

nn

n
n RR

R
R , 10 =R (3-1)

Example 3.1: Consider a function f(x0, x1, x2) = x1x2+x0, i.e., F = [0, 1, 0, 1,

0, 1, 1, 1]T . Using the Eqn. 3-1, coefficients of Reed-Muller transform are

calculated as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
1
0
0
0
0
1
0

1
1
1
0
1
0
1
0

11111111
01010101
00110011
00010001
00001111
00000101
00000011
00000001

7

6

5

4

3

2

1

0

r
r
r
r
r
r
r
r

Thus RM(f) = x0 ⊕ x1x2⊕ x0 x1x2

B) Fixed-Polarity Reed-Muller Transform
The fixed polarity Reed-Muller (FPRM) transform is derived from the

negative Davio expansion together with the positive Davio expansion (no need

for the same variable). These transforms are characterized by the polarity

Chapter 3: Compositions of AT and Extensions

 54

vectors H = (h1, . . . , hn) ∈ {0, 1}n, whose ith coordinate hi = 1 shows that the

corresponding variable is represented by the negative literal ix in the

polynomial representation for a given function f [57].

For a given polarity vector H, the FPRM polynomial is given in the matrix

notation by:

FPRM(f) =
1 1

([1])([(1)])i i

n n
h h
i

i i

x R F
= =
∏ ∏

where

, 0

, 1
i

i ih
i

i i

x h
x

x h

=⎧ ⎫⎪ ⎪= ⎨ ⎬
=⎪ ⎪⎩ ⎭

1 0
, 0

1 1
(1)

0 1
, 1

1 1

i

i
h

i

h
R

h

⎧ ⎫⎡ ⎤
=⎪ ⎪⎢ ⎥

⎪ ⎣ ⎦ ⎪= ⎨ ⎬
⎡ ⎤⎪ ⎪=⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

Example 3.2: Figure 3.2 [57] shows the Reed-Muller transform matrix for n =

3 and the polarity vector H = (0, 1, 0).

(0,1,0)

0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0

(3)
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 3.2: Reed-Muller matrix for n = 3 and the polarity vector H = (010)

The indices of columns in R(010)(3) are defined as (i1⊕h1, i2 ⊕h2, i3 ⊕h3)

compared to the positive polarity (H = (0, 0, 0)) Reed-Muller matrix R(3). So

the original output order (0, 1, 2, 3, 4, 5, 6, 7) changes to (2, 3, 0, 1, 6, 7, 4, 5).

With this matrix, for a function f given by the truth-vector F =[1, 0, 0, 1, 0, 1,

1, 1]T, the Reed-Muller expansion for H = (0, 1, 0) is given by

FPRM(f) = x0 ⊕ 1x ⊕ x2 ⊕ x2x0 ⊕ x2 1x x0

C) Walsh Transform

The Walsh functions [57] [59] [60] [61] are a closed set of two-valued

orthogonal functions, given by

Chapter 3: Compositions of AT and Extensions

 55

 })1{(),(
1

0

}{ 1∏
−

=

+ −−−−=
n

jkk nnnkjWal
η

ηη

Where ηj , ηk are determined by the binary expansions of j, k respectively,

j, k ∈ 0 to 2n-1, where

 j = {jn-12n-1 + jn-22n-2 +… + j020} k = {kn-12n-1 + kn-22n-2 +… + k020}

 The Walsh transform is a complete orthogonal square matrix, with row and

column entries ∈ {+1, -1} and with a recursive structure as follows:

where ⊗ denotes the Kronecker product operator. The transform is given by

W(f) = Wn F.

D) Fixed-Polarity Walsh Transform

For a given polarity vector H = (h1, . . . , hn) the fixed polarity Walsh

polynomial is given in the matrix notation by [57]:

 FPW(f) =
1 1

2 ([1 1 2])([(1) (1)])i i i

n n
h h hn
i

i i

x F−

= =

− − −∏ ∏

E) Kronecker Transform
Definition 3.2: For a function f, the Kronecker spectrum is defined as:

 K(f) = Kn F

where 1
11

1

11
100

−
−−

− ⊗⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= n

nn

n
n K

KK
K

K

Figure 3.3 shows the Kronecker transform matrix K(3):

1
11

11

11
11

−
−−

−− ⊗⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

= n
nn

nn
n W

WW
WW

W

Chapter 3: Compositions of AT and Extensions

 56

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11110000
10100000
00110000
00010000
00001111
00001010
00000011
00000010

)3(K

Figure 3.3: A Kronecker transform matrix for n = 3

F) Haar Transform
 The orthogonal Haar functions [56] may be defined as follows, where k is

taken over the continuous interval 0 to 1:

 0.1)(0
0 +=kH

)0.1(|2|)(1 += −iq
i kH for

11 2
2
1

2 −−

+
<≤ ii

q
kq

)0.1(|2| 1 −= −i for 11 2
1

2
2
1

−−

+
<≤

+
ii

qk
q

where i = 1, 2, … , n and q = 0, 1, … , 2i-1-1.

The sequentially ordered discrete Haar functions for n = 3 are shown in

Figure 3.4.

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2 2 2 2 0 0 0 0

0 0 0 0 2 2 2 2(3)
2 2 0 0 0 0 0 0
0 0 2 2 0 0 0 0
0 0 0 0 2 2 0 0
0 0 0 0 0 0 2 2

sH

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥− −= ⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

Figure 3.4: Sequentially ordered Haar functions for n = 3

Chapter 3: Compositions of AT and Extensions

 57

3.2 Arithmetic Transform
3.2.1 Basic Definition

We adopt Arithmetic Transform that is defined in the spectral domain as our

main method to analyze imprecise factors and compute imprecision.

Traditional methods are hard to determine the maximum error on the condition

of the Taylor word-level input, but AT can decompose word-level variables

into bit-level quantity to avoid the disadvantage and represent the error

function essentially. AT has been proved to be suitable for precision

verification and optimization by precision constraints, so here we use it to

analyze imprecision of Taylor series.

AT is a canonical polynomial representing uniquely multi-input and

multi-output Boolean functions mn BBf →: . Multi-output can be grouped to

form a word-level (integer) number w to obtain an AT description in a form of

a single polynomial, leading to a pseudo Boolean function wBf n →: .

Therefore, the AT representation has Boolean inputs and a word-level output.

Definition 3.3: The Arithmetic Transform (AT) [62] is a polynomial

representing a pseudo Boolean function wBf n →: using an arithmetic

operation “+”, word-level coefficients
niiic ...21
, binary inputs nxxx ,, 21 and

binary exponents niii ..., 21 :

n

n

n

i
n

i

i i i

i
iii xxxcfAT)(2

1 2

1

21 2

1

0

1

0

1

0
1...∑ ∑ ∑

= = =

=

The matrix multiplication is most frequently used to determine AT of a

given function. In this method, the set of AT coefficients }{ ...21 niiicC = are

obtained by multiplying the nn 22 × matrix Tn by a 12 ×n vector of

function values (truth table of f): fTC n ×= where the transform matrix Tn

is defined recursively:

 . (3-2)

⎥
⎦

⎤
⎢
⎣

⎡
−

=
−−

−

11

1 0

nn

n
n TT

T
T 10 =T

Chapter 3: Compositions of AT and Extensions

 58

 AT generates a word-level output and it is encoded by binary weights

addition. A word-level encoding is explicitly expressed by the number norm

function | |:Bm→W , defining a Boolean vector interpretation in the word-level

domain. Table 3.1 [70] gives a summary of common integer and fractional

number norms for a vector of Boolean values xi.

Word Number Norm |x|

Unsigned Sign Extended 2’s Complement

Integer
∑
−

=

1

0

2
n

i

i
ix ∑

−

=
−−

2

0
1 2)21(

n

i

i
in xx ∑

−

=

−
−−

2

0

1
1 22

n

i

n
n

i
i xx

Fractional
∑
−

=

−
1

0

2
n

i

i
ix ∑

−

=

−−
1

1
0 2)21(

n

i

i
ixx ∑

−

=

−+−
1

1
0 2

n

i

i
ixx

Fixed Point
∑
−

=

−
1

0

2
n

i

mi
ix ∑

−

=

−−
1

1
0 2)21(

n

i

mi
ixx nm

n

i

mi
i xx −

−

=

− −∑ 22 0

1

1

Table 3.1: Norm functions for common word encodings

Example 3.3: Consider the following Boolean function, where (x2, x1, x0) are

bit-level variables, and output variables are grouped to form an integer at

Boolean domain. Arithmetic Transforms can be obtained using the function

truth table:

11111111
01010101
00110011
00010001
00001111
00000101
00000011
00000001

)(

−−−−
−−
−−

−
−−

−
−

=FAT *

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

8
17
14

18
2
8
11
2

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

0
7
19

16
7
6
13
2

Hence AT = 2 - 13x0 + 6x1 + 7x1x0 + 16x2 -19x2x0 +7x2x1

Arithmetic polynomials are used for efficient representation and calculation

of multi-output functions fk , fk−1, . . . , f0 represented as integer-valued

functions f(z) via the mapping [57]:

000 2

001 -11

010 8

011 2

100 18

101 -14

110 17

111 -8

Chapter 3: Compositions of AT and Extensions

 59

 f(Z) = i

k

i

i f∑
=0

2

Example 3.4: Consider a system of functions:

 (f2(x2, x1, x0), f1(x2, x1, x0), f0(x2, x1, x0))

where f0(x2, x1, x0) = x2(x0 + x1)

f1(x2, x1, x0) = x2x0 ⊕ x1

f2(x2, x1, x0) = x1+ x2x0

A matrix F whose columns are truth-vectors of f2, f1, and f0, with their values

interpreted as integers is used:

],,[

101
111
111
000
011
011
000
000

012 FFFF =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

An integer valued representation for f2, f1, and f0 is obtained as f = 22f2 + 2f1 +

f0, i.e,

012
2 24

1
1
1
0
0
0
0
0

0
1
1
0
1
1
0
0

2

1
1
1
0
1
1
0
0

2

7
6
4
3
3
3
0
0

FFF ++=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 Now, the arithmetic spectrum of F = [0, 0, 3, 3, 3, 4, 6, 7]T is

Chapter 3: Compositions of AT and Extensions

 60

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−
−−

−
−−

−
−

9
1
7
0
0
6
0
0

5
7
7
0
6
6
0
0

11111111
01010101
00110011
00010001
00001111
00000101
00000011
00000001

012

12

02

2

01

1

0

1

xxx
xx
xx

x
xx

x
x

Therefore, f is represented as the arithmetic polynomial

f(z) = 6x1 + 7x2x0+ x2x1 -9 x2x x0

 From the linearity of the arithmetic transform, this polynomial can be

generated as the sum of the arithmetic polynomials for f1, f2, f3.

3.2.2 Utilization of Spectral Techniques

Spectral techniques have been applied for circuit synthesis, verification and

testing by many researches. Clarke et al. [64] describe how to calculate

concise representations of the Walsh transform for a Boolean function with

huge variables. The technique is applied for Boolean technology mapping and

obtains a speed up for matching case.

Klaus [65] develops a new method based on AT for the derivation of fault

signatures for the detection of faults in single-output combinational networks.

The signatures do not require exhaustive testing so they provide substantially

less work than syndrome testing or the verification of Rademacher-Walsh

spectral coefficients. Two counters are used to test spectral coefficients in [65]

as the following figure.

Chapter 3: Compositions of AT and Extensions

 61

Counter for
(xi: i I) ∈

Crcuit under
test

xi=0, i N-1∈

Counter

parity bit

direction

up=0
down=1

 Figure 3.5: The spectral coefficient ai test structure in [65]

 Lui et al. [66] use spectral signature testing methods for the model of

multiple stuck-at faults. The testability condition for multiple-input faults is

established and a minimal spanning signature (MSS) is defined to cover all

these faults. A MSS contains a single spectral coefficient to detect over 99%

of all input and internal multiple faults. The approach can obtain a complete

signature for all multiple faults in any irredundant combinational network with

small numbers of fan-outs and the possible overhead being an extra control

input.

 Miller and Muzio [67] describe a method for the derivation of fault

signatures for certain classes or irredundant combinational networks. These

signatures consist of a set of values derived from the network. Any stuck-at

fault causes at least one of the values to change. The signatures provide

complete fault detection for all single stuck-at faults.

Radecka et al. [68] exploit the algebraic properties of the AT that are used

in the compact graph-based representations of arithmetic circuits. Verification

time can be shortened under assumption of corrupting a bounded number of

transform coefficients. Bounds are derived for a number of test vectors and the

vectors successfully verify arithmetic circuits under a class of error models

derived from proposed basic design error classes including single stuck-at

faults.

In [135], authors describe a methodology for simulation-based verification

in the presence of a fault model. The authors propose an implicit fault model

that is based on the AT representation of a circuit and design faults. The

proposed approach has the advantage of compatibility with formal verification

and manufacturing testing methods. Errors can be modeled implicitly, and

Chapter 3: Compositions of AT and Extensions

 62

such an implicit error model is given by AT of a difference between the

correct and faulty circuits. Since a fault is treated as a quantity added to the

circuit output, the behavior f~ of the faulty circuit is represented as a sum of

the correct output and the error function e, that is, f~ = f + e. The relation:

 AT(f~) = AT(f)+ AT(e)

is satisfied. The size of the error is measured in terms of the number of

non-zero spectral coefficients in AT of the error e, that is, AT(e). Based on the

linearity feature, black-box verification can be performed without any

knowledge of a circuit structure and implementation, as it is performed

through design interfaces without accessing directly any of internal states.

3.2.3 Calculation of AT Coefficients
 The definition of AT has been introduced. The usual method relies on matrix

multiplication, which needs huge computation of multiplication and addition,

so it is always inefficient. Past explorations investigate some other methods to

calculate AT coefficients.

 Folkowski and Chang [92] develop an algorithm to calculate the AT of the

Boolean function from its OBDD representation. The method of

decomposition of arithmetic spectral coefficients in terms of the cofactors of

Boolean functions that resembles Shannon decomposition has been introduced.

A new algorithm to synthesize OBDD from arithmetic spectrum is described.

Authors in [94] introduce a fast algorithm to generate AT. In that paper,

different properties and ways of calculation for multi-polarity generalized

arithmetic and adding transforms have been presented. Mutual relationships

among spectra of different polarities have been discussed and the possibility to

generate spectrum of an arbitrary polarity directly from the known spectrum of

some polarity has been indicated. The following figure illustrates the fast

algorithm.

 Krenz et al. [95] present a fast algorithm for evaluating the arithmetic

transform of a Boolean function based on its circuit representation. Unlike

previous algorithms requiring an orthogonal and non-redundant representation

or a single BDD, a new algorithm is proposed to partition the evaluation based

Chapter 3: Compositions of AT and Extensions

 63

on the dominator relations of the circuit graph. The dominators simplify

intermediate evaluation steps greatly. So the algorithm can process larger

circuits.

 Whitley et al. [96] use representations of decision diagrams to calculate

spectral coefficients by graph-based algorithms which produce Walsh,

Arithmetic and Reed-Muller transforms for multi-output functions. Thornton

et al. [97] propose matrix based techniques to calculate direct transformations

amongst Walsh, Haar, Arithmetic and Reed-Muller spectral domains. They

implement the fast transforms directly on decision diagrams.

 Moraga et al. [98] introduce new diagrams based on AT, that is, arithmetic

transform decision diagrams (ACDDs) which are the integer counterparts of

the functional decision diagrams (FDDs). The paper describes how to

construct the diagrams by the structure of arithmetic transform spectrum of

Boolean functions. Example 3.6 shows an ACDD for a Boolean function.

Example 3.5: Figure 3.6 shows the ACDD for functions of n = 3 variables.

Figure 3.7 shows the reduced ACDD for the Boolean function:

f(x1, x2, x3) = 3 - 2x1 - x2 + 4x1x2 + x1x3 + 2x2x3

The constant nodes represent the arithmetic spectrum of f given by Af = [3 1 2

4 3 2 4 7]T .

A

A

AA

A A A

r000 r001 r010 r011 r100 r101

f

1

x1

1 1

1 1 1

x2
x2

x3

r111r110

1 x1
x1 x1

Figure 3.6: ACDD for n=3

Chapter 3: Compositions of AT and Extensions

 64

A

A

AA

A A A

1 3 4 2 7

f

1

x1

1 1

1
1

1 1

x2
x2

x3

x1

x1
x1

Figure 3.7: ACDD of f in Example 3.6

 Cintra et al. [99] propose a unified theory for AT of a variety of discrete

trigonometric transforms. Interpolation process is required and determines the

transform. Authors also introduce a new algorithm to calculate the discrete

Hartley transform by AT.

Past explorations calculate AT coefficients directly in spite of using matrix

multiplication or starting from OBDDs or other function representations. The

direct way sometimes leads to low efficiency especially for larger circuits. We

design a new method to calculate AT in this chapter which is an indirect way

by composing detached blocks in the circuit. First three extensions of AT are

introduced.

3.3 Extensions of the Arithmetic Transform
Consider a circuit consisting of two blocks B1 and B2 in Figure 3.8. The

composition of the two ATs: P=AT(B1) and Q=AT(B2) require the binary

encoding, that is from the conversion of the word-level output P of the first AT

into the bit-level values T, acceptable as inputs to the second AT [69].

Chapter 3: Compositions of AT and Extensions

 65

B2
.
.
.

I
P=AT(B1(I))

T=|R|-1
.
.
.

Q=AT(B2(T))
B1

Figure 3.8: Binary encoding use for compositions of ATs

 Instead of closed-form expression for binary encoding, the integer-to-binary

conversion algorithm is applied to the AT polynomial to obtain |w|-1. AT

extensions should accept both word- and bit-level inputs because of no simple

form of AT(|w|-1).

The majority of digital circuits subject to verification are complex designs

composed out of many smaller sub-blocks. AT can still be used to represent

such designs, however in order to facilitate the compositions of ATs

describing individual blocks (some of them may be sequential) we need to

derive extensions to the basic AT. Radecka and Zilic [70] has proposed three

extensions to represent complex combinational and sequential circuits. Here a

summary introduces them shortly.

3.3.1 Mixed Arithmetic Transform
The first extension (MAT) facilitates the compositions of two or more AT

blocks. The introduction of MAT is dictated by the incompatibility of inputs

and outputs accepted and generated by AT. Note, that ATs in their original

forms accept inputs as only binary variables, while for the compositions of ATs

some of the inputs may be binary as well as word-level.

Definition 3.4: The Mixed AT (MAT) [69] is a polynomial representing the

function wwBf km →×: which uses an arithmetic “+” operation,

word-level coefficients
niiic ...21
, binary x1,x2,…,xm and word-level kwww ..., 21

inputs as well as binary exponents i1,i2,…,in and e1,e2,…,ek:

k

k

m

n k

n

e
k

e
ee

i
m

i i e e

i
ii wwcxxcfMAT)(1

1

1 1

1

1 1...

1

0

1

0

1

0

1

0
1...∑ ∑∑ ∑

= = = =

= (3-3)

Eqn. (3-4) can be used to calculate the coefficients of a MAT, which is

Chapter 3: Compositions of AT and Extensions

 66

expanded around binary input variables, and treat word-level input quantities

unassigned as symbols:

fTwwwc nk *)...,(21 = (3-4)

Example 3.6: Consider the MAT of a function f=3a+b, where “a” and “b”

are 2-bit unsigned integers. We treat a=a1a0 as a bit vector, and “b” as a

single word-level quantity. We obtain the truth table:

 f = [b 3+b 6+b 9+b]T

from which the AT transform application generates:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−
−

==

0
6
3

9
6
3

1111
0101
0011
0001

*)(

b

b
b
b

b

fTfMAT

The resulting polynomial is F(a1a0) = b+3a0+6a1

 The size of the matrix Tn is shrunk from 16*16 to 4*4 by treating the input b

as word-level values. Therefore, the above example denotes that a MAT allows

a compact way of generating AT.

 A block represented by MAT can always be converted to the AT with

polynomial size increase in wordlength m. A MAT is of importance for

composing ATs by means of its word-level input variables, rather than for

representing all functions. A function should be expressed explicitly in terms

of designated word-level inputs.

3.3.2 Sequential AT Extensions
 Since AT and MAT have no ability to represent sequential circuits, as there

is no notion of time provided by these transforms, two extensions are introduced

to allow variables to change over time to facilitate sequential implementations.

We refer to such variables as timed variables.

Definition 3.5: The Timed variable “v[n]” is a variable “v” to which a time

tag “[n]” is assigned to indicate that the function generating the value of “v”

changes with time instance “n”[70].

Chapter 3: Compositions of AT and Extensions

 67

 Timed variables are used to abstract away the clock in the sequential

implementation. A timed function f[n] represents the value of f in the nth clock

period. The function f[n] is executed in a finite number of clock cycles.

Example 3.7: A timed equation of a memory element such as a flip-flop whose

content is reloaded every clock cycle is defined as [70]:

 mout[n] = min[n-1]

Definition 3.6: The AT Sequential (ATS) is the Arithmetic Transform AT(f)[n]

of timed function “f” at time instance “n”, while the MAT Sequential (MATS)

is analogously MAT(f)[n] of a timed function with word- and bit-level inputs

[70].

Example 3.8: Consider a standard flip-flop with input “D”, reset signal

“reset” and an enable signal “En” – all bit type is represented by ATS [70]:

])1[*)1(*)(1(])[(−−+−= nfEDEresetnfATS nn

 In fact, if intermediate variables generated by sequential elements are

word-level quantities, the only appropriate sequential transform is an ATS.

 The MATS of a sequential function “f” can be obtained from the MAT of

the combinational part of “f” by the replacement of each MAT input that is

generated by a memory element with its defining MATS. MATS have two

forms. A type I MATS presents a case where the timed output variable f is

expressed only in terms of timed input values, and a type II MATS describes a

recurrence equation, where a symbol of a considered function f appears on

both sides of a definition. The circuit behavior at a given time instance can be

obtained through solving the recurrence equation analytically and

symbolically by tools such as Maple or Mathmatica.

Example 3.9: In Figure 3.9(a), block A1 represents an N-bit adder. In the nth

step, one summand is taken from primary inputs, while the other is supplied

from multiplication of a constant and the register storing the values of the

previous n-1 additions. The register has been initially reset.

Chapter 3: Compositions of AT and Extensions

 68

A1 +

Register

f[n]

f[n]

a[n] f [n-1]

a)

B1 *

B2 +

f[n]

X[i] Y[i]

b)

Register

f[i]

f[i-1]
0.5

0.5

Figure 3.9: Add- and Multiply-Accumulate Loops

 The MATS of this loop is obtained by considering the register input f[n],

with the value given by the recurrence:

MATS(f)[n]=a[n]+0.5*MATS(f)[n-1], MATS(f)[0]=0

Its solution is: MATS(f)[n] = ∑
=

−
n

i

in ia
1

][5.0

 Then block B1 in Figure 3.9(b) represents an N*N-bit multiplier, and block

B2 is a (2N+1)-bit adder creating a multiply-and-accumulate loop. The MATS

results from the previously derived MAT transforms of its individual blocks.

The inputs to the MAC loop at the time instance “i” are the N-bit binary

vectors x[i] and y[i], and the output f[i] is a binary of size (2N+1). The ATS

(all inputs are bits) of the multiplier B1 is defined for inputs at time instance

“i”:

][2][*2][][])[*1(
00

iaiyixifiyxBATS k
N

k
k

k
N

k
k ==== ∑∑

==

The recurrence solution of the loop transform is:

)2][*2][(5.0][5.0])[(
1 001
∑ ∑∑∑
= ==

−

=

− ==
n

i

k
N

k
k

k
N

k
k

in
n

i

in iyixianfMATS

Chapter 3: Compositions of AT and Extensions

 69

 Table 3.2 [70] clearly enumerates all definitions of transforms.

Transform Definition
AT

n

n

n

i
n

i

i i i

i
iii xxxcfAT)(2

1 2

`

21 2

1

0

1

0

1

0
1...∑ ∑ ∑

= = =

=

MAT
k

n

k

n

k

n

e
k

i i e

e
ee

i
n

e

i
ii wwcxxcfMAT)(

1

0

1

0

1

0
1...

1

0
1...

1 1

1

1

`

1∑ ∑ ∑ ∑
= = = =

=

ATS AT transform ATS(f)[n] of a timed function f at a time instance n
MATS MAT transform MATS(f)[n] of a timed function f at a time instance n

Table 3.2: Definitions of the AT and its extensions

3.4 Composition Subroutines
After describing each design sub-block in terms of corresponding MAT,

MATS or ATS, the overall AT can be constructed. Some of the approaches to

the AT compositions focus on transferring ATs into decision diagrams [92].

However, due to their limitations, they are inadequate for many complex cases.

In addition, factors such as running time and space are significant for these

schemes. In this section we propose several subroutines to manage the

complexity of constructing AT and its extensions.

3.4.1 Composition of AT and MAT
 Composition of MAT and AT blocks can get a combinational circuit

transform. While word-level variables are substituted by their AT polynomials,

the overall circuit transform comes from the replacements and the Boolean

algebra law i
n
i xx = (0≠n). A block downstream must be represented by a

MAT or an AT. Throughout the composition procedure, lots of intermediate

terms would be generated and they should be combined for simplification, so

running time and spaces are crucial factors that need attention. A best

algorithm gets a tradeoff between them.

The following observation is a key to facilitating the combination of

polynomial terms that become isomorphic by applying Boolean algebra rules

Chapter 3: Compositions of AT and Extensions

 70

to polynomials. A single, easy-to-calculate integer parameter referred to as an

index of the term will be sufficient for finding isomorphic terms. We say that

the index of the term is the integer encoded characteristic function of its

variable indices. For instance, the index for the term 2
01

2
3 xxx is computed

as 23+21+20 = 11, and it is identical to the index of the term 0
3

13 xxx . Thus,

the two terms are isomorphic terms and should be combined.

Figure 3.10: Algorithm of MAT and AT composition

Figure 3.10 elaborates the subroutine in detail. The algorithm loops all terms

in the MAT polynomial and searches whether the terms comprise the

word-level variable represented by the AT polynomial. If so, the variable is

expanded to form new terms; if not, the MAT terms are stored in an

intermediate polynomial directly; the procedures are described in Step 1 - 7.

After the loop is finished, an intermediate polynomial is obtained and all terms’

indices are computed in Step 8. The algorithm then sorts terms with smaller

Compose_AT_MAT (AT_poly, MAT_poly)
{
1. for (p=0; p<MAT_poly.term_num; p++)

 {
2. for (i=0; i<MAT_term.wordvarnum; i++)

{
3. if (word_var[i] = AT_poly)

{
4. inter_term = Substitute (MAT_term, AT_poly);
5. inter_term = Norm (inter_term);
6. Store (inter_term, inter_poly);
 }
 }
7. if (i = MAT_term.WordVarNum)
 Store (MAT_term, inter_poly);
 }
8. Set_index (inter_poly);
9. for (p=0; p<inter_poly.term-1; p++)

{
10. Adjust_term_position(term[p], term[p+1]);
11. if (term[p].index = term[p+1].index)
 term[p].coeff += term[p+1].coeff);

 }
12. final_poly = inter_poly; return final_poly;
}

Chapter 3: Compositions of AT and Extensions

 71

indices forward, and if two terms have identical indices, the algorithm adds

their coefficients. Ultimately, the composition polynomial is obtained, as

reflected by Step 9 - 12. If the algorithm sorts and combines terms after each

expansion procedure, it might be costly, so an intermediate polynomial is

essential to cut computation time. Therefore, the procedures of adjustment and

combination occur after all expansions are accomplished.

Example 3.10: Steps for composition of MAT and AT. Assume two modules

with three primary inputs (x2, x1, x0).

AT(f1) = 1+ 2x0 + x1 – 4x1x0

MAT(f2) = 2 -3w0 - 5x1 + x2 – 6w0x2 + 4x2x1

A main loop begins with the first MAT term, a constant “2”, until it reaches

the last term “4x2x1”. Since the first term of MAT does not contain the

word-level number w0, it is stored in an intermediate polynomial directly. The

second term of MAT comprises the word-level variable, using w0=AT(f1) as a

substitute for expansion in this term. After simplification, the expanded terms

are stored in the intermediate polynomial. When the loop is finished, an

intermediate AT polynomial is obtained:

inter_poly = 2 - 3 - 6x0 - 9x1 +12x1x0 - 5x1 + x2 - 6x2 - 12x2x0 - 18x2x1 +

24x2x1x0+ 4x2x1

and the indices of the expanded terms are:

(0, 0, 1, 2, 3, 2, 4, 4, 5, 6, 7, 6)

Through position adjustment, the sequence sort orderly:

(0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7)

Now, the intermediate polynomial changes:

inter_poly = 2 - 3 - 6x0 - 9x1 - 5x1 +12x1x0 + x2 - 6x2 - 12x2x0 - 18x2x1 + 4x2x1+

24x2x1x0

Terms “2” and “-3”, “x2” and “-6x2”, “-18x2x1” and “4x2x1” are combined,

and the overall AT polynomial is generated:

AT(f) = - 1 - 6x0 + 14x1 + 12x1x0 - 5x2 - 12x2x0 - 14x2x1 + 24x2x1x0

3.4.2 Composition of ATS and MATS
 ATS and MATS have time tags, so the subroutine has a distinct step to

Chapter 3: Compositions of AT and Extensions

 72

process the tags. The difference is denoted in Figure 3.11. The returning

polynomial is an ATS polynomial or a MATS polynomial.

 Step 4 adds time tags of the word-level variables in the MATS polynomial

to the ATS polynomial and then expands the MATS term. If two identical

bit-level variables in an expanded term have same time tags, they must be

combined，for instance, a term of 5x0[n-2]x1[n-1]x1[n-1] is simplified as

5x0[n-2]x1[n-1]. This procedure is described in Step 7. After the intermediate

polynomial is generated, if two terms have identical indices, and

corresponding variables in the two terms also have same time tags, the

algorithm combines their coefficients. Step 13 - 15 elaborate the procedure.

Figure 3.11: Algorithm of MATS and ATS composition

Compose_ATS_MATS (ATS_poly, MATS_poly)
{
1. for (p=0; p<MAT_poly.term_num; p++)

 {
2. for (i=0; i<MATS_term.wordvarnum; i++)

{
3. if (word_var[i] = ATS_poly)

{
4. Add_time(word_var[i].tag, ATS_poly);
5. inter_term=Substitute(MATS_term,ATS_Poly);
6. for (k=0; k<inter_term.varnum-1; k++)

{
7. if (var[k].index = var[k+1].index && var[k].tag = var[k+1].tag)
 Norm(inter_term);

}
8. Store (inter_term, inter_poly);

}
}

9. if (i = MATS_term.wordvarnum)
 Store (MATS_term, inter_poly);.
 }
10. Set_index (inter_poly);
11. for (p=0; p<inter_poly.term_num-1; p++)

{
12. Adjust_term_position(term[p], term[p+1]);
13. if (term[p].index = term[p+1].index)

{
14. if term[p].var[k].tag!=term[p+1].var[k].tag)
 term[p].coeff += term[p+1].coeff);

}
}

15. final_poly = inter_poly; return final_poly;
}

Chapter 3: Compositions of AT and Extensions

 73

Example 3.11: Steps for composition of MATS and ATS.

ATS(f1) = 1 + 2x0[n-1] + 3x1[n-1]

MATS(f2) = w0 - w1[n-2] - 4w0[n-1]x0[n-2]

 MATS includes two word-level variables w0 and w1, and w0 = ATS(f1),

therefore the overall transform is a MATS polynomial. A loop begins with the

first MATS term w0 and it contains the ATS output variable w0, so it is

substituted by ATS(f1) and expanded terms are stored in an intermediate

polynomial. The second term comprises another word-level variable so it does

not need expansion. The last term has a word-level variable with a time tag

and it is accumulated to ATS tags, since two x0 variables have same tags “2”,

they are combined.

inter_poly = 1 +2x0[n-1] + 3x1[n-1] - w1[n-2] - 4x0[n-2] - 8x0[n-2] -

12x0[n-2]x1[n-2]

 Through position adjustment and combination of isomorphic terms, the

overall transform is generated:

MATS(f) = 1- w1[n-2] + 2x0[n-1] -12x0[n-2] +3x1[n-1] - 12x0[n-2]x1[n-2]

The other two subroutines, Composition of ATS and MAT, and Composition

of AT and MATS, are similar to the mentioned subroutines. They are omitted

here.

3.5 Overall Composition Algorithm
Each block represented by a corresponding transform is as a node defined

by a data structure to describe its properties to facilitate composition of

detached blocks. The suitable structure definition is:

{ unsigned long type; unsigned long type_index;

 unsigned long level; unsigned long in_word_num;

 char *in_index; char out_index; }

 The parameter type indicates which the transform type is corresponding to

AT, ATS, MAT or MATS; type_index evaluates its index inside nodes which

have same type with this node; level determines its depth in the constructed

Chapter 3: Compositions of AT and Extensions

 74

diagram, and blocks with primary inputs are always set “0”; in_word_num

indicates the number of input word-level variables, in_index stores indices of

input word-level variables and out_index stores the index of its output

word-level variable. Figure 3.12 outlines steps to compose modules to get an

overall transform.

Figure 3.12: The overall composition algorithm

The most important issue confirming the parameter level of each node at the

block-level netlist is dedicated in Step 2 - 6. The “level” parameter builds a

hierarchy to designate a composition path. The composition procedure always

begins from AT or ATS with primary inputs, and they are set to level “0”.

While it goes forward according to the current level, and encounters a block

which has an identical level with the current level, the algorithm invokes a

1. for (i=0; i<node_num; i++)
 Set_property (node[i]);
2. for (i=0; i<node_num; i++)
3. { if (node[i].type = 2 or 3) // MAT or MATS
4. { for (j=0; j<node_num; j++)
5. { if (node[j].out_word_index = node[i].in_word_index)

 {
6. if (node[i].level<node[j].level+1)

node[i].level=node[j].level+1;
}

}
}

}
7. current_level = 1;
8. for (i=0; i<node_num; i++)

{
9. if (node[i].level = current_level)

{
10. for (j=0; j<node_num; j++)

 {
11. if (node[j].out_index = node[i].in_index)

 {
new_node = Subroutine(node[i], node[j];
Set_property (new_node);

 }
 }

}
12. current_level++;

}

Chapter 3: Compositions of AT and Extensions

 75

corresponding subroutine in terms of the block’s type, eventually the overall

transform of the circuit is achieved, and please note this transform with

primary inputs does not contain any intermediate variables, so

the final transform is AT or ATS.

Example 3.12: Consider a circuit consisting of four nodes with four primary

input bits as Figure 3.13. Each word-level output is assigned to a different

index. By the composition algorithm, we get its overall transform.

AT

ATS

MAT

MATS

W0

X0

X3

X2

X1
W1

W1

W2
W3

Figure 3.13: A circuit with 4 modules Figure 3.14: Node properties

First, each node properties are labeled through step 1 - 6 in Figure 3.14. N

represents NULL and the MATS node has the largest level “2”.

ATS

MAT

MATS

(1,0,0,0,N,1)
(2,0,1,1,1,2)

(3,0,2,2,{1,2},3)

 ATS

ATS

MATS

(1,0,0,0,N,1)

(1,1,1,0,N,2)

(3,0,2,2,{1,2},3)

Figure 3.15: Composing the MAT and Figure 3.16: Composing the MAT and

the AT nodes the ATS nodes

 A parameter current_level is set to “1” at the beginning, and the algorithm

searches which nodes has a level the same as the current_level. It is the AT

node in this case and its out word-level variable is one of the input variables in

the MAT node. The algorithm calls Compose_MAT_AT function and since the

MAT node has two different word-level variables, it generates a new MAT

mode as in Figure 3.15. Next, the algorithm finds that the ATS output variable

is another input variable of the MAT node. Therefore, it calls the subroutine

Compose_MAT_ATS and gets a new ATS node in Figure 3.16.

While no other nodes have same level, the parameter current_level is

increased by 1, to become 2. The algorithm matches it with the MATS node,

and then the subroutine of Compose_MATS_ATS can be invoked.

(0,0,0,0,N,0)

AT

ATS
MAT MATS

(1,0,0,0,N,1)

(2,0,1,2,{0,1},2)

(3,0,2,2,{1,2},3)

Chapter 3: Compositions of AT and Extensions

 76

ATS
MATS

(1,1,1,0,N,2)

(3,0,2,1,2,3)

Figure 3.17: Composing the MATS and the ATS nodes

Finally, an ATS polynomial is obtained through the composition of the new

MATS node and the remaining ATS node.

 From the example, one can notice that the algorithm follows a fixed order

determined by the parameter “level” to compose block representations. Its

logic is easy to follow, to implement simply for arbitrary topologies and even

transforms.

3.6 Experimental Results

In this section, the composition algorithm in Figure 3.12 is verified by

several benchmarks such as ALU, CSA and MAC.

3.6.1 ALU Circuit Implementation

Arithmetic Logic Unit (ALU) is a necessary block at microchips. It takes

charge of data operations, including arithmetic, logic and relation operations,

and stores results in memory. Figure 3.18 illustrates a typical ALU model. The

AT of an adder is:

)22()(
1

0
1 i

N

i

i
i

i yxfAT ∑
−

=

+=

Chapter 3: Compositions of AT and Extensions

 77

+
...

...

*

xN-1zm-1 z0

...
yN-1 x0y0

w0

 Figure 3.18: An ALU model

Inputs of a multiplier consist of bit-level variables and a word-level variable

which is from the output of the adder, so the multiplier has MAT form:

∑
−

=

=
1

0
02 2*)(

m

k
k

k zwfMAT

 Table 3.3: Results for the ALU transform

Table 3.3 gives parameters of the adder and multiplier inputs and gets the

number of their transform terms based on given input variables. It reveals the

overall transform terms number after composition.

3.6.2 CSA Circuit Implementation

Carry-Select Adder (CSA) is a common implementation of adders, which

computes alternative results in parallel and subsequently selects the correct

results with single or multiple stage hierarchical techniques. The carry-select

adder increases its area requirements for purpose of enhancing its speed

performance. In carry-select adders both sum and carry bits are calculated for

the two alternatives: input carry “0” and “1”. Once the carry-in is delivered,

the correct computation is chosen by a multiplexer to generate a desired output.

Therefore waiting for the carry-in to calculate the sum is avoidable, and the

Adder
Inputs

Multiplier
Inputs

Adder Terms Multiplier
Terms

AT
Terms

Time [s]

12 7 12 7 84 0.875
14 8 14 8 112 1.672
16 9 16 9 144 3.834
24 13 24 13 312 13.4
32 17 32 17 544 34.3

Chapter 3: Compositions of AT and Extensions

 78

sum is correctly generated as soon as the carry-in gets there. The obvious

advantage is that CSA largely reduces time of computing the sum. Two adders

share 8-bit inputs variables and have different input carry. The adder transform

is:

 carryyxfAT
N

i
i

i
N

i
i

i ++= ∑∑
−

=

−

=

1

0

1

0
1 22)(

The multiplexer transform is:

 MAT(f2) = (1-c)w0 + cw1

Here c is a bit-level variable and (w0, w1) are word-level variables from

outputs of the two adders. The concept is illustrated in Figure 3.19.

x0~ x3

0
+ +

1

0 1

W0

c

Z

x0~ x3 y0~ y3y0~ y3

W1

Figure 3.19: 4-bit carry select adder

Since the MUX transform has two word-level variables, an intermediate MAT

polynomial is generated for convenience to incorporate one word-level

variable. The seventh column of Table 3.4 indicates the space requirements.

Table 3.4: Results of CSA transforms

It is apparent that even when the number of input bits becomes large, the

running time and space requirement remain modest. The program provides an

Inputs Adder
Terms

MUX
Terms

Inter
Terms

AT Terms Time (s) Space (MB)

24 25 3 49 25 0.1 0.02
32 33 3 65 33 0.18 0.036
40 41 3 81 41 0.26 0.058
48 49 3 97 49 0.35 0.073
56 57 3 113 57 0.44 0.092
64 65 3 129 65 0.53 1.2

Chapter 3: Compositions of AT and Extensions

 79

effective interface to process sparse coefficients which comprise lots of “0”

values. Hence, the time is dominated by the number of non-zero AT terms,

rather than being possibly exponential function of the number of input bits. We

observe that additional speedup can be obtained by relying on the equivalence

checking of the individual blocks, before the module is incorporated in larger

netlist. As inclusion of AT of individual blocks is less costly than the

construction by a netlist traversal of those blocks.

3.6.3 MAC Transform

The AT specification of a MAC circuit from Figure 3.20 can be determined

by combining AT, MAT, and MATS components. The unit is built using shift

registers, a multiplier, and an adder-register loop.

The expression of a MAC is shown below:

)][2*][2(][
1

0

1

0

1

0
∑∑ ∑
−

=

−

=

−

=

=
N

k
k

k
n

i

N

k
k

k iyixnf

The equation should be solved at a time instance n to obtain the MAC

transform. For example, for n=8 and N=2, the ATS of the multiplier is:

*

.

.

.

.

.

.

+Reg

Figure 3.20: Implementation of a MAC

=])[(kmulATS

The overall ATS is given by followed equation:

∑∑
==

+−−+−−=
8

1
10

8

1
00]8[]8[2]8[]8[)(

kk
kykxkykxfATS

]8[]8[4]8[]8[2]8[]8[2]8[]8[11100100 kykxkykxkykxkykx −−+−−+−−+−−

Chapter 3: Compositions of AT and Extensions

 80

∑∑
==

−−+−−
8

1
11

8

1
01]8[]8[4]8[]8[2

kk
kykxkykx

Table 3.5: Results of MAC transforms

Table 3.5 displays results of the MAC implementation. Column 1 and 2

denote its word-level variable size and time instance value. Even though the

AT terms grows exponentially with word size, the computation time and space

are satisfied.

3.6.4 Implementation of Hilbert Transform

Hilbert transform is a useful mathematical tool to describe the complex

envelope of a real-valued carrier modulated signal. The definition of the

Hilbert transform is as follows:

where
t

th
π
1)(= .

 The Hilbert transform has a frequency response given by the Fourier

Transform:

)sgn(*)}({)(wiwhFwH −==

where

 The Hilbert transform has the effect of shifting the negative frequency

Word Size Time Instance AT Terms Time(s) Space (MB)
8 4 256 0.137 0.085
8 8 512 0.465 0.14
8 16 1024 1.28 0.26
16 4 1024 1.459 0.28
16 8 2048 3.251 0.46
16 16 4096 6.874 0.91
32 16 16384 25.43 3.82
32 32 32768 55.8 7.46
32 64 65536 132.9 15.8

τ
τ
τ

π
τττ d

t
sdthstshts ∫∫

∞

∞−

∞

∞−

∧

−
=−==

)(
)(1)()())(*()(

Chapter 3: Compositions of AT and Extensions

 81

components of)(ts by +90 degrees and the positive components by -90

degrees. Generally, FIR is a good realization of Hilbert Transform. Figure 3.21

gives a FIR structure.

+

Z ZX Z Z

w0

w1

wi

wN-2

wN-1

 Figure 3.21: A FIR model to realize Hilbert transform

The timed register equation is:

]1[][−= nmnm inout

The MAT of adder is:

 ∑
−

=

=
1

0
)(

N

i
iXfMAT

where Xi is a word-level input from each tap output.

Table 3.6: Results of Hilbert transforms

The FIR implementation has a structure that is easily represented by ATS.

Furthermore, the task of equivalence checking or the verification of imprecise

implementations can facilitate to verify whether the implementation fits the

specification.

Taps Word Size ATS Terms Time(s) Space(MB)
32 16 512 0.21 0.56
32 32 1024 0.39 1.3`
32 64 2048 0.72 2.53
64 16 1024 0.53 1.22
64 32 2048 0.98 2.54
64 64 4096 1.87 5.1
128 16 2048 0.78 2.55
128 32 4096 1.98 5.23
128 64 8192 4.05 10.68

Chapter 3: Compositions of AT and Extensions

 82

3.7 Conclusions
 AT is the most important representation in our research, so in this chapter

the spectral techniques and the basic definition of AT were introduced.

Although AT can represent an arithmetic circuit compactly, it has limitations.

The proposed three extensions for representing combinational and sequential

circuits were outlined. Getting the circuit transform is significant for

verification. Direct computation sometimes requires too much time for these

processes. We proposed a topological method of composing the transforms of

detached blocks to facilitate the calculation, so it is easy to obtain the overall

transform for a complex circuit. The experiments proved its high efficiency.

 83

Chapter 4

Basic Algortihms

Imprecise circuit specifications such as Taylor series complicate

the process of design and verification. We adopt a spectral

technique, Arithmetic Transform (AT), to process the imprecise

circuits. In this chapter, three basic algorithms based on AT are

described which convert polynomials and search for the maximum

absolute value. These are fundamental algorithms for the

verification and optimization in following chapters.

Chapter 4: Basic Algorithms

 84

)()()(
!

)()...(''
2

2
)(')(0

0
000 XRXnf

n

nXXXfXXXfXf n+
−

+++

The fixed-point representation problem includes two facets, the precision

problem and the range problem. Beginning in this chapter, we explore the

precision problem. First, the typical imprecise representation is introduced.

4.1 Taylor Series
In mathematics, the Taylor series is a representation of a function as an

infinite sum of terms calculated from the values of its derivatives at a single

point. Let f(X) be a real and differentiable function corresponding to an

algebraic expression. The variables are real numbers with usual field

operations (+,*) over real numbers R.

Definition 4.1: The function can be represented as Taylor series using a

variable X and an initial constant X0.

=

where)(),(''' XfXf , etc, are first, second and higher derivatives of f(X), and

Rn(X) is a Lagrange remainder.

The error R is bounded, using point ξ in the interval I, as:

Rn(X) = 1
0

)1(

)(
)!1(

)(+
+

−
+

n
n

XX
n

f ξ (4-1)

Taylor series can be used to calculate the value of an entire function in every

point, if the value of the function, and of all of its derivatives, are known at a

single point. Uses of the Taylor series for entire functions include:

 The partial sums (the Taylor polynomials) of the series can be used as

approximations of the entire function. These approximations are good if

sufficiently many terms are included.

 The series representation simplifies many mathematical proofs.

If this series converges for every x in the interval (a − r, a + r) and the sum

is equal to f(x), then the function f(x) is analytic in the interval (a − r, a + r). If

)()(
!

1)(0
)(

0
0

XfXX
n

Xf nn

n
−= ∑

∞

=

Chapter 4: Basic Algorithms

 85

this is true for any r then the function is an entire function. One normally uses

estimation for the remainder term of Taylor's theorem to check whether the

series converges towards f(x). A function is analytic iff it can be represented as

a power series; the coefficients in that power series are then necessarily the

ones given in the above Taylor series formula.

Many transcendental arithmetic functions such as sin(X) and log(X) are

realized through Taylor series. For example, Taylor series of sin(X) is:

)!12(
)1()sin(

12

0 +
−=

+∞

=
∑ i

xX
i

i

i

Naturally, any hardware realization implements finite terms of Taylor series,

which invariably would lead to an error. Imprecision further comes from a

finite-word representation of real numbers. The precision analysis is therefore

necessary to make use of the fixed-point number representation, which is

attractive in balancing complexity, cost and energy consumption.

Both of the above approximations cause the implementation imprecision

error. The first case from truncation of Taylor terms is easy to evaluate. The

remainder Rn(X) has an explicit expression and can be estimated without

actually computing. The most common estimation is based on bounding the

absolute value of the nth order derivative on the entire interval that contains the

intermediate point ξ . While estimating the derivative on a given interval, it is

not necessary to find the exact maximum of a function, for most cases trying

to find some upper bound is not too rough. Therefore our emphasis

concentrates on the error due to finite wordlength. Arithmetic Transform (AT)

is used to investigate the imprecision.

4.2 Algorithm for AT Conversion

by Taylor Series
Many arithmetic functions can be represented as (infinite) Taylor series,

however their hardware realization inevitably leads to imprecision due to the

restrictions regarding the finite number of terms to be implemented. Any

Chapter 4: Basic Algorithms

 86

imprecision of the implementation causes a circuit to behave differently with

the assumed specification. Nevertheless, known imprecision cannot be treated

as unintended errors committed during the design process. Therefore, we

accept the design to be fault free, if its behavior differs from specification

within assumed error interval. We convert the Taylor series

specification/design representation into a corresponding AT to evaluate the

error upper bound of the implementation. This step is needed in order to

integrate the verification of the imprecisely implemented blocks into the

overall verification scheme proposed in this work, and based on the Arithmetic

Transform data representation.

AT is canonical, and will be used to directly represent approximation and

imprecision errors coming from the finite Taylor series function

representations. The correspondence between Taylor and AT representation is

illustrated by the following lemma.

Lemma 4.1: Consider a finite Taylor polynomial around X0=0 where the

variable X will be represented as an m-bit unsigned fractional number. By

denoting f0
(i)=f (i)(X0), we have:

.
)!1(

''
!2

')()1(
0

1

0

2

00
−

−

−
++++= n

n

f
n
XfXXffXf L

The AT of f(X) is expanded from the Taylor polynomial as:

)]([)]([XATfXfAT = =

1
1

0

)1(
)1(

02
1

0

)1(
''

0
1

0

)1(
00)2(

)!1(
)2(

!2
)2(−

−

=

+−
−−

=

+−
−

=

+− ∑∑∑ −
++′+ n

m

i
i

i
nm

i
i

i
m

i
i

i x
n
fxfxff L

Proof: The transform of an m-bit unsigned fractional number X is

i

m

i

i xXAT ∑
−

=

+−=
1

0

)1(2)(. Since AT is linear, that is, AT(f1+f2) = AT(f1)+AT(f2) and

AT(C*f) = C*AT(f), where C is a constant , we can obtain:

AT[f(X)]=)
)!1(

''
!2

'()1(
0

1

0

2

00
−

−

−
+++ n

n

f
n
XfXXffAT L

=)
)!1(

()''
!2

()'()()1(
0

1

0

2

00
−

−

−
+++ n

n

f
n
XATfXATXfATfAT L

Chapter 4: Basic Algorithms

 87

=)(
)!1(

)...(
!2

)(1
)1(

02
''

0
00

−
−

−
++′+ n

n

XAT
n
f

XAT
f

XATff

= 1
1

0

)1(
)1(

02
1

0

)1(
''

0
1

0

)1(
00)2(

)!1(
)2(

!2
)2(−

−

=

+−
−−

=

+−
−

=

+− ∑∑∑ −
++′+ n

m

i
i

i
nm

i
i

i
m

i
i

i x
n
fxfxff L

=f [AT(X)] □

Lemma 4.1 denotes that AT[f(X)] results from substituting expanded

bit-level variables for the word-level variable X in f(X). By combining

coefficients of isomorphic terms in the expanded polynomial, the AT

representation in Def. 3.3 is obtained, thus leading to the conversion of Taylor

expansions to AT.

While Lemma 4.1 might seem to lead to a simple realization of the

conversion between Taylor and AT, in reality the process could be time- and

memory-consuming. To evaluate the imprecision error using AT, the

specification should be translated into AT as well. In this section we describe

the conversion of Taylor series into AT by expansion from Lemma 4.1. A

straightforward method for generating AT[f(X)] replaces each monomial in

Taylor series f(X) by its defining AT, followed by the consolidation of AT

terms. Although the overall conversion procedure is conceptually simple, the

expansion of the real-valued quantities from Taylor series into word-level AT

terms can lead to a large intermediate polynomial, similar to what is known to

happen in symbolic computing.

By the rule that Boolean algebra xi
n equals xi, lots of expanded terms are

identical and they should be combined to form a simplified AT polynomial. A

straightforward method multiplies each factor recursively, and gets an

intermediate polynomials, then simplifies it by using the Boolean rule, so the

AT polynomial is achieved. Although the procedure is easy to comprehend,

complexity in the calculation comes from large Taylor degrees and bits

number which leads to a large size of the intermediate polynomial since it

comprise a great many expanded terms.

For example, with degree k=7 and input bits N=16, the number of

intermediate terms increases to over 2000000. Consequently, storage and

grouping of the same terms are major hurdles and result in low efficiency. We

Chapter 4: Basic Algorithms

 88

now show how to perform conversion into AT polynomial that handles

efficiently the intermediate data swell.

4.2.1 Expansion Formula
The key problem in converting Taylor series into an AT polynomial is the

calculation of the corresponding AT terms k
N

i
i

i x)2(
1

0
∑
−

=

. Assume kN ≤ , and the

above sum can be obtained as:

=∑
−

=

k
N

i
i

i x)2(
1

0
...)2()4()2()2(01201

1

0

qpkqpq
pk

p
k

pkp
N

i

p
k

k
i

i xxxCCxxCx −−
−

−
−

=

++∑ (4-2)

where m
kC is defined as ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

m
k

C m
k . Based on Eqn. (4-2), we find that the

intermediate coefficients of the isomorphic terms must be combined to

simplify the obtained AT. The structure of equation will be explored to reveal

the possibility to derive an efficient conversion algorithm. In particular, the

following property is used for efficient grouping of common terms.

Property 4.1: For AT raised to the exponent k, Eqn. (4-2), the sum of the

individual variable’s exponent is k for each term.

Proof: The calculation of the sum requires k-1 multiplication, where all

bit-level variables in a single factor have a fixed component ‘1”. Through

each multiplication procedure, the term’s exponent augments one and its

beginning exponent is also one, so finally the total exponent is k-1+1= k.

Property 4.2: If an AT term has p variables, the largest exponent which a

variable can obtain is the Taylor degree k subtracting variables number p plus

1, and the least exponent is 1 in all expanded isomorphic terms.

Proof: If a variable appears in an AT term, that’s easy to know it has an

exponent “1” at the lowest. In terms of Property 4.1, the summed exponent of

the p variables is Taylor degree k, while other p-1 variables all have a least

exponent “1”, the variable can get the largest exponent, etc., k-p+1.

 Towards that goal, some definitions are in place. An integer coefficient

Chapter 4: Basic Algorithms

 89

multiplying expanded terms is named “weight”. For example, in the expanded

term 01
3
22560 xxx , “2560” is its weight. We refer to final terms after

combination as “AT terms”. Next, msv and lsv represent most significant and

least significant variables, respectively, in an AT term. For instance, for the AT

term x2x1x0, x2 is msv and x0 is lsv; for the AT term x1x0, x1 is msv and x0 is lsv.

The algorithm requires two computation steps: one gets forms of isomorphic

terms, which is most important to determine performance; the other calculates

the weight of each expanded term.

4.2.2 Isomorphic AT Terms Combination
 The following example describes the expanded terms.

Example 4.1: Given three input bits (x2, x1, x0) and Taylor degree k=5, the

expansion is:

3
012

1
4

1
5

2
0

2
12

2
4

1
50

3
12

3
4

1
5

2
01

2
2

1
3

2
5

0
2

1
2

2
2
3

2
501

3
2

1
2

3
5

4
12

1
5

3
1

2
2

2
5

2
1

3
2

3
51

4
2

4
5

4
02

1
5

3
0

2
2

2
5

2
0

3
2

3
50

4
2

4
5

5
2

4
01

1
5

3
0

2
1

2
5

2
0

3
1

3
50

4
1

4
5

5
1

5
0

5
2

0

)2)(4()2)(4()2)(4()2()4(

)2()4()2()4()2)(4(

)2()4()2()4()2()4()4(

)4()4()4()4()2(

)2()2()2()2()2(

xxxCCxxxCCxxxCCxxxCC

xxxCCxxxCCxxC

xxCxxCxxCxxC

xxCxxCxxCxxxC

xxCxxCxxCxxx
i

i
i

++++

+++

++++

+++++

++++=∑
=

 One can easily see that the degree of every bit-level variable amounts to k in

each expanded term due to the property, etc., the summed degree of 01
3
2 xxx

is 3+1+1=5. There are 2N-1=7 AT terms as (x0, x1, x1x0, x2, x2x0, x2x1, x2x1x0).

The isomorphic terms for the AT term x2x1x0 in the expanded equation is

obtained as:
3 2 2
2 1 0 2 1 02560 ,1920 ,x x x x x x 2 2 2 2 2 3

2 1 0 2 1 0 2 1 0 2 1 0960 ,640 ,480 ,160x x x x x x x x x x x x

 Now we show how to get all isomorphic terms for an arbitrary AT term such

as x2x1x0 under a specific Taylor degree. A tuple (m,o,p) expresses variable

degrees of x2, x1 and x0. At beginning msv x2 is set to the largest degree “3”,

and degrees of x1 and x0 are “1” according to Property 4.1 and 4.2. The first

degree representation is (3,1,1) and after that a next degree representation is

computed. Beginning from lsv x0, preceding variables are searched until one

Chapter 4: Basic Algorithms

 90

variable with the degree larger than “1” is discovered. In the case considered

here, such a variable is x2. Therefore its degree decreases one and the degree of

the succedent variable increases one. After this iteration the degree

representation is changed to (2,2,1). The computation process continues until

lsv x0 is set to the largest degree 3, and degrees of other two variables are both

1. At this time, the degree representation turns into (1,1,3). Transformation of

the degree sequence is:

 (3,1,1) (2,2,1) (2,1,2) (1,3,1) (1,2,2) (1,1,3)

 Here, the sequence determines the movement order of degree

representations, and guarantees them not to be repeated or missed. Also it

makes an easy implementation by a program.

4.2.3 Weights of Expanded Terms

Next we calculate terms’ weights. They are obtained by an input binary

weight multiplying a combination constant. For example, in the case of an

expanded term 0
2

1
2

2
2
3

2
5)2()4(xxxCC , the input binary weight equals to

64124 22 =∗∗ , and the combination constant is 302
3

2
5 =CC . Using variable indices

simplifies the computational process of the input binary weight, so the

problem reduces to getting the combination constant. The terms number of the

combination constant is N-1 (result of the last Nth term is always 1, so it is

neglected). According to Equation (3-3), the first term is p
kC , where k is the

total degree (5 in considered case), and p is the degree of first variable x2

(equals to 2 in the example). The second term is q
pkC −
, where q is the degree of

second variable x1 (equals 2 in the example). The procedure continues until it

reaches the last variable. Since each variable degree is known from the

previous sequence in advance, it becomes easy to compute.

4.2.4 Other Discussion
Above we assume that the bits number is lower than the Taylor degree; if

not, etc., N>k, the circumstance would be more complicated. For instance N=4

and k=2,

Chapter 4: Basic Algorithms

 91

)4)(8()2)(8()8()8()2)(4(

)4()4()2()2()2(

23
1
213

1
203

1
2

2
312

1
2

02
1
2

2
201

1
2

2
1

2
0

2
3

0

xxCxxCxxCxxxC

xxCxxxCxxx
i

i
i

+++++

++++=∑
=

There are no terms with 3 and 4 variables, so the algorithm only needs a

little amendment — terms which have the variable number beyond the Taylor

degree would be neglected. In this example, the neglected terms are x2x1x0,

x3x2x1, x3x2x0, x3x1x0 and x3x2x1x0.

 Integrating these two cases, Property 4.3 counts how many AT terms from

Taylor conversion.

Property 4.3: The number of AT terms is determined by the bits number N and

the highest Taylor degree k. If N<k, the terms number equals 2N-1; if not, it is

∑
=

k

g

g
NC

1
. Please note if the constant f(X0) is not zero in Taylor series, the

number needs to add 1.

 The situation of X0=0 in Taylor Series has been elaborated. X0 must not be 0

at some functions such as log(X) and (1/X)n. Y replaces X0 to avoid confusion

with the binary bit x0 to explore it.

Example 4.2: Given three input bits and Taylor degree k=3, Y is not zero value,

the expansion is:

012
1
2

1
312

1
2

1
3

2
12

1
31

2
2

2
302

1
2

1
3

2
02

1
30

2
2

2
3

2
2

1
3

2
2

2
3

3
201

1
2

1
3

2
01

1
3

0
2

1
2
3

2
1

1
3

2
1

2
3

3
1

2
0

1
3

2
0

2
3

3
0

33
2

0

)2)(4()2)(4()2)(4()2()4()4(

)4()4()4()4()4()2()2(

)2()2()2()2()2(

xxxCCYxxCCxxCxxCYxxCC

xxCxxCYxCYxCxYxxCCxxC

xxCYxCYxCxYxCYxCxYYx
i

i
i

+−++−

+++−+−+

++−++−+−=−∑
=

Y is regarded as a variable and expanded in terms of Equation (4-2)

although it is a constant in fact. x0
3, C3

1x0Y2 and -C3
2x0

2Y represent the same

AT term x0 thus they should be combined. The difference in comparison with a

true variable (not a constant) is that its exponent can be permitted to set “0”

whereas an ordinary bit-level variable has a smallest exponent “1” in terms of

Property 4.2. Therefore, the algorithm needs to be revised: if Y is not 0, let the

exponent of Y change from 0 to the largest to get weights of expanded terms.

For example, Y changes its degree from 0 to 2 in the AT term x0 and from 0 to

1 in the term x2x1.

Chapter 4: Basic Algorithms

 92

Figure 4.1: Algorithm of converting Taylor series to AT

Compute number of AT polynomial

Construct AT link list and set variable
indices for each term

p<= m?

Retrive AT item variable indices and
varibale number p

Retrieve current order m of Taylor series

Y

N

point next
AT item

Set largest order for msv and other variables "1"

Compute temp coefficient

Tail of Taylor
polynomial?

From lsv, whether
current variable order

is not "1"?

Y

N

Whether lsv
order is largest?

Y
Set lsv order "1",msv order
decrease "1" and compute

second msv order

N

whether lsv
order is "1"?

Y

order of the variable
which order is not "1"
decrease "1", and back

variable order increases '1"

N

Order of middle
variables except

lsv and msv is "1"?

Y

N

 Back variable
is lsv?

order of the variable which
order is not "1" decrease "1",

N

Compute back variable
order and set lsv order "1"

Y

lsv order
increases "1"

Y
Complete

N

Tail of AT
polynomial?Y

Point next
Taylor order

Y

Chapter 4: Basic Algorithms

 93

4.2.5 Flow of Conversion Algorithm
Equation (4-2) establishes the algorithm foundation. The algorithm first

computes how many AT terms will be according to Property 4.3 and creates an

AT linked list to allocate their variable indices, then commences a main loop.

Within each loop procedure, the algorithm retrieves a Taylor degree from

Taylor series and starts an inner loop to point the AT link list, which indicates

the first AT term at beginning. Based on the retrieved Taylor degree,

isomorphic forms and their weights for the indicated AT term are fast

computed due to Property 4.1 and 4.2, the weights addition is a temporary

coefficient for the AT term under the specific Taylor degree. While the pointer

has moved to the last AT term, a new procedure of the main loop occurs to

retrieve a next Taylor degree and the pointer resets to the first AT term. When

the algorithm finishes the main loop, AT coefficients can be obtained

eventually by summation of all corresponding temporary coefficients. Figure

4.1 outlines the algorithm in detail. We observe that the algorithm does not

generate any intermediate polynomials to store expanded terms explicitly,

therefore, the algorithm avoids expending huge memory and running time.

4.3 Processing Multivariate Polynomials
The conversion of Taylor series to AT has been solved above. However,

Taylor series only comprises one word-level variable – work in [84] gave

examples for verification and the limitation was similar to Taylor series, that is,

the benchmarks only consisted of one word-level variable. This case restricts

further applications since many circuits are represented by polynomials

included beyond one word-level variable or mixed with bit-level variables

such as a multiplexer. Emergence of the fast more realistic conversion

algorithm above makes it possible to conquer the problem for cases. In

addition, a significant advantage is polynomial data structures are often

represented by decision diagrams like BMDs and TEDs, which stand for bit-

and word-level variables, respectively. These diagrams can be transferred to

Chapter 4: Basic Algorithms

 94

ATs easily, therefore a bridge is generated between decision diagrams and the

imprecision model to overcome their weakness to do component matching.

The conversion algorithm mentioned above is unable to process the more

difficult case. The algorithm is revised to deal with several word-level

variables to overcome this limitation.

For an AT term, we define its index, which is unique for each term. The

index will facilitate the combination of isomorphic terms in an intermediate

polynomial.

Definition 4.2: Let the term consist of p bit-level literals bp-1 … b0. Let every

bit br belong to the word-level variable Wr, that is mr-bit wide. Then, the term

index of the AT term is defined as:

 term.index = ∑
−

=

+∑
−

=

1

0

)(
1

02
p

r

mb
Wr

q
qr

 (4-3)

Example 4.3: Consider AT over three word-level variables X, Y and Z

consisting of 3, 4 and 3 bits, respectively. Let X be the least significant

variable indexed as ”0”, and Z be the most significant variables indexed as

“2”. For the three bit-level literal term z2z1x0, the word-level variables to

which the respective literals belong, are (W2, W1, W0) = (2, 2, 0). The index of

the term is obtained as the sum of the three literal indices. First, the

computation for x0 produces its index 20 =1, since b0 is 0 and W0 is 0. Then,

z1 contributes 21+(3+4)=256, since b1 is 1 and W1 is 2, so m0+m1 = 3+4=7.

Finally, z2 produces 22+(3+4) =512, because b2 is 2 and W2 is 2. Therefore, the

term index for the AT term z2z1x0 is 512+256+1=769.

It is evident that this case incurs more complexity. Figure 4.2 describes the

algorithm to produce AT over multiple word-level variables from a real-valued

polynomial. The algorithm first generates AT for each monomial, and then

performs additions of the isomorphic intermediate monomials, leading to the

final transform. The function Expand_Term expands a single word-level

polynomial term into its AT. The subroutine Convert_Univar_AT

introduced in Figure 4.1 obtains ATs for all word-level variables in the term.

Then, the subroutine Multiply_AT multiplies the resulting univariate AT

Chapter 4: Basic Algorithms

 95

into the multivariate AT. Note that Multiply_AT follows the conversion of a

word-level variable that reduces the number of terms. Hence, the size of

resulting AT can be kept under control by avoiding storing expanded terms. In

each iteration, the algorithm adjusts term indices and combines isomorphic

terms. Each AT term input to the Multiply_AT is assigned a unique index

from Definition 4.2, which guarantees linear ordering among terms.

Figure 4.2: Algorithm for converting a multivariate polynomial

The function Add_AT adds two AT polynomials in a canonical way. In this

procedure, the isomorphic term combination and the term ordering by index

Convert_Multivar_AT(f, term_num, bit_num)
{ for (i=0; i< term_num; i++)

{ temp_AT = Expand _Term (bit_num);
sum_AT = Add_AT (sum_AT, temp_AT); }

 final_AT = sum_AT; return final_AT;
}
Expand _Term (bit_num)
{ for (p=0; p<word_var_num; p++)

{ AT_poly[p]=Convert_Univar_AT (f, term_num, bit_num);
product_AT= Multiply_AT(AT_poly[p], AT_poly[p-1]); }

 Set_index (product_AT); return product_AT;
}
Add_AT (augend_AT, addend_AT)
{ While (!augend_AT.tail && !addend_AT.tail())
 { if (augend_AT.term.index < addend_AT.term.index)

 Copy_AT_term (sum_AT.term, augend_AT.term);
else if (augend_AT.term.index> addend_AT.term.index)

 Copy_AT_term (sum_AT.term, addend_AT.term);
else { Copy_AT_term(sum_AT.term, augend_AT.term);

 sum_AT.term.coeff = augend_AT.term.coeff + addend_AT.term.coeff; }
 }
 Delete (augend_AT, addend_AT); return sum_AT; }
}
Multiply_AT (multiplicand_AT, multiplicator_AT)
{ while (!multiplicand_AT.tail)

{ while (!multiplicator_AT.tail)
 { product_AT.term.coeff = multiplicand_AT.term.coeff

 * multiplicator_AT.term.coeff;
 for (p=0; p<cand_bit_num; p++)
 product_index[p] = cand_index[p];
 for (p=cand_bit_num; p<product_bit_num; p++)
 product_index[p]=cator_index[p-cand_bit_num]; }

}
return product_AT; }

Chapter 4: Basic Algorithms

 96

occur concurrently. When comparing indices of terms, the AT term with a

smaller index is moved forward in the ordered list. If two terms have identical

indices, they are isomorphic, and hence their coefficients are accumulated.

Example 4.4: Consider a polynomial that has two word-level variables

consisting of (2, 3) bits.

F(X, Y) = 2X3Y +X2Y2

This polynomial has two terms. The algorithm loops them and expands them

to two AT polynomials. In the first term 2X3Y, expansions of X3 and Y are:

AT(X3)= (2x1+x0)3=x0 +8x1+18x1x0 AT(Y)= 4y2+2y1+y0

This term transform is multiplied by the two sub-AT polynomials:

AT(2X3Y)=2y0x0+16y0x1+36y0x1x0+4y1x0+32y1x1+72y1x1x0+8y2x0+64y2x1

+ 144y2x1x0

The individual AT term index is: (5, 6, 7, 9, 10, 11, 17, 18, 19)

In the second term, expansions of X2 and Y2 are:

AT(X2) = x0+4x1+4x1x0 AT(Y2) = y0+4y1+4y1y0+16y2+8y2y0+16y2y1

Their multiplication is the transform of X2Y2:

AT(X2Y2)= y0x0+4y0x1+4y0x1x0+4y1x0+16y1x1+16y1x1x0 +4y1y0x0

+16y1y0x1+16y1y0x1x0+16y2x0 +64y2x1 +64y2x1x0

+8y2y0x0+32y2y0x1+32y2y0x1x0 +16y2y1x0 +64y2y1x1+64y2y1x1x0

Its index is: (5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27)

 The addition subroutine is invoked to compute the transform of 2X3Y + X2Y2

in terms of their indices:

AT(2X3Y+X2Y2)= 3y0x0 +20y0x1 +40y0x1x0 +8y1x0 +48y1x1 +88y1x1x0 +16y1y0x1

+16y1y0x1x0 +24y2x0 +128y2x1 +208y2x1x0 +8y2y0x0

+32y2y0x1 +32y2y0x1x0 +16y2y1x0 +64y2y1x1 +64y2y1x1x0

 Because polynomial multiplications described as the subroutine

Multiply_AT take place after conversion of a word-level variable, the result

AT size can be controlled and avoid storing expanded terms, also in each loop

procedure the algorithm adjusts terms position and combines isomorphic terms,

and releases memory in time, so it disperses computation time then reduces

total complexity. Therefore, the algorithm keeps good performance even

though there are a number of word-level variables.

Chapter 4: Basic Algorithms

 97

4.4 Imprecision Searching Algorithm
Saving costs and speeding up a design are so important to engineers,

whenever available, they benefit from reusing a previously designed module.

However, these modules usually do not match specifications so they are only

approximations. If discrepancy (imprecision) is within an acceptable boundary,

it could be chosen. The approximations come from various aspects and this

paper concentrates on restrict input space and finite realization of Taylor series.

Therefore, a good solution to find difference between specifications and

implementations is significant.

 A static method for range and precision analysis was used in [43], where

circuits described by Verilog were assessed for FPGA implementations. This

solution did not provide a uniform platform and it depended on tools of

simulation annealing which are often inefficient. In this paper we explore the

suitability of Arithmetic Transform in the representation of the imprecise

blocks and make up their deficiency.

4.4.1. Basic Definitions of the Algorithm
 Related definitions are introduced to describe the imprecision searching

algorithm comprehensibly.

A straightforward approach tries every input value to compute its error AT.

The procedure requires 2N calculation because of total 2N possible inputs.

Experiments indicate that such an approach would require an infeasible

amount of time, and therefore a fast algorithm is necessary. In this work we

propose such an improved algorithm.

For each input variable xi, we say that Si is a sum of coefficients multiplying

terms with xi. The most positive variable (mpv) is the variable xj where the sum

Sj is largest. An upper bound ubcoef of AT polynomial is by summing all

coefficients that are positive and the coefficient c00…00 that contributes an

offset for all input assignments. Such a bound is calculated as:

∑
>

=
0

...
21

c
iiicoef n

cccub + c00…00

The algorithm checks whether there are the input assignments to be made

Chapter 4: Basic Algorithms

 98

without the search to avoid calling the main search loop unnecessarily. Such a

preprocessing step is used at each call of the search routine.

a) Assign xi =1 if coefficients of the AT monomials with xi present are all

positive (or zero).

b) Assign xi =0 if coefficients of the AT monomials with xi present are all

negative (or zero).

4.4.2. Branch-and-Bound Searching Algorithm

Figure 4.3: Searching the maximum absolute value in AT

The algorithm first removes the constant in the polynomial if it exists, and

Search_max (AT_poly)
{ const = Remove_constant(AT_poly);

var_index = Mpv(AT_poly);
 rev_AT_poly = Reverse(AT_poly); rev_var_index = Mpv(rev_AT_poly);
 value_0 = Decompose(AT_poly, var_index);

value_1 = Decompose(AT_poly, rev_var_index);
 value_2 = Decompose(rev_AT_poly, var_index);

value_3 = Decompose(rev_AT_poly, rev_var_index);
max_value = Max(value_0, value_1); |min_value| = Max(value_2, value_3);

 mismatch = Max (|max_value+const|, |min_value+const|; }
Decompose(AT_poly, mpv)
{ for (i=0; i<var_num; i++)

{ flag = Preprocess(AT_poly, mpv[i]);
 if (flag = 1)

{ 11)(==
ixfATAT , ub_1 = Ub(AT1);

 00)(==
ixfATAT , ub_0 = Ub(AT0);

 if (ub_1> ub_0) 1ATAT = ;
 else 0ATAT = ;
 }
 Delete_var (mpv[i]); var_num--;
 for (i=0; i<var_num; i++)
 { flag = Preprocess(AT_poly, mpv[i]);
 if (flag = 0)
 Delete_var (mpv[i]); var_num--;
 }

 }
}
Preprocess (AT_poly, xi)
{ if (all

ixc > 0) val = 1;

 else if (all
ixc < 0) val = 0; else return 1;

 valxi
fATAT ==)(; return 0;

}

Chapter 4: Basic Algorithms

 99

gets the mpv sequence as the order of decomposition variables, and then the

reversed AT polynomial and the reversed mpv sequence are obtained easily.

A subroutine Decompose is invoked to compute the maximum value and

the minimum value due to the two AT polynomials and two sequences. The

preprocessing step deals with a variable to explore whether it can be evaluated

directly by probing into its coefficients; if not, the algorithm chooses a path

which has a larger upper bound. Figure 4.3 describes the branch searching

algorithm in detail.

Example 4.5: Consider the following AT polynomial:

AT(f) = -2 +x0 -3x1x0 +3x2 + 3x2x1 - 4x3x1 -2x3x2x0 +5x3x2x1

 Figure 4.4 illustrates all the steps taken to compute the maximum absolute

value. First remove the constant and get a new AT polynomial:

AT(f)’ = x0 - 3x1x0 + 3x2 + 3x2x1 - 4x3x1 - 2x3x2x0 + 5x3x2x1

S0=-4, S1=1, S2=9, S3=-1, so the mpv sequence is (x2, x1, x3, x0). The reversed

polynomial is: AT(f)’’ = -x0 + 3x1x0 - 3x2 - 3x2x1 + 4x3x1 + 2x3x2x0 - 5x3x2x1

The reversed mpv sequence is (x0, x3, x1, x2).

 First AT(f)’ is searched by the order of the mpv sequence, due to the ubcoef

value, x2 and x1 are set to 1, here the decomposed polynomial is 3- x0 + 4x1-

3x1x0, then the algorithm finds coefficients of all terms with variable x0 present

are negative, so x0 is preprocessed to 0; and it continues to preprocess x3 = 1,

finally a constant value_0 = 7 is obtained; the procedure is displayed by a) in

Figure 4.4. Using the reversed mpv sequence upon AT(f)’, the obtained

constant is value_1 = 3, showed by b), so the maximum value of the AT

polynomial without the constant “-2” is:

max_value = max (value_0, value_1) = 7.

 Decompose AT(f)’’ by the mpv and the reversed mpv sequences respectively,

showed by c) and d), value_2 = value_3 = 6, so the minimum value of the AT

polynomial without the constant “-2” is:

 min_value =max (value_0, value_1)* -1 = -6.

Eventually the maximum mismatch is computed as:

8)26,27max()2min_,2max_max(=−−−=−− valuevalue

Chapter 4: Basic Algorithms

 100

x1

3+x0+3x1
-3x1x0-2x3x0+x3x1
ub=8

ub=7

x2

0

1

7

ub=1

Preprocess x0=0

x0-3x1x0-4x3x1

0

3+3x1-2x3x0
ub=6

6+x3

1

Preprocess x3=1

3-x0+4x1-3x1x0

a)

x3

1-3x1+3x2+3x2x1

-4x3x1-2x3x2+5x3x2x1
ub=12

ub=10

x0

0 1

3

ub=11

Preprocess x2=1
0

3+3x1-2x3x0
ub=6

2+x1
Preprocess x1=1

3x2+3x2x1

-4x3x1+5x3x2x1

1-7x1+x2+8x2x1

 b)

-3-x0-3x1
+3x1x0+2x3x0-x3x1

ub=5

x2

0

6

ub=7

Preprocess x1=1

-x0+3x1x0+4x3x1

Preprocess x3=1
-x0+4x1+3x1x0

4+2x0
Preprocess x0=1

1

c)

x3

-1+3x1-3x2-3x2x1

+4x3x1+2x3x2-5x3x2x1
ub=8

ub=6

x0

0 1

6

ub=4

Preprocess x2=0
0

-1+3x1-3x2-3x2x1
ub=3

-1+7x1
Preprocess x1=1

-3x2-3x2x1

+4x3x1-5x3x2x1

-1+7x1-x2-8x2x1

1

 d)

 Figure 4.4: Performing the imprecision algorithm in Example 4.5

Chapter 4: Basic Algorithms

 101

 Compared to the searching algorithm in [70] and [85], the predominance of

the algorithm improvement stands to reason. It recursively seeks the variables

which can be preprocessed in a decomposition procedure. If successful,

complexity is minified much since the computation avoids decomposing the

variable and directly sets its value, and then the residual polynomial is

simplified. For example, only one node, x2, is searched to determine its value

in c), and other three variables are preprocessed, therefore time and space

requirements are diminished.

 4.5 Experimental Results
The conversion algorithm is a basic algorithm for verification and

optimization of imprecise circuits because of its huge impact on performance.

Here we mainly aim the benchmarks of Taylor series. All experiments are

done on an Intel Celeron 2.4GHz CPU with 1G main memory under Linux.

X0 = 0

Function Taylor
degree

Bits AT terms

Expanded
terms

Run
time (s)

Memory
(MB)

sin(x) 7 31 3572223 10625591 586.593 156
sin(x) 9 26 5658536 55962920 179.171 247
sin(x) 11 24 7036529 316283264 921.218 293
sin(x) 13 20 988115 409609664 1167.58 59
exp(x) 10 24 4540386 131128139 371.266 239
exp(x) 12 22 3096514 548354039 1633.36 182
exp(x) 14 18 261156 471435599 1497.81 3
exp(x) 14 20 1026876 1391975639 4222.25 59
exp(x)*sin(x) 10 24 4540385 123221864 314.703 254
exp(x)*sin(x) 13 20 988115 429816984 1445.19 88
exp(x)*sin(x) 15 16 65534 282662144 985.703 18

Chapter 4: Basic Algorithms

 102

X0 = 0.5

Function Taylor
degree

Bits

AT terms

Expanded
terms

Run
time (s)

Memory
(MB)

sin(x) 7 31 3572224 13002888 873.437 163
sin(x) 9 24 2579130 41317895 158.125 159
sin(x) 11 20 784626 95629666 269.093 43
sin(x) 13 20 988116 668795865 2286.89 49
exp(x) 10 24 4540386 183578305 509.89 156
exp(x)*sin(x) 10 24 4540386 173039772 625.171 150

Table 4.1: Performance of Taylor series conversion

Table 4.1 shows results of the algorithm described by Figure 4.1. The two

sub-tables correspond to “0” and “0.5” values of X0 respectively. Column 2

and 3 list the highest degree and input bits. Column 4 and 5 show final AT

terms and expanded isomorphic terms.

From the table, the conversion algorithm is feasible even though Taylor

degree and input variables are very large. The performance of time and space

are satisfied, and the AT terms only occupy around 5% - 20% of isomorphic

terms. So combining these terms to form AT terms will spend huge processing

time, but the algorithm can handle it easily. During experiments, we find this

algorithm has been always the fastest algorithm.

4.6 Conclusions
 Taylor series is a typical imprecise representation with function

approximation and finite wordlengths, so it is our main research object that we

adopt AT. In order to utilize AT technique, we propose several algorithms

which can convert Taylor series to AT and search for its maximum absolute

value. These algorithms can handle not only Taylor series but also real-valued

polynomials with multiple variables, and are fundamental to the future

verification and optimization, so they can cover a majority of applications.

 103

Chapter 5

Analysis of Precision Parameters

Arithmetic circuits such as these realizing Taylor series-based

algorithms incorporate many generalizations leading to

imprecision. In order to design and verify imprecise circuits, the

first step is to analyze these factors carefully. Traditional methods

have difficulty to represent the factors mathematically. In this

chapter we describe the imprecise arithmetic computations, and

then utilize AT to analyze imprecise parameters in a polynomial,

and estimate how much error is caused by each parameter.

Chapter 5: Analysis of Precision Parameters

 104

5.1 Imprecise Arithmetic Computations
Major causes of imprecision in an implementation come from two aspects.

One is the approximations of the specifications in hardware realization and the

other is using finite wordlength to represent an infinite length of specification

data. For example, real fractional numbers are usually realized by finite size

registers which are regarded as fixed-point data representations. Radecka and

Zilic [70] introduced the fundamental idea based on AT representations.

Definition 5.1: The error is a numerical difference between the results

required by the specification and the quantity obtained in the implementation.

The unit in the last place (ULP) used to evaluate the error is the least

significant bit for binary encoding of a given number.

 The function approximation is an inexact implementation regardless of the

precision while the precision is the total bit number used to represent the

fixed-point circuit. Although there might be some other causes of imprecision

in ASIC implementations, the above two reasons are the focal points in this

work.

5.1.1 Finite Wordlength
 Using finite precision to represent infinite length real numbers is performed

by truncation and rounding. Output bit-width is always restricted so it is

unavoidable to cause imprecision. The following example explores data

truncation and rounding.

Example 5.1: A circuit has four N-bit unsigned fractional inputs: “a”, “b”, “c”

and “d” to perform the operation ab+cd. The output result has 2N-1 bits :

 If the result of the implementation is restricted to N most significant bits of

the original expression, two cases would be considered:

a) Rounding to the nearest value causes the error bounded to half of the ULP,

i.e., 2-(N+1).

∑∑∑∑
=

−

=

−

=

−

=

− ∗+∗=+
N

k

k
k

N

k

k
k

N

k

k
k

N

k

k
k dcbacdabAT

1111
2222)(

Chapter 5: Analysis of Precision Parameters

 105

b) When truncating to “N” bits, the error is bounded by one ULP, which is

2-N.

Explicit representation of output values is required for the precision

verification because the precision on a per-bit basis is not reasonable. A simple

example can describe the situation that even though all output bits are

incorrect, the imprecision is arbitrarily small. For instance, if the exact N-bit

result is 100….0, and the approximation is 011…1, then all bits are incorrect;

the error is one ULP, however, which for large N becomes negligible.

5.1.2 Arithmetic Transforms and Imprecise Datapaths
 AT has a property of linearity which can be directly applicable to

verification of imprecise circuits. The transform of an imprecise circuit, i.e,

IAT(f), can be represented as a linear superposition of the specified AT form

SpecAT(f) and the error e. Generally, error accumulation makes that various

errors throughout the circuit can be observed at outputs and expressed by the

error e and fault-free AT representation of SpecAT(f):

 SpecAT(f) = IAT(f) + ErrAT(f) (5-1)

The error AT polynomial (ErrAT) is determined by a series of imprecision

sources, which may be caused by function approximations, or size restrictions

of intermediate data of an implementation.

Definition 5.2: “The AT error polynomial (ErrAT) is a difference polynomial

between Arithmetic Transforms of specification (SpecAT) and its

corresponding implementation (IAT)” [70].

Example 5.2: A circuit calculates the product a*b with 8-bit for each variable

and disregards all partial products needed for obtaining 8 least significant

bits. This approximation will save half the circuit area, but causing the AT

error:

ErrAT(f) = SpecAT(a*b) – IAT(a*b) = i
i

i

i

j
ji

j

ji
i

i
i baba −

=

−

=
−

=

−−

=
∑ ∑∑∑ − 22

9

2

1

1

8

1

8

1

 = ji
i

j ji
i ba −−

= −=
∑ ∑ 2

8

2

8

6

Chapter 5: Analysis of Precision Parameters

 106

 After summation, we obtain that the worst case error is bounded by

(6*28+2)/211, which is O(2-6).

 Since AT has the linear property, if a module within a circuit has an error,

this error can be peeled off from the transform of the module, the following

equation describes it:

 AT(f+e) = AT(f) + AT(e) (5-2)

 The arithmetic transform of the erroneous module equals the addition of the

transform of the good module and the error transform. The property makes it

easy to analyze the effect caused by errors.

Once the overall AT is constructed for an imprecise circuit, the maximum

allowable value of an error polynomial (ErrAT) can be determined. When an

input/output size of an implementation differs from that of specification, the

precision of the implementation, expressed in terms of acceptable error bounds

is a required parameter. Only then we can state that the implementation (IAT) is

in agreement with the specification (SpecAT) within a precision error bound ε.

In consequence, the maximum absolute value of ErrAT must accord with the

inequality [69]:

ε≤−= IATSpecATErrAT max)max((5-3)

 The maximum absolute error can be calculated by the branch-and-bound

searching algorithm introduced in Chapter 4. If SpecAT is imprecise itself and

represents a function f up to an absolute precision of δ, the following

inequality [69] holds:

δε +≤−+−≤

−

|))(()(|max)()(max
|))(()(|max

XfATXSpecATXSpecATXIAT
XfATXIAT (5-4)

While the value δ is known, Eqn. 5-4 can be used to verify the imprecision

between SpecAT and IAT.

Chapter 5: Analysis of Precision Parameters

 107

 5.2 Function Approximation Error
Determining the set of parameters needed to achieve a circuit of the allowed

imprecision is a challenge that is in part due to the difficulties with the

precision analysis. The traditional method of using simulations over various

values of the parameters is costly and not guaranteed to produce the optimal

result. We next analyze the arithmetic precision parameters due to all

approximations and finite bit widths in the implementations of real-valued

specifications such as Taylor series in Figure 5.1. In summing the imprecision,

we will repeatedly use the triangle inequality.

Figure 5.1: Imprecision due to the combined sources

In implementing real-valued functions by arithmetic circuits, an algorithm

might be employed to approximate, rather than exactly implement the function.

For instance, when using n Taylor terms to represent a transcendental function,

the approximation error is provably bounded by a remainder Rn(X), Eqn. (4-1).

Hence, for a function given in interval I, this truncation error bound et is:

 e t = max
X ∈ I

| R n (X) | (5-5)

Example 5.3: Consider the following function f(X) = cos(X). In interval [-1, 1],

its Taylor approximation around X0=0 with 3 terms is:

42

24
1

2
11)(cos XXXTaylor +−= ,

Now we can estimate its error bound:

007.0|1sin
120

1||sin
120

1|max|)(|max 5
5 =≤∗== XXRet ξ

Given the desired error bound E, it is easy to find the appropriate number of

Taylor terms n as a largest integer for et < E. Such a finite truncation of Taylor

series will have the least number of terms that result in an acceptable

imprecision over the given interval I. Please note from Eqn. (4-1) that instead

Chapter 5: Analysis of Precision Parameters

 108

of finding the exact maximum of the (n+1)st derivative on I, using an upper

bound might suffice.

5.3 Input Bit-width and Quantization Error
In fixed-point implementations, a bit vector represents the real-valued input

variable X, so the input quantization due to finite bit-width affects the final

result. An insufficiently precise result can be caused by using too few bits, and

we hence try to find an appropriate bit-width resulting in the acceptable

overall error.

5.3.1 Effect of Finite Input Bit-width – Interval

Analysis
 An argument of a real-valued function is potentially infinitely precise. Such

a theoretical value Xth is instead replaced by the quantized input value X in

function calculation. The classical interval analysis [26]-[31] is expressed in

terms of AT as follows. Let FB represent Fractional Bits. The input range is

divided into uniform 2FB intervals, so the difference between two consecutive

intervals is 2-FB. The point representing Xth is between two quantized values, as

in Figure 5.2. The relationship between Xth and X is then:

......

0 11-2 +FB

thX X

2-FB

Figure 5.2: Value description of Xth and X
)1()1()1(222 +−+−+− +≤≤−⇒≤− FB

th
FBFB

th XXXXX (5-6)
Hence, by replacing Xth by m fractional bits of X in accordance with Eqn.

(5-6), we get the expressions for the theoretical fth and quantized f function

values (given X0 = 0):

∑ ∑
=

−−
−

=

+− ±=
n

i

im
m

k
k

k
i

th x
i
Xf

f
0

1
1

0

)1(0]2)2[(
!

)(

Chapter 5: Analysis of Precision Parameters

 109

∑ ∑
=

−−
−

=

+− ±=
n

i

im
m

k
k

k
i xC

0

1
1

0

)1(]2)2[((5-7)

∑ ∑
=

−

=

+−=
n

i

i
m

k
k

k
i xCf

0

1

0

)1()2((5-8)

where Ci is a Taylor coefficient that equals to
!

)(0

i
Xf i

.

We represent fth and f by AT polynomials AT(fth) and AT(f) to efficiently

search over binary inputs, obtained from Eqn. (5-7) and (5-8), respectively. The

conversion algorithm introduced in Figure 4.1 is designed to deal efficiently

with the intermediate terms swell when the number of Taylor series terms and

the bit-widths increase. The error polynomial AT(fei) is then a difference

between AT(fth) and AT(f):

∑ ∑∑ ∑
=

−

=

+−

=

−−
−

=

+− −±=
n

i

i
m

k
k

k
i

n

i

im
m

k
k

k
ie xCATxCATfAT

i
0

1

0

)1(

0

1
1

0

)1())2(()]2)2[(()(

(5-9)

This AT formulation of the interval analysis assumptions allows us to obtain a

bound ei on the effects of input quantization of half an ulp to the output

precision. The maximum absolute value of AT(fei) in Eqn. (5-9) gives the error

bound ei. While a straightforward approach requires 2m polynomial evaluations,

ei can be obtained by the efficient branch-and-bound searching algorithm

tuned for this application.

The interval method is represented by the Eqn. (5-9) which considers the

worst case, and applies the algorithms for Taylor conversion and imprecision

searching. Figure 5.3 shows the AT usage of interval analysis to estimate error

of input quantization.

Chapter 5: Analysis of Precision Parameters

 110

 t hf f

)(fAT

Conversion
Algorithm

)(thfA T

ie

Subtraction

Searching
Algorithm

AT(fei)

Figure 5.3: Computation of input quantization error

5.3.2 Tight-bound Interval Scheme
 The interval analysis unavoidably overestimates the error bound and gets a

coarse result. We now propose a tight-bound interval scheme, which employs a

more precise specification with larger input bit-width, to obtain tighter error

bounds.

For example, assume that m=8 bits is used to represent fractional number.

Let f and fth represent the quantized function and the theoretical function,

respectively. For interval analysis:

)2(|| 8−Θ==− Ihpff ε

We improve precision analysis by the tight-bound method. For this, we use

another, finer quantized function representation with, say t=17 bits, labeled by

fhp and get:

hphpff ε=− ||

The error in the higher-precision specification alone is estimated by the

interval analysis as:

)2(|| 17
_

−Θ=≤− TBIthhp ff ε

 From the triangle inequality, it follows that:

TBIhpthhphpth ffffff _|||||| εε +=−+−≤− (5-10)

In other words, the tight bound analysis uses the exact knowledge of the

Chapter 5: Analysis of Precision Parameters

 111

mismatch to a more precise specification, to which a significantly smaller

residual error by interval analysis is added, which allows us to get a tighter

error bound.

 Please note that the second, larger bit-width function is used here only for

analysis purposes, and will not increase the cost. Actually, due to the tighter

bounds, the tight-bound interval analysis can lead to a sufficiently precise

implementation with less bits used in the implementation. For example,

instead of m=8, it might suffice to have only bit-width of 7, as the tight-bound

comparison with the 17-bit implementation will arrive to the imprecision not

worse to that with m=8 bits, obtained by the straightforward interval analysis.

The scheme for tight-bound interval based on AT technique combines Figure

5.3 and the inequality (5-10) to obtain the suitable bit-width.

5.4 Quantization of Coefficients and Output
The finite-word representation of real-valued constants such as coefficients

of Taylor expansions causes coefficient quantization. If q stands for the

coefficient bit-width, then the value of the theoretical (infinite precision)

coefficient Cth and its word-level representation C are related as follows:
)1()1(22 +−+− +≤≤− q

th
q CCC .

Using this inequality to replace Cth, the expression of fth becomes:

∑ ∑
=

−

=

+−−− ∗±=
n

i

m

k
k

kq
ith xcf

0

1

0

)1(1)]2[()2((5-11)

The error function fec is defined as the difference between fth and f, while the

error polynomial ATec is its transform:

)))2((2(
0

1

0

)1(1∑ ∑
=

−

=

+−−−±=
n

i

m

k

i
k

kq
e xATAT

c (5-12)

The tight-bound analysis can also be applied to explore coefficient

bit-widths. The maximum error ec is again computed by the branch searching

algorithm combined with the tight-bound scheme over this AT polynomial.

Finally, if the output bit-width is o, the bound on the output quantization

Chapter 5: Analysis of Precision Parameters

 112

error eo is 2-O -1. With et, ei and ec determined, the upper bound of eo is eo =2-O -1

=E- et - ei - ec. Hence, o is given as: o = -log2 (E- et - ei - ec) + 1. Since eo can be

obtained easily and the output bit-width does not affect on internal hardware

structure, it is omitted from further considerations below.

 5.5 Conclusions
Imprecise circuits generally contain many imprecise factors leading to error

generation. Here we focus to analyze Taylor series which has four imprecise

factors as function approximation, quantization of input bit-width, coefficient

bit-width and output bit-width. We use AT and construct mathematical

expressions for each factor to facilitate analysis. These expressions are

fundamental to future verification and optimization.

Chapter 6: Algorithms for Precision Verification and Optimization

 113

Chapter 6

Algorithms for Precision
Verification and Optimization

 In this chapter, we propose an algorithm to compare two similar,

but not exact components. A verification algorithm is then

introduced to check whether the implementation satisfies the error

bound. A sequential method is designed to find a feasible

implementation to satisfy the error bound. In order to single out the

best implementations under different constraints, such as area,

delay, and fixed bit-width, an optimization algorithm is described.

Finally, we integrate these algorithms into a package to handle

imprecise circuits.

Chapter 6: Algo

We will

implementa

by the giv

investigatio

reduced co

differing fr

e1 and e2

implementa

 The pro

 The erro

between sp

absolute va

the specific

 The use

among two

Figure 6.2.

or real-valu

front-end a

conversion

orithms for Pre

 6.1
now outli

ations. If th

ven error b

on of their d

ost. Figure

om the spec

2 are wit

ations are ac

oblem descr

or AT polyn

pecified an

alue is the

cation and th

e of the alg

o different

 The interfa

ued polynom

and the pa

algorithm

Problem

Inputs:

Output:

ecision Verificat

Compo
ne our me

he imprecisi

bound, they

difference c

6.1 illustra

cification Sp

thin the a

cceptable an

Figure 6.1: C

ription is as

nomial (ATe)

nd implem

maximum m

he impleme

gorithm wit

implementa

face file des

mials and th

arser hide

m converts

6.1: Compu

f1(X), n1

 imp

tion and Optimi

114

onent C
ethod of fi

ion between

y can be s

can assist in

ates two im

Spec by erro

allowed err

nd can be su

Comparison o

s follows.

) introduced

ented AT

mismatch w

entation.

thin a realis

ations of re

scribes two

he bit-width

the details

the two

uting differe

1, m1, f2(X),

precision

ization

Compa
inding imp

n the two co

substituted

n finding th

mplementat

rs e1 and e2

ror bound

ubstituted fo

of two implem

d in Definit

polynomial

which deno

stic tool fo

eal-valued

implement

hs of corresp

 needed to

implement

ence of two

n2, m2

arison
precision be

omponents

by each o

he impleme

ions, Imp1

2 respective

E, then

for each othe

mentations

tion 5.2 is

ls, and its

tes differen

or comparin

functions i

tations of T

ponding va

o deal with

tations of

implement

etween two

is restricted

other, so an

entation at a

 and Imp2

ely. If errors

these two

er.

a difference

s maximum

nce between

ng precision

is shown in

Taylor series

ariables. The

h AT. The

real-valued

tations

o

d

n

a

2,

s

o

e

m

n

n

n

s

e

e

d

Chapter 6: Algorithms for Precision Verification and Optimization

 115

functions into two AT polynomials, while the error AT is obtained by

subtracting the two polynomials. Then the imprecision is obtained by the

searching algorithm introduced in Chapter 4.

Interface File

Implemented
Taylor Series 1

Implemented
Taylor Series 2

Parser

Implemented
AT Polynomial 1

Implemented
AT Polynomial 2

Conversion
 Algorithm

Error AT Polynomial

Bits 1 Bits 2

Conversion
 Algorithm

Branch
Searching
Algorithnm

Maximum Mismatch

Subtraction

Figure 6.2: Algorithm of computing imprecision between

two implementations of Taylor series

6.2 Verification of Implementations
Given an implementation, the imprecision between the specification and the

implementation determines whether the implementation can fit the

specification, so it becomes necessary to calculate the imprecision coming

from the four sources described in Figure 5.1. The problem description is as

follows.

Chapter 6: Algorithms for Precision Verification and Optimization

 116

The given implementation includes the number of Taylor terms,

quantization bits of the inputs, coefficients and output. Calculating the

imprecision can be achieved by adding the values of et, ei, ec and eo. If the

imprecision is beyond the error bound, the implementation does not satisfy the

specification. It is helpful to evaluate the validity of the implementation.

Figure 6.3: Algorithm of verifying the implementation

Figure 6.3 describes an algorithm that checks an implementation by

computing each type of error. The result indicates whether the implementation

is suitable to the specification through the confirmation of a relationship

between the imprecision and the given error bound. The algorithm

concurrently investigates function approximation and bit-widths. It handles not

only Taylor series but also any real-valued specifications without

approximations, and so has wide applications.

Problem 6.2: Verifying an implementation

Inputs: f(X), E, n, m , q, o

Judgment: et + ei + ec + eo < E

Outputs: Satisfied? (Yes or No)

Check_Imp (f, E, n, m , q, o)
1. { if (et ≥ E) return false;
2. ei = Get_input_error (f, n, m);
3. if (et + ei ≥ E) return false;
4. ec = Get_coeff_error (f, n, m, q);
5. if (et + ei + ec ≥ E) return false;
6. eo = 2-O-1;
7. if (et + ei + ec + eo ≥ E) return false;

else return true;
}

Get_input_error (f, n, m)
{ AT_theoretical = Convert_AT (f, n, m, 2-m-1);

AT_real = Convert_AT (f, n, m);
 error_AT = AT_theoretical - AT_real;
 ei = Search_imprecision (error_AT);
 return ei;
}
Get_coeff_error (f, n, m, q)
{ ATec = Convert_AT (f, n, m, 2-q-1);
 ec = Search_imprecision (ATec); return ec;
}

Chapter 6: Algorithms for Precision Verification and Optimization

 117

 6.3 Finding a Feasible Implementation
As distinct from the above section, our goal here is to explain how to design

a satisfying implementation to restrict the imprecision within the error bound

if given a specification represented by Taylor series expanded around Xo and

the error bound. We now solve the problem of finding a feasible

implementation, so that the error in the given interval I is smaller than E.

The algorithm in Figure 6.4 applies sequential selection of parameters such

that the total imprecision is smaller than E. The symbols n, m and q represent

the Taylor terms, input bit-width and coefficients bit-width respectively. Since

all the error causes can be made arbitrarily small by increasing n, m or q, we

can investigate them in any order. As the Taylor approximation error, Eqn.

(4-1), is independent of bit-widths, while the errors caused by the bit-widths

rely on the exact number of Taylor terms, et is investigated first (Step 1), and n

is selected such that the imprecision due to approximation is smaller than E. In

Steps 2 and 3, we find input and coefficient bit-widths m and q using triangle

inequality in order to obtain the required precision.

This algorithm always terminates with a feasible implementation, because

each of the three steps can determine an arbitrarily small error. Although one

can apportion the percentage of E for each step, this is potentially wasteful.

Since the first source of error is relatively small in comparison to the whole

error bound, the distance to E will leave room for subsequent quantization

values of errors ei and ec without needing very long bit-widths m and q.

Problem 6.3: Feasible Precision Parameters

Inputs: f(X), X0, I, E

Constraint: imprecision < E, IX ∈∀

Outputs: n, m, q

Chapter 6: Algorithms for Precision Verification and Optimization

 118

Figure 6.4: A sequential method of fitting the error bound

The method is applicable to Taylor series, but also to any real-valued

polynomial specifications. Please note that when some (input or output)

bit-widths are fixed because of other modules, those steps are skipped. This

scheme achieves a tighter match than the traditional error bounding techniques

as its exact searches for the worst-case imprecision account for the interplay

between multiple imprecision causes. Although this algorithm can stand on its

own, its immediate application is as a pre-selection stage of the full precision

optimization algorithm, which is presented next.

6.4 Designing Optimized Implementations

with Constraints
Although the algorithms in Figure 6.3 and 6.4 compute the precision

automatically and indicate whether the implementation is feasible to the error

bound, it cannot give information to optimize the implementation. Because the

satisfying implementation is not the best one possible in different constraints,

1. Determine Taylor terms
{ assume n terms and obtain et;

while (et≥E) { n++; obtain et ; }
}

2. Determine input bit-width
{ assume input bit-width m;
 for ()

{ AT(f)th = Convert_Taylor_AT (fth, n, m);
AT(f) = Convert_Taylor_AT (f, n, m);
ei = Imprecision_Searching (AT(fth - AT(f));
if (ei ≥ E-et) m++; else break; }

}
3. Determine coefficient bit-length

{ assume bit-width of coefficients q;
 while ()

{ ATec = Convert_Taylor_AT(fec);
 ec = Imprecision_Searching (ATec);
 if (ec ≥ E-et- ei) q++; else break; }

}

Chapter 6: Algorithms for Precision Verification and Optimization

 119

it is necessary to develop an algorithm to allow for a flexible distribution of

imprecision due to the error sources. In this section, we demonstrate an

automated way to find the precision parameters (bit widths, approximation

schemes) of the minimum cost determined by constraints.

6.4.1 AT Size as a Cost Function
While it is impossible to know precise area data before mapping a circuit by

a concrete technology, we do not need to know the exact area as long as the

different alternatives can be compared realistically. In our case, the area

increases monotonically in both n and m. More Taylor terms (n) require more

stages in hardware, which raises inputs to higher exponents. Similarly, longer

bit-width (m) requires more arithmetic circuitry. As the number of AT

polynomial terms |AT(f)| exhibits the same tendency, we use it as the cost

function to be minimized. The size of AT is obtained by directly expanding the

n-term Taylor polynomial over m-bit input words. One can show that:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= i
m

fAT
n

i
mn

1
,)((6-1)

6.4.2 Error Sensitivity
We recall first that the Taylor series representation comes with a provable

bound on the error due to the truncation of the Taylor terms n, given by Eqn.

(4-1). This bound can be readily used during the precision searches, when

different values of n are explored. Further, we can readily access the

information on error sensitivity due to the input bit width m.

Traditionally, sensitivity [21] is defined as Eqn. (6-2) and Figure 6.5 to

describe the influence that a small change ∆X of X has on the output Y:

XXfY Δ≈Δ)(' (6-2)

where f’(X) is the derivative of f(X).

Chapter 6: Algorithms for Precision Verification and Optimization

 120

ΔX

f(X)

X

X1
X
Xf

∂

∂)(

Figure 6.5: The basic idea of sensitivity [21]

In order to use sensitivity to investigate the input quantization error and find

the suitable input bit-width, we re-define the sensitivity.

Definition 6.1: The sensitivity is a numerical value to describe the influence

that a small change of X has on the output Y in condition of the worst case:

YΔ = AT(f’(X))max * 2-m-1 (6-3)

The sensitivity reflects the output change in terms of tiny input turbulence.

It has the same essence as the representations of Eqn. (5-7) and (5-8), so

sensitivity can be used as a substitution. The performance bottleneck in

determining the optimized implementation is that the procedure must repeat

itself to invoke the conversion algorithm when searching different Taylor

terms and input bits. In each flow, this requires invoking the conversion

algorithm twice, and subtracting two AT polynomials as Eqn. (5-7) and (5-8)

to get the input error in order to confirm whether the input bit-width is

satisfied. Of course the complex procedure will consume a lot of time and

memory. However, if using sensitivity, as long as f’(X) is converted to

AT(f’(X)) and the branch-bound algorithm is used to find the maximum value

to match the worst case, the sensitivity can be calculated by its multiplication

with ∆X . Here ∆X is 2-m-1, i.e., half of the ulp. We can see this procedure only

invokes the conversion algorithm one time to transform f’(X) into AT(f’(X)).

The advantage is very obvious. When the sensitivity is obtained, combined

with the input error bound, it is easy to conclude the suitable input bit-width.

Similarly, the search for an appropriate bit-width of the Taylor coefficients

Ci is guided through the corresponding sensitivity, readily calculated using

Taylor series, the conversion algorithm and the searching algorithm.

Chapter 6: Algorithms for Precision Verification and Optimization

 121

6.4.3 Constraint of the Smallest Area
A) Optimized Parameters for Taylor Series

In some cases, there is no limitation for Taylor terms and input bit-width, so

engineers can adjust the parameters to achieve an error-satisfied circuit with

the smallest area. Consider the following problem, where the total imprecision

due to the disparate causes and the cost are obtained through AT.

The goal is to get a satisfying implementation with the minimum AT size

which represents the smallest area. The constraint which restricts the

imprecision must be smaller than the error bound. Since coefficients and

output bit-width have much less effect of area, we mainly focus on the number

of Taylor terms and input bit-width. In deriving a more thorough search

scheme, we need the ability to concurrently explore multiple precision

parameters.

Figure 6.6 describes the algorithm optimizing the number of Taylor terms

and the input bit-width. A pair (n, m) is referred to as a node, representing a

combination of a number of Taylor terms (n) and an input bit-width (m) used

in each step of the search. In the first iteration, the algorithm gets the smallest

number of Taylor terms for the given error bound, and obtains input bit-width

by sensitivity computation (Steps 1 to 5). It is sufficient to consecutively

increase the set of Taylor terms used to explore the search space, while

simultaneously exploring the alternative input bit-widths (Steps 6 and 7). If the

new node can satisfy the error bound E, the newly computed number of Taylor

terms is assumed, and the algorithm continues to decrease input bit-width until

the current node breaks the bound. When it happens, the algorithm backtracks

to the previous node and stores it (steps 9 and 10). The procedure is repeated

until the change of bit-widths is exhausted, while ei > E (step 8).

Problem 6.4: Finding optimized Taylor terms and input bit-width to get

the smallest area

Inputs: f(X), X0, I, E

Constraints: imprecision < E, IX ∈∀

Outputs: n, m

Chapter 6: Algorithms for Precision Verification and Optimization

 122

Figure 6.6: Algorithm of finding the optimized implementation with smallest area

Since Taylor series cannot be compared directly, it is necessary to use AT for

comparison because of the easy computation of Eqn. (6-1), so in the above

procedure the conversion algorithm is invoked to achieve that goal. The

searching algorithm helps to find the quantization error represented by AT

polynomials. A subroutine Compare_AT_size is called into action to

compare the AT size of each stored node, and selects the one with the smallest

Design_min_Taylor_area (f, E)
{
1. while (et > E) { ++n; et = Get_Taylor_error (n) }
2. AT_derivative = Convert_Univar_AT('f , n, m0);
3. sensitivity=Search_Imprecision (AT_derivative)* 102 −−m ;
4. ini_m = m0 – log[(E- et) / sensitivity];
5. Store_node (n, ini_m); m = ini_m;
 while

6. { et = Get_Taylor_error (++n);
7. ei = Get_input_error (f, n, --m);
8. if (ei < E)
 { while (ei <E - et) ei = Get_input_error (f, n, --m);
9. if (++m != ini_m)

{ Store_node (n, m); ini_m = m;
10. Tight_interval (node); }

}
11. else break;

}
12. best_node = Compare_AT_size (nodes);
13. (ec, q) = Get_coeff_bit (E, et, ei) ;
14. o = -log2 (E- et - ei - ec) + 1;
 return best_node;
}
Get_input_error (f, n, m) // Using Eqn. (6-3)
{ AT_derivative = Convert_Univar_AT('f , n, m);
 max_val = Search_Imprecision (AT_derivative);
 ei = max_val * 2-m-1; return ei ;
}
Compare_AT_size (nodes)

{ for (i=0; i<nodes_num; i++)

 AT_size[i] = Get_AT (node[i](n), node[i](m));

 Sort (AT_size); return the node with smallest AT_size;
}

Get_AT (n, m)

{ for (i=1; i<=n; i++) AT_num += Choose (m, i); }

Chapter 6: Algorithms for Precision Verification and Optimization

 123

AT representation. In fact, while the algorithm begins with the largest et value

(within the total bound E) – initially ei is smallest, but in subsequent steps et

shrinks while ei grows until ei becomes the largest value – the procedure

explores the search space, eliminating nodes that will have larger AT than

already obtained solutions. Finally, the bit-width of coefficients is calculated

using the notion of sensitivity, while the output bit-width o is determined using

the expression o = -log2 (E- et - ei - ec) + 1 (Step 13 and 14). Note that at this

point all the error parameters in the above equation can be determined using

the optimal values of n, m and q.

The algorithm provides a branch-and-bound exploration of the space of all

potential optimized nodes. When the error bound E is exceeded, the complete

subtree of the search tree is safely abandoned. Further, the search is guided by

the sensitivity function, as a heuristic to speed up the search. At each node, the

error ei from Eqn. (6-3) is computed in the subroutine Get_input_error,

which uses the sensitivity definition. The transform of the first order derivative

of f(X) is obtained in terms of the Taylor terms n and input bit-width m. Then,

the branch searching algorithm is invoked to get its maximum mismatch, so

the sensitivity is calculated through the multiplication of the maximum

mismatch and ∆X, i.e., 2-m-1. As a result, the conversion algorithm is invoked

only once to get AT of f ’(X), while the use of Eqn. (5-7) to (5-9) would

activate the algorithm twice. The following example illustrates the use of the

precision optimization algorithm.

Example 6.1: Consider an implementation of sin(x) represented by Taylor

series. Due to the given error bound 0.0002, the algorithm finds the least

number of Taylor terms to be 4, and the corresponding input bit-width to be 14

on the condition of the Taylor terms. Therefore, the initial node is (4,14).

Chapter 6: Algorithms for Precision Verification and Optimization

 124

m-1
n+1

4, 14

5, 13

5, 12

6, 11
m-1

5, 11

m-1

n+1
m-1

7, 10

n+1
m-1

ei > E

ei + et > E

redundant
 node

branch
termination

branch
terminationinvalid

node

invalid
node

1
2

Figure 6.7: Search of optimized parameters in Example 6.1

The algorithm adds then one Taylor term and cuts one input bit at the same

time, hence generating a new node (5, 13). By using the sensitivity, ei is

estimated fast, and as this node satisfies the error bound, input bits are

decreased again. However, when the node reached (5, 11), the error addition

of et and ei is beyond the bound but ei is smaller than the bound, and the

algorithm backtracks to the previous node (5, 12). The node (5, 13) is

redundant because its AT terms number is obviously larger than the node (5,

12), and the node (5, 11) is an invalid node. The procedure is repeated with

Taylor terms increased to 6 giving the node (6, 11) which satisfies the bound.

The input error ei of the next node (7, 10) breaks through the error bound so it

is an invalid node, which means the smallest input bit-width is 11 regardless of

the increase in the number of Taylor terms, so the algorithm stops.

Figure 6.7 indicates three nodes (4, 14), (5, 12) and (6, 11) that satisfy the

given error bound. The procedure Compare_AT_size is then called to select

the node with the smallest AT size, so the node (6, 11) is the optimized

parameters for Taylor terms and input bit-width.

From this example, we see that starting from an initial feasible

implementation, the algorithm proceeds with generating nodes of improved

parameters, and then checks whether such new nodes are within the error

bound. In each search step, the sensitivity is used to accelerate calculation of

the input quantization error, drastically improving the performance. When the

error bound is exceeded, the backtracking technique returns the previously

determined feasible solutions, and no solution will be missed.

Chapter 6: Algorithms for Precision Verification and Optimization

 125

B) Optimized parameters for multivariate polynomials
The above section proposes an algorithm that is limited to Taylor series of

only one word-level variable. Since many real-valued polynomials comprise

word-level variables beyond one, the optimization algorithm needs an

extension to process it. An algorithm is now presented to handle cases of

specifications given over several word-level variables.

Figure 6.8: Algorithm for finding optimized parameters for real-valued

polynomials over multiple variables

A set of bit-widths for each variable is referred to as a node in Figure 6.8.

The algorithm first gets sensitivity for each variable as in Step 1 – 5, and

obtains the initial node and final node by using sensitivity as in Step 6 – 7. The

initial node makes the first variable determine the minimum bit-width and the

final node makes the last variable calculate the minimum bit-width.

Beginning from the initial node, the algorithm shrinks the error generated

Design_best_poly_imp (f, E)
{
1. for (i=0; i<word_var_num; i++)
2. { AT_th = Convert_AT(f, i, 0);
3. AT_real = Convert_AT(f, i, 102 −−m);
4. error_AT = AT_th – AT_real;
5. sens [i]=Search_imprecision (error_AT);
 }
6. ini_bit = Get_ini_node (sensitivity);
7. final_bit = Get_final_node (sensitivity);
8. for (i=word_var_num-1; i>=0; i--)
9. { ini_bit[i]++; ini_bit[i+1]--;

for (m=word_var_num-1; m>=i; m--)
10. { stop_error = Compute_input_error (sens, ini_bit);
12. ei[0] = pow(2, init_bit[0]-m0) * sens[i];
13. if (ei[0] = stop_error)
 break;
 else { while (ei < E) init_bit[0]--;
 Store (nodes); Tight_interval (node); }

}
14. if (ini_bit = final_bit)

 break;
}

15. Irredundant (nodes);
16. optimized_bit = Compare_AT (nodes);
}

Chapter 6: Algorithms for Precision Verification and Optimization

 126

by the first variable by increasing its bit-width. At the same time, the bit-width

of the following variable decreases and this may enlarge the error. The

procedure propagates the input error within the error bound from the first

variable to the last variable in sequence. When the final node is reached, the

loop stops and all possible nodes are traversed as in Step 8 – 14. While all

intermediate nodes are obtained, the redundant nodes are deleted in Step 15.

If two nodes only differ in one variable and other variables have the same bit

widths, the node which has more bits is identified as the redundant node. For

example, if the two nodes have three variables consisting of (12, 13, 12) and

(12, 14, 12) bits respectively, one variable is different and the node of (12, 14,

12) is deleted as a redundant node. The optimized bit-widths for variables are

selected by comparing AT sizes of obtained nodes and choosing the smallest

one as in Step 16.

Example 6.2: Consider a function F with three word-level variables and the

given error bound is 60.

 F(X, Y, Z) = 2X 2+ 3YZ – 4Z3 + XYZ

By using sensitivity the initial node is obtained as (14, 16, 18) which means

that the error generated by X has the largest value within the error bound, and

the final node is (18, 16, 13) which means that the error generated by Z has

the largest value within the error bound. The Figure 6.9 describes the two

nodes and the error generated by each variable.

E

e[X]
e[Y]

e[Z]

E
e[X]

e[Y]

e[Z]

Figure 6.9: The error of each variable for the initial node and the final node

Now the algorithm begins with the initial node to increase bit-width of Y and

decrease bit-width of Z, etc., e[Y] is reduced and e[Z] is augmented. The new

obtained node is (14, 17, 16) and since the bit-width of Z cannot be cut down

any more, the bit-width of X has to be increased to “15” and bit-widths of Y

and Z are computed again. Consequently, the node changes to (15, 15, 15).

The two nodes are shown in Figure 6.10.

Chapter 6: Algorithms for Precision Verification and Optimization

 127

E

e[X]
e[Y]

e[Z]

E

e[X]
e[Y]

e[Z]

Figure 6.10: Two intermediate nodes from the initial node

The algorithm continues to get intermediate nodes until it reaches the final

node. It removes the redundant nodes and creates a search path to represent

each node. The chain is described as:

(14,16,18) (14,17,16) (15,15,15) (15,16,14) (16,14,16)

(16,15,14) (17,14,15) (17,17,13) (18,16,13)

The AT size of each node is calculated and a node with the smallest size is

chosen as the optimized node. In this example the optimized node is (16, 15,

14).

6.4.4 Constraint of the Minimum Delay
 Some applications often require that the implementation has a minimum

delay. Taylor series is implemented by a Horner polynomial evaluation such as

the cosine circuit:

(...)))
!4

1(
!2

1(1
)!2(

)1()(222
2

0
XXX

i
XXf

in

i

i ++−+=−= ∑
=

*R
X

1/n!

+

1/(n-1)!

R

*R
+

1/(n-2)!

R

R *

From R
in Stage n-1

R f(X)

Stage 1

Stage 2

Stage n

Figure 6.11: n-stage pipelined circuit

In Figure 6.11, n-terms Taylor series correspond to an n-stage circuit

represented by a Horner polynomial. Although input bit-width and coefficient

Chapter 6: Algorithms for Precision Verification and Optimization

 128

bit-width both have effect on delay, it is obvious that the number of Taylor

terms has far bigger impact. More terms result in a longer delay, so the

minimum delay requires the least Taylor terms and is restricted by the

imprecision. The least number of Taylor terms is simple to obtain and the input

bit-width can be obtained by using Eqn. (6-3). The problem description is as

follows.

Figure 6.12: Algorithm of finding parameters for the minimum delay

Figure 6.12 describes the algorithm for finding the optimized

implementation with the minimum delay. It calculates the least number of

Taylor terms to satisfy the inequality et < E, then decreases the initial input

bit-width and keeps the calculation of the input error ei until ei > E - et. So the

appropriate input bit-width is obtained.

6.4.5 Constraint of Interface Input Bit-width

 In some cases the input comes from the output of another module, so the

bit-width is determined by that module and it cannot be changed. Figure 6.13

illustrates this situation.

Problem 6.5: Finding optimized parameters to get the minimum delay

Inputs: f(X), X0, I, E

Outputs: n, m

Constraint: imprecision < E, IX ∈∀

Goal: minimum satisfying Taylor terms n

Design_min_delay (f, E)
{ while (et < E) { --n; et = Get_Taylor_error (n) };

m = Initiate (f, n) ;
ei = Get_input_error (f, n, m) ;
while (ei < E - et)
{ m--;
 ei = Get_input_error (f, n, m) ;
}
m++ ;
return (n, m)

}

Chapter 6: Algorithms for Precision Verification and Optimization

 129

output input Taylor SeriesAnother Module

Interface

 Figure 6.13: Description of interface input bit-width

Since the parameter of input bit-width is fixed in this case, only the Taylor

terms and coefficient bit-width should be explored to make the imprecision

suitable to the error bound. Figure 6.14 describes the algorithm of calculating

Taylor terms and coefficients bit-width.

Figure 6.14: Algorithm of finding parameters for interface input bit-width

The algorithm first finds the least satisfying Taylor number to make the

approximation error et smaller than the error bound (Step 1), and calculates the

corresponding input error (Step 2). If the error ei is larger than the error bound,

it means that the interface input bit-width is too small to fit the error bound

and the algorithm will give the error information (Step 3). If the addition of et

and ei is larger than the error bound, which would indicate that the number of

Taylor terms is too small, the algorithm increases the number value n and

re-calculates its input error (Step 4 – 7) since the number of terms will affect ei

even though the input bit-width is fixed. After the suitable Taylor number n is

obtained, the coefficient quantization error ec is determined, and the algorithm

Design_fixed_input (f, E, m)
1. { while (et < E) { --n; et = Get_Taylor_error (n) };
2. ei = Get_input_error (f, n, m);
3. if (ei ≥ E)

 print “The interface input bit-width is too small to fit the error bound”;
4. else if (et + ei ≥ E)
5. { while (et + ei ≥ E)
6. { et = Get_Taylor_error (--n);
7. ei = Get_input_error (f, n, m); }

}
8. ec = E - et - ei;
9. for (i=0 ; i<m ; i++)

 input_val += pow(2, -i-1) ;
10. for (i=0 ; i<n; i++)

 coeff_sen += pow(input_val, i) ;
11. q = (-log(ec / coeff_sen) / log2) – 1;

return (n, m, q) ;
}

Chapter 6: Algorithms for Precision Verification and Optimization

 130

calculates the coefficient bit-width by Eqn. (5-12) corresponding to the worst

case (Step 9 - 11).

Example 6.3: Given an error bound E=2e-4 for exp(X), the interface input

bit-width is 13. The algorithm finds the least number of Taylor terms is 6, and

gets et = 1.98e-4, ei = 1.76e-4. Since ei < E and et + ei > E, that denote the

number of Taylor terms is too small so the algorithm loops to find that the

suitable number of Taylor terms is 8. It obtains et = 2.76e-6 and ei = 1.79e-4,

so ec = E - et - ei = 1.82e-5. In order to calculate the coefficient bit-width, Step

9 and 10 execute:

∑ ∑
= =

−−
7

0

12

0

1)2(
i k

i
k

k x = 7.99561

when each xk equals 1 considering the worst case, the equation is 1.82e-5 =

2-q-1* 7.99561 and the coefficient bit-width q is obtained as 18 bit, so the final

obtained parameters are n=8, m=13, q=18.

 6.5 Experimental Results
6.5.1 Comparison of Two Implementations
(A) Benchmarks
1) Imprecise Cosine circuit implementation

 In ASICs or FPGAs, the pipelined implementation of a cosine circuit

represented by finite terms of Taylor series often uses the Horner’s polynomial

evaluation:

(...)))
!4

1(
!2

1(1
)!2(

)1()(222

0

2

xxx
i

xxf
n

i

i
i ++−+=−= ∑

=

2) B-splines

Uniform cubic B-splines are used for image warping applications. Four

B-spline basic functions B0, B1, B2 and B3 are defined by:

6
1

2
1

2
1

6
1)(23

0 +−+−= uuuuB
3
2

2
1)(23

1 +−= uuuB

Chapter 6: Algorithms for Precision Verification and Optimization

 131

6
1

2
1

2
1

2
1)(23

2 +++−= uuuuB
3

3 6
1)(uuB −=

where u= [0, 1]. We use different bits to represent u to implement this design

and observe imprecision effects.

3) Chebyshev polynomials

Chebyshev filters are analog or digital filters with a steeper roll-off and more

passband ripple. The gain response as a function of angular frequency w of the

nth order low pass filter is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

0

221

1)(

w
wT

wG

n

n

ε

Where ε is the ripple factor and Tn is the Chebyshev polynomial of the nth

order. Its mathematical characteristics are derived from Chebyshev

polynomials. They are a sequence of orthogonal polynomials which are related

to de Moivre's formula and which are easily defined recursively. The

Chebyshev polynomials of the first kind are defined by the recurrence relation:

T0(X) = 1 T1(X) = 1 Tn+1(X) = 2XTn(X) - Tn-1(X)

According to the relation, we get:

T8(X) = 128X8 – 256X6 + 160X4
 – 32X2

 + 1

T9(X) = 256X9 – 576X7 + 432X5
 – 120X3

 + 9X

4) Implementations of cubic filters

 Cubic filters generally have multiple word-level variables, such as the

benchmarks from University of Utah [51]. The complicated module contains

three word-level variables, and we have to try exhaustive variable

combinations if simulation is adopted, but the method of AT can avoid this

time-consuming situation. Consider a filter:

F(X, Y, Z) = 16384X4 + Y4 +57344Z4 + 64767XY3 + 16127Y2Z2 + 8965X3Z

+19275X2YZ +51903XYZ + 32768X2Y +40960Z2 +32768XY2 + 49152X2

+ 4869Y

5) Discrete Cosine Transform (DCT)

DCT is the kernel of JPEG and MPEG. Here the 88 × DCT

implementation according to is considered. A vector of input data x0…x7 can

be transformed to DCT coefficients by y0…y7. Coefficients c0…c6 are

Chapter 6: Algorithms for Precision Verification and Optimization

 132

fractional numbers within (-0.5, 0.5) and generally approximated by 8 – 16

bits.

0 70 0 0 0 0

1 62 2 5 5 2

0 0 0 04 2 5

5 2 2 56 3 4

x xy c c c c
x xy c c c c

c c c cy x x
c c c cy x x

+⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ +− ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− − +
⎢ ⎥⎢ ⎥ ⎢ ⎥− − +⎣ ⎦⎣ ⎦ ⎣ ⎦

0 71 1 3 4 6

3 1 63 6 1 4

4 1 6 05 2 5

6 4 3 17 3 4

x xy c c c c
y x xc c c c

c c c cy x x
c c c cy x x

−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ −− − − ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦

6) Box-Muller implementation

 Box-Muller algorithm for generating Gaussian random variable is critical to

a number of applications such as accurate bit error rate testers. The algorithm

uses the following expression:

)2cos(*)ln(2)(*)(),(21221121 XXXYXYXXY π−==

We represent it by a finite number of Taylor series terms:

)ln(2)(111 XXY −= around the point X1 = 0.5 and)2cos(22 XY π=

around X2 = 0.
3

1
2

1111)5.0(582.1)5.0(4733.0)5.0(6984.117741.1)(−−−+−−= XXXXY

6
1

5
1

4
1)5.0(7848.2)5.0(3284.3)5.0(0198.1 −+−−−+ XXX

)!2(
)2()1()(

2
2

0
22 i

XXY
i

i

i π∑
∞

=

−=

The implementation consists of two Taylor series and two word-level

variables. Imprecision in two variables affect each other, so it is difficult to

evaluate imprecision and get the optimized implementation by past univariate

explorations.

(B) Comparison Results

Chapter 6: Algorithms for Precision Verification and Optimization

 133

Table 6.1: Error and performance of various components on different criteria

The module in Figure 6.2 is critical for both the conversion and the branch

searching algorithms, so it is important to pay special attention to it. The error

AT polynomial is derived from two implemented AT polynomials, from which

imprecision can be discovered by the brand search. The module has the

advantages of being fast and space-efficient, as Table 6.1 shows.

More bits imply that the results are more precise, i.e., the implemented

function value is closer to the originally specified data output. However, the

precision comes not only at the cost of area, but also the rate of speed and

energy consumption. In light of this, choosing an appropriate length to

represent coefficients is worth the effort. Table 6.1 displays imprecision based

on different degrees and input bits. It is obvious that imprecision decreases in

proportion to the increase of the Taylor degree and input bits. Running time is

acceptable even for a large number of terms. Hence, this module provides a

reliable method of calculating and matching the imprecision of

implementations, which will allow the engineers to lower the cost of design.

The results also help to obtain an understanding of whether the existing

implementations can be reused.

6.5.2 Verification of Imprecise Circuits
In this section, the algorithm in Figure 6.3 is verified. In order to cover

Case Imp
 Degree 1

Imp
Degree 2

Imp Bit 1 Imp Bit 2 Error AT
Terms

Error Time(s) Space(MB)

cos(x) 8 8 20 16 224747 1.2e1-5 7.98 66.6
cos(x) 8 8 24 20 1007676 7.52e-7 38.84 347.3

cos(x) 10 8 24 20 615115 2.75e-7 44.16 71
cos(x) 10 8 24 24 4533805 2.76e-7 214.9 523.5

B-splines 3 3 20 16 654 2.86e-5 0.375 0.38
B-splines 3 3 24 20 974 1.79e-6 6.2 0.46
B-splines 3 3 28 24 1356 1.12e-7 114.4 0.55

Chebyshev 8 8 20 16 224747 9.15e-4 7.9 75.6
Chebyshev 8 8 24 20 1007676 5.72e-5 38.73 347
Chebyshev 9 9 20 16 381267 0.0012 21.1 145
Chebyshev 9 9 24 20 2147220 7.24e-5 132.6 599

Filter 4 4 (16,16,16) (16,16,14) 11549 19.39 2.13 55.2
Filter 4 4 (20,20,20) (18,18,18) 307909 3.83 23.5 221.1
Filter 4 4 (20,20,20) (20,18,18) 68156 2.36 16 144.5
DCT 1 1 16 8 512 15.62 0.08 0.24
DCT 1 1 16 10 512 3.86 0.11 0.27
DCT 1 1 16 12 512 0.92 0.13 0.29

Box-Muller (5,4) (4,4) (10,10) (8,8) 219001 0.013 4.65 38.2
Box-Muller (5,6) (5,4) (12,12) (10,10) 613567 0.0068 18.3 86.5

Chapter 6: Algorithms for Precision Verification and Optimization

 134

general applications, two elementary functions represented by Taylor series

and three circuits represented by real-valued polynomials are used as

benchmarks to assess the effectiveness of the algorithm.

Table 6.2: Checking implementations whether to satisfy

the error bound in terms of given parameters

 Table 6.2 lists corresponding errors of various functions due to given

parameters and indicates whether the implementation is suitable to the

specification on the condition of the error bound. Column 11 shows the

number of obtained AT terms; Column 12, “Imprecision,” is a summation of

the four types of errors; time and space requirements are showed in Columns

14 and 15 respectively, which indicates the performance level of the checking

algorithm. It is clear that even when the given error bound is small and

parameters have a large bit size, our algorithm is fast and efficient

in terms of time and memory requirements.

6.5.3 Finding Implementations with the Smallest Area
Engineers usually try to find the implementation with the smallest area,

which helps to lower costs. In Figures 6.6 and 6.8 we verify the algorithms

used to process Taylor series and multivariate polynomials.

(A) Performance of Scheme for Optimized Implementations
Using traditional methods, simulation cannot find the optimized

Case Error
Bound

n m q o et ei ec eo AT
Term

Impre-
cision

Satisfied Time
(S)

Mem
(MB)

sin(X) 5e-4 4 12 13 12 2.48e-5 1.22e-4 2.44e-4 1.22e-4 3301 5.13e-4 No 0.78 1.63
sin(X) 5e-4 4 15 14 11 2.48e-5 1.53e-5 1.22e-4 2.44e-4 16383 4.06e-4 Yes 2.42 6.47
sin(X) 2e-4 5 14 15 13 2.76e-7 3.06e-5 7.63e-5 6.1e-5 14912 1.68e-4 Yes 15.5 12.7
sin(X) 2e-4 4 15 13 14 2.48e-5 1.53e-5 2.44e-4 3.05e-5 16383 3.15e-4 No 4.7 6.28
exp(X) 2e-3 6 13 12 12 1.98e-4 1.66e-4 7.32e-4 1.22e-4 4095 1.22e-3 Yes 0.47 1.11
exp(X) 5e-4 6 14 13 14 1.98e-4 8.29e-5 3.66e-4 3.05e-5 6475 6.77e-4 No 0.54 1.77
exp(X) 5e-4 6 16 14 13 1.98e-4 2.07e-5 1.83e-4 6.1e-5 14892 4.63e-4 Yes 0.89 3.68
Bspline 1e-3 -- 12 12 10 — 7.12e-5 3.66e-4 4.88e-4 298 9.26e-4 Yes 0.09 0.14
Bspline 1e-3 -- 13 10 11 — 3.56e-5 1.46e-3 2.44e-4 377 1.74e-3 No 0.13 0.19
Cheby 5e-3 -- 14 — 8 — 6.54e-3 — 1.95e-3 14912 8.49e-3 No 5.84 5.14
Cheby 3e-3 -- 17 — 9 — 8.2e-4 — 9.77e-4 89845 1.97e-3 Yes 26.2 28.3
DCT 4 -- -- 8 -- — — 15.71 — 512 15.71 No 0.08 0.24
DCT 4 -- -- 10 -- — — 3.93 — 512 3.93 Yes 0.11 0.27
DCT 1 -- -- 12 -- — — 0.98 — 512 0.98 Yes 0.13 0.29

Chapter 6: Algorithms for Precision Verification and Optimization

 135

implementations efficiently because all possible parameters should be

investigated for all input values. We provide a much better technique than

traditional error bounding techniques which select the precision parameters

without exhaustive investigation of the interplay between the imprecision

sources.

Two elementary functions (cos(x) and exp(x)) given by Taylor series, and

three circuits (B-spline, Chebyshev and DCT) represented by polynomials with

one variable are used in Figure 6.6 as benchmarks to assess the effectiveness

of our algorithm. In Figure 6.8, two circuits (cubic filter and Box-Muller) are

used to verify the algorithm to find the optimized implementations of

real-valued polynomials with multiple input variables.

Column 2 in Table 6.3 gives different error bounds for various functions;

Columns 3 – 10 list the obtained parameters and corresponding errors for

implementations optimized for the bounds. Columns 11 and 12 show how

many nodes are investigated in the whole procedure and the number of

obtained AT terms; Column 13 gives the total imprecision, which is always

smaller than the given error bound. Time and space requirements are reported

in Columns 14 and 15.

Table 6.3: Optimized implementations with smallest area

and performance for different error bounds

Circuit Error
Bound

n m q o et ei ec eo Node AT
Terms

Impreci-
sion

Time
 [s]

Mem
[MB]

cos(x)/S 5e-4 5 13 14 11 2.32e-6 5.96e-5 1.23e-4 2.44e-4 -- 7098 4.29e-4 1.56 1.86
cos(x)/O 5e-4 5 10 17 17 2.32e-6 4.77e-4 1.52e-5 3.82e-6 4 1012 4.98e-4 1.33 1.52
cos(x)/S 3e-4 5 14 13 15 2.76e-6 3.03e-5 2.46e-4 1.53e-5 -- 12910 2.94e-4 2.56 3.01
cos(x)/O 3e-4 4 12 18 17 1.67e-4 1.19e-4 7.69e-6 3.8e-6 7 2509 2.97e-4 1.58 2.13
exp(x)/S 3e-4 8 14 15 13 2.48e-5 8.42e-5 1.07e-4 6.1e-5 -- 9908 2.77e-4 1.98 2.34
exp(x)/O 3e-4 7 14 18 17 1.98e-4 8.42e-5 1.31e-5 3.7e-6 6 6476 2.95e-4 2.37 2.86
B-spline/S 7e-4 -- 11 11 15 -- 2.45e-4 2.43e-4 1.5e-5 -- 231 5.03e-4 0.09 0.18
B-spline/O 7e-4 -- 10 12 13 -- 4.91e-4 1.22e-4 6.1e-5 1 175 6.74e-4 0.08 0.11
Cheby/O 3e-2 -- 12 -- 7 -- 2.57e-2 -- 3.91e-3 1 3797 2.96e-2 1.42 1.53
Cheby/O 1e-2 -- 14 -- 8 -- 6.54e-3 -- 1.95e-3 1 12911 8.49e-3 3.84 5.14
Cheby/O 3e-3 -- 16 -- 9 -- 1.64e-3 -- 9.77e-4 1 39203 2.62e-3 9 15.2
DCT/O 20 -- -- 8 -- -- -- 15.71 -- 1 512 15.71 0.08 0.13
DCT/O 4 -- -- 10 -- -- 3.92 -- 1 512 3.92 0.11 0.14
DCT/O 1 -- -- 12 -- -- -- 0.98 -- 1 512 0.98 0.13 0.15
Filter/S 50 (14, 14, 14) -- 27.6 -- -- -- 47865 27.6 6.7 8.9
Filter/O 50 (13, 13, 13) -- 49.3 -- -- 21 37636 49.3 11.9 25.4
Filter/S 35 (15, 14, 15) -- 19.5 -- -- -- 51391 19.5 9.2 12.3
Filter/O 35 (13, 14, 14) -- 32.4 -- -- 14 45232 32.4 18.9 25.5
Box-Mul/S 5e-3 (5,6) (12,12) 11 8 1.3e-3 5.8e-4 6.6e-4 1.95e-3 -- 2153903 4.5e-3 2.68 1.58
Box-Mul/O 5e-3 (5,6) (11,11) 11 10 1.3e-3 2.4e-3 6.8e-4 4.9e-4 13 1620432 4.9e-3 5.22 6.87
Box-Mul/S 1e-3 (7,6) (12,13) 12 11 4.2e-5 2.8e-4 3.3e-4 2.5e-4 -- 9725892 9e-4 7.46 4.92
Box-Mul/O 1e-3 (6,6) (12,12) 13 12 3.6e-4 3.2e-4 1.6e-4 1.2e-4 17 5938969 9.6e-4 13.3 17.6

Chapter 6: Algorithms for Precision Verification and Optimization

 136

In comparison to Figure 6.6, we invoke the sequential method introduced in

Figure 6.4 to solve Problem 6.3, which is a case of feasible implementation.

By considering the precision parameters sequentially, it mimics often applied

schemes for setting precision parameters in isolation. The label “/S” in

Column 1 indicates that this sequential assignment algorithm is used in Figure

6.4, while the label “/O” points to the area optimization algorithm here. The

optimization algorithm traverses more nodes to investigate the real-valued

polynomials with multiple variables, such as cubic filter and Box-Muller, than

Taylor series. Please notice that no unique group of parameters satisfies the

error bound; changing one parameter would affect the others, as in rows 2 and

3, 4 and 5. These rows have different parameters, and all fit the given error

bound indicated by Column 2.

It is clear that, even when the given error bound is small and the parameters

are large, our algorithm is fast and efficient in memory requirements. It takes

advantage of appropriate paths to search and traverse the least valid nodes,

which then leads to very good performance. Our method is not only feasible

but a highly efficient way to get the best implementation. In many cases the

optimization algorithm is faster than the sequential algorithm, which indicates

that finding the best implementation is sometimes more efficient than finding a

feasible implementation. We are unique in searching for the optimized

implementation for a given error bound, while other researches mostly

consider area reduction only in terms of wordlengths.

 Table 6.4: Result comparison with the paper [45]

Research in [45] utilizes a multi-stage approach to get 8-bit and 16-bit

output precision. Its benchmarks are real-valued polynomials where input

wordlength is considered – it cannot deal with Taylor series and function

approximation. We consider not only the input but coefficients and the output.

Table 6.4 compares results with those in [45] [44]. Our algorithm achieves

Case Precision Time (s) [25] Area [25]
(Slices)

Time (s) Area
(Slices)

B-Spline 8 0.12 1368 0.07 1132
16 0.19 2188 0.15 2056

DCT 8 0.89 3598 0.08 857
16 0.51 5069 0.17 1481

Degree 4
Polynomial

8 1.9 803 0.96 763
16 2.0 1921 1.55 1208

Chapter 6: Algorithms for Precision Verification and Optimization

 137

higher speed and smaller area. We also notice that benchmarks in [43] and [45]

have lower degrees than ours. We can handle functions with higher degrees,

such as Chebyshev polynomials of degree 9. Furthermore, our algorithms are

able to process functions with multiple variables. Cubic filter and Box-Muller,

which are more difficult for verification and optimization, are used to prove it.

We facilitate a more complex exploration of combining as many factors as

possible when investigating the imprecision and approximation of the

specification.

Table 6.5: Error comparison of AA and our method

Table 6.5 compares the errors obtained by AA and our method for the same

number of Taylor terms and input bit-widths, listed in Columns 2 and 3. The

error obtained by our method is far smaller than that of AA, which is an

indicator of better accuracy compared to past explorations.

(B) Area of Mapped Optimized Hardware
While the optimization algorithm produces precision parameters for a

minimal size AT polynomial, the exact area of the resulting circuit depends on

the technology used in mapping circuits. We perform further experiments with

mapping on FPGAs to evaluate the real area impact of the proposed

optimization algorithm. In this section we use the Xilinx Virtex-4

XC4VLX100-12 FPGA, with the ISE tool (version 8.1), the same device and

tool as in [45], to obtain a fair comparison of the results.

Case n m AA Ours
sin(X) 3 9 1.52e-2 1.1e-3
sin(X) 3 11 1.52e-2 2.7e-4
sin(X) 4 10 1.57e-2 5.46e-4
sin(X) 4 12 1.57e-2 1.37e-4
sin(X)*exp(X) 4 8 6.7e-2 1.5e-2
sin(X)*exp(X) 4 11 6.7e-2 1.9e-3
sin(X)*exp(X) 5 8 8.9e-2 1.48e-2
sin(X)*exp(X) 5 11 8.9e-2 1.87e-3

Chapter 6: Algorithms for Precision Verification and Optimization

 138

Table 6.6: Hardware area of optimized circuits

Table 6.6 compares the area of the FPGA implementations in terms of

different parameters. All implementations can satisfy the given error bound E,

shown in the second column. The rows labeled “/I” use the tight-bound

interval method for input bit-width and coefficient bit-width to improve on the

sequential algorithm, still labeled with “/S”. This new case produces less input

and coefficient bits than the sequential algorithm. The rows labeled “/O”

invoke the optimization algorithm which contains the tight interval method of

this dissertation. The results achieve ~5% area reduction over the optimization

algorithm reported in [86] (as “/O”), which uses the plain interval method for

transcendental functions such as cos (X) and exp (X). The optimization

algorithm, in combination with the tight interval method, can save the area by

up to 30% over the sequential exploration of individual precision parameters.

In the case of real-valued polynomials that do not contain function

approximation, the optimized algorithm does not benefit from either

tight-bound interval method, so the results do not show “/I” for real-valued

polynomials.

Finally, Figure 6.15 describes an achievable FPGA hardware area for

benchmark circuits using different combinations of Taylor terms and input bits.

Such a tabulation facilitates the exploration of trade-offs between precision

and complexity. For comparison, Figure 6.15(b) shows B-spline and

Chebyshev polynomial results from [45]. Results from our optimization

algorithm require less hardware area. When mapped to the same FPGA with

the same synthesis tools, our benchmarks – such as B-Splines or the

Circuit E Taylor Terms Input [bits] Coef. [bits] Area [Slice] Saving
cos(X)/S 3e-4 5 13 14 1037 --
cos(X)/I 3e-4 5 12 15 965 6.9%
cos(X)/O 3e-4 4 12 16 746 28.1%
exp(X)/S 3e-4 8 14 15 1179 --
exp(X)/I 3e-4 8 14 13 1136 3.6%
exp(X)/O 3e-4 7 14 16 933 20.9%
Cheby/S 3e-3 -- 20 -- 1906 —
Cheby/O 3e-3 -- 16 -- 1439 24.5%
DCT/S 4 -- -- 14 1162 —
DCT/O 4 -- -- 10 894 23.1%
Filter/S 35 -- (15,15,15) -- 3036 7.6%
Filter/O 35 -- (13,14,14) -- 2725 17%
Muller/S 1e-3 (7,6) (13, 14) 13 4327 --
Muller/I 1e-3 (7,6) (12, 11) 12 3986 7.9%
Muller/O 1e-3 (6,6) (12, 12) 13 3759 13.1%

Chapter 6: Algorithms for Precision Verification and Optimization

 139

Chebyshev polynomial – reduce the area achieved in [45] by 20% while

obtaining the same precision.

(5,14) (6,20)(5,16) (7,20)(4,12) (4,14)

2000

2500

3000

1500

1000

ar
ea

 (s
lic

e) ln(X)
cos(X)
sin(X)

(6,18) (7,22)

 a)

 b)

 c)

Figure 6.15: Hardware area of Taylor series and real-valued

polynomials in different Taylor terms and input bits

6.5.4 Finding Implementations due to Various

Constraints
In this section, we verify that the algorithms can handle more constraints in

2500

3000

2000

ar
ea

 (s
lic

e)

16 18 20 24 3228

Chebyshev
Polynomial

4000

5000
Degree 4
polynomial in [16]

B-Spline
 in [16]

B-Spline

5000

5500

4500

4000ar
ea

 (s
lic

e)

(12,12) (14,14) (16,16) (18,18) (20,20) (22,22)

(5,5)(5,5)

(6,6)
(6,6)

(6,6)

(7,7)Box-Muller

Chapter 6: Algorithms for Precision Verification and Optimization

 140

terms of area, delay and interface input, as shown in Figures 6.6, 6.12 and

6.14.

 Table 6.7: Optimization of imprecise circuits due to constraints

The constraints are listed in Column 3, and Column 4 shows calculated

optimized parameters; Columns 5 - 8 indicate each error, and the column

labeled “Imprecision” (which is smaller than the given error bound) is a

summation of the four types of errors; time and space requirements are shown

in Columns 11 and 12. The performance indicates the optimization algorithms

are highly efficient, while the algorithms can calculate different

implementations in terms of the three constraints.

We map the obtained logic to Xilinx Virtex5 FPGAs by their ISE tool. Table

6.8 lists the mapped area and delay for each implementation from Table 6.7.

Columns 5 and 6 show the mapped results of delay and area respectively. The

implementations in Rows 3 and 6 have the minimum delay, while those in

Rows 4 and 7 have the smallest area on the condition of the same error bound.

Clearly, the optimized implementations save significant area or delay for

circuits compared to other feasible implementations. Less area and less delay

means less power dissipation and faster calculation speed, and these are

important factors in microchips. This demonstrates the necessity of finding an

implementation with the smallest area or delay in real applications.

Case Error
Bound

Constraint Optimized
Parameters

et ei ec eo Impre-
cision

AT
Term

Time
(s)

Mem
(MB)

cos(x) 5e-4 fixed input (12) (4,12,13,14) 1.67e-4 1.19e-4 1.83e-4 3.05e-5 4.99e-4 2510 0.14 0.1
cos(x) 5e-4 delay (4,11,14,18) 1.67e-4 2.39e-4 9.14e-5 1.91e-6 4.99e-4 1486 0.31 0.43
cos(x) 5e-4 area (5,10,17,17) 2.32e-6 4.77e-4 1.52e-5 3.82e-6 4.98e-4 1012 0.55 0.48
exp(x) 1e-4 fixed input (17) (7,17,16,16) 2.48e-5 1.04e-5 5.34e-5 7.63e-6 9.62e-5 41225 0.56 1.41
exp(x) 1e-4 delay (7,15,17,17) 2.48e-5 4.15e-5 2.67e-5 3.81e-6 9.68e-5 16383 0.41 0.95
exp(x) 1e-4 area (8,14,19,17) 2.76e-6 8.29e-5 7.63e-6 3.81e-6 9.71e-5 12910 1.7 0.91
B-spline 5e-4 fixed input (11) (-,11,11,16) — 2.45e-4 2.43e-4 7.63e-5 4.95e-4 67 0.17 0.3
B-spline 5e-4 area (-,10,16,19) — 4.91e-4 7.63e-6 9.53e-7 4.99e-4 56 0.14 0.13
Cheby 3e-3 fixed input (18) (-,18,-,8) — 4.1e-4 — 1.95e-3 2.36e-3 45685 11.6 19.7
Cheby 3e-3 area (-,16,-,9) — 1.64e-3 — 9.77e-4 2.62e-3 39203 9 15.2
Filter 50 fixed input

(15,14,-)
(15,14,12) — 42.6 — — 42.6 42827 3.25 4.71

Filter 50 area (13,13,13) — 49.3 — — 49.3 37636 11.9 25.4

Chapter 6: Algorithms for Precision Verification and Optimization

 141

Table 6.8: Hardware delay and area for optimized implementations

 6.6 Conclusions
 We proposed a series of algorithms to handle imprecise circuits in this

chapter. A comparison algorithm was described to compute imprecision

between two components, and a verification algorithm was then proposed to

verify whether a given implementation satisfies the error bound. We

determined that a sequential method can find a feasible implementation to fit

the given error bound, while optimization algorithms are designed to obtain

optimized implementations in terms of different constraints, including the

smallest area, minimum delay and interface input bit-width. We saw that these

algorithms can process both Taylor series and multivariate polynomials, and

cover various applications of imprecise circuits. The experiments used several

arithmetic circuits as benchmarks to verify these algorithms and the results

were satisfactory.

Case E Constraint Parameter Delay (ns) Area (Slices)
exp(x) 1e-4 fixed input (7,17,16,16) 11.85 1662
exp(x) 1e-4 delay (7,15,17,17) 9.13 1536
exp(x) 1e-4 area (8,14,19,17) 10.1 1389
B-spl 5e-4 fixed input (-,11,11,16) 6.37 422
B-spl 5e-4 area (-,10,16,19) 5.76 396
Cheby 3e-3 fixed input (-,18,-,8) 13.58 1758
Cheby 3e-3 area (-,16,-,9) 12.23 1439
Filter 50 fixed input (15,14,12) 14.9 2646
Filter 50 area (13,13,13) 13.79 2435

 142

Chapter 7

Range Analysis

Range analysis is an important task for obtaining the best cost

and performance of arithmetic circuits. The traditional methods,

either simulation-based or static, have the disadvantages of low

efficiency and coarse bounds leading to the use of unnecessary bits.

We propose a new method of performing fixed-point range analysis

that combines several techniques to efficiently obtain exact ranges.

Chapter 7: Range Analysis

 143

7.1 Disadvantages of Traditional Methods
In Chapters 5 and 6, we analyzed precision and proposed a series of

algorithms to process the design and verification of imprecise circuits. In this

chapter we address range and allocate integer bit-widths. Allocating bit-widths

in a datapath is a necessary step in the synthesis because of its direct impact on

resources and delay. Manual or sub-optimal methods might over- or

under-allocate bit-widths. Too few bits will cause overflow, while too many

are not cost efficient. Therefore, an automatic way of finding the most

appropriate bit-widths is a significant contribution in the high-level synthesis

of datapaths.

In obtaining the optimal allocation of bit-widths, the data representation that

exposes the variable ranges plays a key role. If we can find the exact ranges

for all intermediate variables we can achieve the smallest bit-widths, which

will reduce both the circuit area and the delay. Chapter 2 explored past

attempts at this. In the range analysis so far, there is a clear separation among

the solutions that deal with the quality of the result versus those where the

computation time has been the focus, without the explicit possibility to exploit

the specifics of a given problem. Dynamic methods and SMT focus on tight

ranges, while IA and AA are designed to shorten the calculation time. Figure

7.1 compares the time requirement for each method.

Exact
Range

Time

Under-allocated
Bit-width

Over-allocated
Bit-width

Simulation Simulation

E

SMT AA IA

TimeSmall SmallLarge

Figure 7.1: Tradeoff between ranges and calculation times

The error E, defined as the largest difference between the true and the

Chapter 7: Range Analysis

 144

resulting range values, reflects the method accuracy. The goal is to obtain the

smallest value of E whilst maintaining the one-sided error, i.e., not

underestimating the bit-width. From the figure, SMT, AA and IA may

overestimate ranges, which may generate additional bits for data

representation.

Example 7.1: Use of IA and AA in range calculation. Consider the

implementation of a function z=ab+c-b with the range of signals as shown in

square brackets in Figure 7.2.

Using IA is easy to get the ranges for each output. For example, dI = ab is

calculated as [min(-1*4, -1*10, 2*4, 2*10) , max(-1*4, -1*10, 2*4, 2*10)]=

[-10, 20]. In AA, an ordinary interval [xmin, xmax] for an input variable can be

converted into an equivalent affine form 0 1Ax x x ε= + with

max min
0 2

x xx +
=

max min
1 2

x xx −
= (7-1)

The intermediate signal or the output is represented as a first degree

polynomial:

0 1 1 2 2 ...A n ny y y y yε ε ε= + + +

where y0, y1, ... yn are floating-point numbers and 1 2, ... nε ε ε are symbolic

variables whose values are only known to lie in the range[-1,+1].

b = [-1,2]

zA= [-34, -4]

a = [4,10]c= -22

dA=[-13,20]

eA=[-35, -2]

Input
Variables

Intermediate
Variables

Output
Variable

dI=[-10,20]

eI =[-32, -2]

zI = [-34, -1]

d =[-10,20]

e=[-32, -2]

z = [-31, -4]

Figure 7.2: Example performing z=ab+c-b by IA and AA

In affine forms, we get:

Chapter 7: Range Analysis

 145

aA=7+3 1ε bA =0.5+1.5 2ε cA = -22

dA = aAbA = 3.5+1.5 1ε +10.5 2ε + 4.5 1 2ε ε = 3.5+1.5 1ε +10.5 2ε + 4.5 3ε

eA = dA + cA = -18.5+1.5 1ε +10.5 2ε + 4.5 3ε

zA = eA - bA = -19+1.5 1ε + 9 2ε + 4.5 3ε

Figure 7.2 describes the exact ranges and the ranges obtained by IA and AA

respectively. We observe that by AA the intermediate variable e must be

represented by 7 signed integer bits since its range is beyond [-32, 31] by 6

signed integer bits, and the primary output is also using 7 bits; however, 6 bits

are enough for the exact ranges to represent e and z since their ranges are [-32,

-2] and [-31, -4]. The reason is as 1 2 3ε ε ε= in aAbA, so the term 1 2ε ε is

dependant of the two variables 1ε and 2ε , but AA uses a new variable 3ε

as a substitution. This new variable is independent of 1ε and 2ε , hence AA

has to extend the range.

 Note that AT can encode intervals, as required in range analysis. It is easy

to represent an entire domain, that is, [0, 2N-1] for unsigned integers and [-2N,

2N-1] for sign extended integers. AT can represent them compactly as
1

0
2

N
k

k
k

x
−

=
∑

and
2

1
0

(1 2) 2
N

k
N k

k
x x

−

−
=

− ∑ . For example, the expression of 8x3+4x2+2x1+x0

represents the entire domain [0, 15]. However, in order to represent the subset

of [0, 13], the expression, needs a larger polynomial, 8x3+4x2+2x1+x0

-14x3x2x1-x3x2x1x0. Obviously, the subset generates a much more complex

expression, and if there are operations such as multiplication and

exponentiation, a number of AT terms will be generated leading to

a need for a branch-and-bound search.

Considering the features of AT, Example 7.1 provides useful information for

range analysis:

 AA can get the tighter range than IA. For instance, the range of the final

output z in the datapath obtained by AA is tighter than that of IA.

 IA is not always worse than AA. Observing the intermediate variables “d”

and “e” in Figure 7.2, IA gets the tighter ranges than AA, because there is

no correlation existing in the two intermediate outputs d = ab and e = ab-c.

Chapter 7: Range Analysis

 146

Correlation is the concept defined in [42], meaning that if the value of a

term in a polynomial changes, the other terms will follow the change. If the

polynomial exhibits no correlation, IA is better than AA; otherwise, AA is

better.

 AA can represent the arbitrary input range compactly while AT might not,

so the input is better to be represented by AA. We note that if the uncertain

variable ε in AA takes an entire range (say normalized to [-1, 1]), AT may

easily represent it.

 The worst case is when the unit quantity of range leads to an additional bit.

For example, if the exact range of e is [-32, -2] and if the lower bound

moves by 1, leading to -33, an additional bit will be generated. Since the

intermediate variables cannot obtain the exact range, the datapath

propagates the coarse ranges backward to lead the inexact result. Of course,

the additional bits are useless and cause unnecessary area and deteriorate

the performance.

In terms of the above analysis, we conclude that the advantages of IA, AA

and AT are complementary and can be used together, as long as they are

employed in suitable conditions. Hence, a hybrid algorithm for the static range

analysis and bit-width optimization is appealing. In this chapter, we introduce

the methods that try to achieve the exact ranges and the short calculation time

concurrently, by tackling every (sub-)problem in a precise, yet efficient way,

depending on its nature. We develop a hybrid engine that can get exact ranges

while reducing the calculation time as much as possible by analyzing the

correlation between the variables, which then lends itself to a selection of a

best approach for a given (sub-)problem. The method combines advantages of

IA, AA and AT with high efficiency. It is capable of obtaining the exact ranges

and allocating the smallest bit-widths to find optimized implementations with

the smallest area.

Chapter 7: Range Analysis

 147

 7.2 Datapath Analysis
In order to develop the hybrid engine, it is useful to analyze the polynomial

representing a datapath. We use Example 7.1 to assist the explanation of the

analysis.

7.2.1 AA Expressions
The datapath of Example 7.1 has three primary inputs, two intermediate

outputs and one primary output. The three primary variables a, b and c are

represented by AA in terms of Eqn. (7-1) as:

aA=7+3 1ε bA=0.5+1.5 2ε cA= -22

The first intermediate variable is d = ab. It is easy to confirm that there is no

correlation in the polynomial since a and b are independent, and the two

variables only occur once in the polynomial, so the range of d can be

calculated by IA, that is, [-10, 20]. Although it is simple to get the range of d,

the AA expression is necessary since in the future the expression may be used.

So we get:

dA=aA bA = (7+3 1ε) (0.5+1.5 2ε) =3.5+ 1.5 1ε +10.5 2ε + 4.5 1 2ε ε

Then the next intermediate variable in the datapath is e = ab+c. By

scanning the polynomial, there is also no correlation, so the range of e is

calculated by IA, that is, [-32, -2]. The AA expression of e is:

eA = dA – cA = -18.5 +1.5 1ε +10.5 2ε + 4.5 1 2ε ε
 The final step is to determine the range of the primary output z =ab + c - b.

The polynomial has correlation because the variable b occurs two times in the

polynomial, so the two terms of “ab” and “-b” have correlation. The case is

much more complex than the cases without correlation. The AA expression of

z is:

 zA = -19 +1.5 1ε + 9 2ε + 4.5 1 2ε ε

Chapter 7: Range Analysis

 148

7.2.2 Determining Quantization Bits of Uncertain

Variables
 As 1ε and 2ε belong to [-1, 1], AT can represent the scope approximately

by m bits as a signed fractional number, i.e.,
1

0
1

(1 2) 2
m

i
i

i

x x
−

−

=

− ∑ in Figure 7.3.

sign 0.5 0.25 0.125

x0 x1 x2 x3…

 Figure 7.3: Data format of the signed factional number

 If we can determine the value of m, the output is represented compactly and

the approximation can be evaluated. So the next step is to choose the

appropriate bit-widths for 1ε and 2ε .

 From the Example 7.1, the worst case occurs if the approximation error is

beyond 1, when it is possible to generate an additional bit. The uncertainty

must be limited to 1 unit to avoid this case, and the inequality becomes:

1 2 1 2| 1.5 | | 9 | | 4.5 | 1err err errε ε ε ε+ + <
r r r r

1ε
r

 and 2ε
r

 are quantized uncertain variables to replace 1ε and 2ε . So

there is the inequality:

1 2| 4.5 | 1errε ε <
r r

 ⇒ 4.5[1- (1-2-m+1)2] <1

The reason to choose the term “ 1 24.5ε ε
r r ” first is because the term has

second-order uncertainty while terms such as 11 .5ε
r and 29ε

r have

first-order uncertainties. The order of uncertainty for a monomial is defined as

the degree summation of uncertain variables in the monomial. The preferential

choice of the term with highest order uncertainty is helpful to decrease the

calculation complexity. Obviously when all bits in the data format are 1, the

fractional number has the largest approximation error 2-m+1, or else 2-m for

other values. For instance, in the Figure 7.3 to approximate “1”, while x1, x2

and x3 are all 1, the error is 2-3 = 0.125, and in other values the error is 2-4 =

0.0625. While the maximum error is 2-m+1, the value of 1ε
r

is 1-2-m+1 and 1 2ε ε
r r

equals to (1-2-m+1)2. Therefore, the maximum error of the term 1 24.5ε εr r is

Chapter 7: Range Analysis

 149

represented as 4.5[1- (1-2-m+1)2]. Here we assume that 1ε
r

 and 2ε
r

 have

uniform bit-widths m.

By solving the inequality, the value of m is 5, that means, 1ε
r

and 2ε
r

both

have 5 bits at least to satisfy that the approximation error is restricted to 1 unit.

Substituting 1ε
r

= 2ε
r

= 0.9375 as five bits, the real value is 4.5 * 0.93752 =

3.955.

 We conclude that the real maximum error is 4.5 – 3.955 = 0.545 so the left

error space is 1-0.545 = 0.455. Then we explore the term 1.5 1ε
r

. The

inequality is 1.5 * 2-m+1 < 0.455. So 1ε
r

 must have three bits at least.

Considering 5 bits in the term 1 24.5ε ε
r r and 3 bits in the term 11 .5ε

r , 1ε
r

should be 5 bits to satisfy the two terms at the same time. So we get 11 .5ε
r =

1.5 * 0.9375 =1.40625.

 The real maximum error for the term 11 .5ε
r is 1.5-1.40625 = 0.09375 so

the left error space is 1-0.545-0.09375=0.36125. The final term 29ε
r must

satisfy the inequality 9 * 2-m+1 < 0.36125.

The bit-width of 1ε
r is 6 in the inequality and in combination with the

bit-width in the term 1 24.5ε εr r , we obtain the final bit-width of 2ε
r

is 6. At last,

we determine the two uncertain variables have 5 and 6 bits. The expression of

z is changed as:

z = -19 +1.5
4

0
1

(1 2) 2 i
i

i
x x −

=
− ∑ + 9

5

0
1

(1 2) 2 i
i

i
y y −

=
− ∑ + 4.5

4 5

0 0
1 1

[(1 2) 2][(1 2) 2]i i
i i

i i
x x y y− −

= =
− −∑ ∑

By invoking the conversion algorithm and the branch searching algorithm,

the lower bound and the upper bound are -4.7881 and -30.3814. Since the

bounds are approximate to the exact bounds, and the absolute values of

uncertain variables are smaller, the calculated bounds should be covered by the

exact bounds, so we get the exact bounds of the primary output are [-31, -4].

If the term 1 24.5ε εr r is not chosen first, 1ε
r and 2ε

r both need 8 signed bits

for representations. Although the obtained range of z is same, the calculation

time increases much more since more quantization bits burden the conversion

algorithm and the branch searching algorithm. Hence, the first choice of the

term with higher uncertain degree is very significant.

Chapter 7: Range Analysis

 150

7.2.3 Allocating Bit-widths for All Outputs
It is easy to allocate the bit-widths After all intermediate ranges have been

obtained. The integer bit-width (IB) is calculated as:

IB = [log2 (max(|xlow|, |xupp|))] + α (7-2)

where

 mode(log2|xupp|, 1) ≠ 0

 mode(log2|xupp|, 1) ≠ 0

 In Eqn. (7-2), xlow and xupp represent the lower and the upper bound of the

obtained range, and the square bracket is the ceiling function. The intermediate

outputs and the primary output all have signed 6 bits since their ranges are

restricted in the scope [-32, 31]. Compared to AA, e and z save one bit;

compared to IA, the final output range is much tighter.

Our method combines techniques of IA, AA and AT. If the polynomial has

no correlation, it adopts IA to calculate the range; if not, using AA gets

compact expressions while AT is applied to handle correlation. The step of

quantizing the uncertain variables in AA expressions keeps trace to the

correlation, hence the accuracy is guaranteed. Therefore, the method avoids

their disadvantages and integrates each advantage, and hence it can process the

worst case to obtain exact ranges.

7.3 Algorithm for Calculating Ranges
 Figure 7.4 describes the algorithm to allocate bit-widths in a datapath. It

first retrieves the polynomial description, and gets the AA expression for

future utilization. If the polynomial has no correlation, IA is used to get the

exact range so the bit-width is determined; if not, the uncertain variables are

quantized in AA expression, the conversion algorithm is invoked to convert

the expression to an AT, and the branch-and-bound searching algorithm finds

the upper and the lower bounds. Finally, the bit-width of the output is

allocated.

1
2

a ⎧
= ⎨
⎩

Chapter 7: Range Analysis

 151

start Retrieve polynomial
description

for an output

Confirm
correlation?

Get AA expression

NoRange
obtained

IA

Quantize
uncertain variables in

AA expression

Invoke conversion
algorithm

Invoke branch
searching algorithm

Range
obtained

Allocate
bit-width

Allocate
bit-width

Done

Yes

Finish
datapath?

No

Yes

Figure 7.4: Algorithm of allocating bit-widths

The two key steps in Figure 7.4 are how to confirm correlation and quantize

uncertain variables. Figure 7.5 describes how to check whether a polynomial

has some correlation. The symbol n represents the number of input variables in

the polynomial and the symbol t[i] records occurred times of the variable vi. If

all variables occur only once, the function clearly exhibits no correlation.

Figure 7.5: Algorithm for confirming correlation

Confirm_correlation (f)

{ for (p=0; p<terms_num; p++) // loop all terms

{ for (i=0; i<n; i++)

if (variable vi is present)

 t[i]++; // count appearances for the variable

 }

 for (i=0; i<n; i++)

{ if (t[i] >1) // the polynomial f has correlation

 return corr_flag = 1;

}

Chapter 7: Range Analysis

 152

 In Example 7.1, the algorithm scans the intermediate variable d and finds

that the variables a and b only occur one time in the polynomial, so no

correlation exists; similarly, the variable b occurs two times in the expression

of z, so the polynomial has correlation and IA cannot obtain its range directly.

AA and AT are used to process the case. The important step is determining the

quantization bits for each uncertain variable. Figure 7.6 describes the

subroutine.

The subroutine sorts the terms in the AA expression. The terms with higher

uncertain degrees are explored with higher priority. Considering the worst case,

the initial error space is set to 1 unit, so the initial bit-widths of uncertain

variables can be procured. The error space is reset and the sub-routine

continues to handle the next term. After all terms are processed, the final

bit-widths of corresponding uncertain variables are the maximum obtained

bit-widths.

Figure 7.6: Algorithm of determining quantization bit-widths for uncertain variables

Determine_uncertain (AA_Expre)

{ for (p=0; p<terms_num; p++)

// loop all terms in AA_Expre

 { if (current_term.degree < next_term.degree)

 Move_forward (next_term);

 } // sort terms with higher uncertain degrees;

 error_space = 1;

 for (p=0; p<terms_num; p++)

// loop all sorted terms

 {)])./_1(1(log1[deg/1
2

ree
p coefftermspaceerrorm −−−= ;

 error_space = error_space - term.coeff * [1- ree
m

i

i deg
1

1

)2(∑
−

=

−];

 store mp in corresponding uncertain variable ε ;

}

for (i=0; i<uncertain_var_num; i++)

qi = max (bit-widths for the uncertain variable iε);

 return q; }

Chapter 7: Range Analysis

 153

The initial error space limits the deviation of the obtained ranges - the unit

value can cause the worst case to make the obtained ranges not equal to the

exact ranges. The efficient AT conversion and branch-and-bound searching are

instrumental to the high efficiency in performing the range analysis.

 7.4 Experimental Results
We implement the algorithm by C++. The benchmarks are described by

Verilog HDL augmented with the datapath representation and range

information. We try several benchmarks to assess its performance.

Experiments are done on a 512MB, 2.4GHz Intel Celeron machine under

Linux.

7.4.1 Filter Polynomial
 Image processing applications often use polynomial filter with presentation

given by:

 F = a1x4 + a2x3 + a3x2

 Here we consider an example as (X∈[-20, 10]):

F = 4X4 + 16X3 + 20X2

 The implementation has four intermediate variables.

q1 = X2 q2 = q1X q3 = q2X

q4 = 4q2 + 16q3 z = q4 + 20q1

Table 7.1: Comparison with AA for filter polynomial

Output Our Method AA
Range Bit Range Bit

q1 [0, 400] 9 [-350, 400] 10
q2 [-8000, 1000] 14 [-8000, 7750] 14
q3 [0, 160000] 18 [-158750,160000] 19
q4 [-108,512000] 20 [-511000,534000] 21
z [0, 520000] 19 [-511000,542000] 21

Chapter 7: Range Analysis

 154

7.4.2 Dickson Polynomial
Dickson polynomials have important applications in coding and

communication areas. The definition for n>0 is:

D0(x, a) = 2 Dn(x, a) =

The polynomial contains two variables. Here we explore the implementation

of the 4th order polynomial over real numbers (assume x∈[-50, 50], a∈[-20,

40]):

 D4(x, a) = x4 -4x2a + 2a2

 The implementation has 5 intermediate variables from q1 to q5:

 q1 = x2 q2 = q1
2 q3 = 4q1a

 q4 = 2a2 q5 = q2 – q3 z = q5 + q4

Table 7.2: Comparison of our method, AA, improved simulation

and AT for Dickson polynomial

7.4.3 Multivariate Datapaths
 Here, a datapath is always expressed by a polynomial with multiple

variables. The polynomial with 3 integer variables is:

F = 30A2– 60AB - 40BC

 Here A∈ [-20, 30], B∈ [10, 40] and C∈ [-10, 30]. The case is broken

intermediately into:

 q1 = 30A2 q2 = 60AB q3 = 40BC

Output Our Method AA Time (s)
Range Bit Range Bit Ours Sim AT

q1 [0,2500] 12 [-2500, 2500] 13 0.03 0.03 0.08
q2 [0，6250000] 23 [-6250000,

6250000]
24 0.04 0.14 1.56

q3 [-200000,400000] 20 [-400000,
400000]

20 0.06 0.2 0.25

q4 [0, 3200] 12 [-2800, 3200] 13 0.03 0.03 0.27
q5 [-6399,6450000] 24 [-6450000,

6450000]
24 1.15 > 60 1.87

z [-3199,6453200] 24 [-6453200, 6453200] 24 1.4 > 60 2.35

pnp
n

p

xa
p

pn
pn

p 2
]2/[

0

)(−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−∑

Chapter 7: Range Analysis

 155

 q4 = q1 – q2 z = q4 - q3

Table 7.3: Comparison with AA for a multivariate datapath

7.4.4 Energy Spectral Density
 The benchmark of energy spectral density [55] calculates:

)()(
2
1)(* wFwFw
π

φ =

where F(w) is the FFT of discrete signals. The experiments use an 8-point with

each of the 8 inputs a complex number in [−128,128] + [−128,128]i.

Table 7.4: Our method vs. AA vs. SMT for energy spectral density

 We use the AA method introduced in [42] for comparison. In Table 7.1 to

7.3, the intermediate variables’ and the primary outputs’ ranges are exact and

far tighter than those of AA. Table 7.2 compares execution time with the

methods of improved simulation and pure AT. Since the pure AT method

generates more terms and spends time in conversion and the search, while the

improved simulation has to calculate many points and compare them to found

bounds, their execution time is much longer than our method. Table 7.4

compares our results with those obtained by SMT [55]. Using a benchmark

from [55], our method can get the exact ranges, while SMT obtains more

Output
Our Method AA
Range Bit Range Bit

q1 [0, 27000] 15 [-25650, 27000] 16
q2 [-48000, 72000] 18 [-57000,72000] 18
q3 [-16000, 48000] 17 [-28000, 48000] 17
q4 [-45000, 60000] 17 [-82500, 69000] 18
z [-93000, 76000] 18 [-131500, 97000] 19

Output

 Our Method AA SMT
Range Bit Range Bit Range Bit

0 [0, 2097152] 22 [-1835008, 2097152] 22 [-1, 2097153] 22
1 [0, 1984106] 21 [-2373666, 2635814] 23 [-1, 1984106] 21
2 [0, 1790022] 21 [-2269321, 2531463] 23 [-1, 1790022] 21
3 [0, 2052757] 21 [-2373666, 2635814] 23 [-1, 2052757] 21
4 [0, 2097152] 22 [-1835008, 2097152] 22 [-1, 2097153] 22
5 [0, 1957096] 21 [-2373666, 2635814] 23 [-1, 1957096] 21
6 [0, 1790023] 21 [-2269321, 2531463] 23 [-1, 1790023] 21
7 [0, 2029555] 21 [-2373666, 2635814] 23 [-1, 2029555] 21

Chapter 7: Range Analysis

 156

precise ranges than AA. Regarding the SMT results, since there are negative

quantities, the bit-widths could require one additional bit, but as authors

estimate that the function will only have positive values, the additional bit is

omitted in their reporting. Reported runtime in [55] is on the order of 100s of

seconds, while we spend 8.9 seconds for the same benchmark.

7.4.5 Area of Optimized Implementations

As the exact area of the resulting circuit depends on the technology used in

mapping circuits, we perform further experiments with mapping to FPGAs.

We map the circuits to Xilinx Virtex5 FPGAs using ISE tool, version 8.1, to

evaluate the real area impact of the proposed algorithm in Table 7.5. Again, the

implementations obtained by AA are used as comparison.

Table 7.5: Area comparison of our method and AA

The input bit-widths of the three benchmarks increase, reflecting in the area

increase. Column 4 indicates the saving ratio. There are four variables which

save bits in the filter benchmark, while another two benchmarks only have

three variables, so the filter has larger area saving ratio. With the increase of

the input ranges, the saving ratio decreases because the auxiliary area caused

by additional bits reduces. Our method can achieve the optimized

implementations with area smaller for around 6% - 12%. The delay of

implementations is compared in Column 5 - 7. Due to the he smaller

bit-widths, we are able to decrease delay around 6%- 10%. Hence, the hybrid

method is helpful to both area and delay. The calculation time of AA is close to

Circuit Area (Slices) Delay (ns)
Ours AA Saving Ours AA Saving

Filter 686 772 11.1% 23.5 26 9.62%
Filter 725 805 9.96% 24.6 26.9 8.55%
Filter 756 820 7.77% 25.4 27.5 7.64%
Dickson 809 897 9.8% 31.3 33.5 6.57%
Dickson 845 926 8.7% 32 33.9 5.6%
Dickson 877 948 7.5% 32.4 34.1 4.99%
MultiVar 532 574 7.3% 27.4 29.9 8.36%
MultiVar 557 596 6.5% 27.9 30.2 7.62%
MultiVar 588 623 5.6% 28.7 30.7 6.51%

Chapter 7: Range Analysis

 157

1 second while our method requires 3 – 6 seconds. The increase in

computation time pays off, as the obtained ranges are far tighter.

 7.5 Conclusions
Range analysis is an important step in RTL synthesis since it directly

impacts cost and performance. Previous methods, including the improved

simulation-based techniques, are of low efficiency, while the AA-based

methods reach coarse bounds. The coarse ranges may generate unnecessarily

additional bits, leading to more costly circuits. In this paper, we propose a new

method to calculate ranges statically. It combines techniques of IA, AA and AT

to find ranges efficiently, while at the same time the obtained ranges can be

exact, hence avoiding the generation of additional bits. The key to our hybrid

method is the ability to handle the correlation. Each intermediate output can

obtain the smallest satisfying bit-width based on the ranges; therefore, the

optimal implementation with the smallest hardware area can be achieved. The

experiments indicate that the method is much closer in computation time to the

approximate methods such as AA-based rather than more exhaustive

SMT-based, while at the same time optimizing the bit-widths, which

necessarily leads to the efficient area and delay characteristics obtained by

synthesis.

Chapter 8: Combining Range and Precision

 158

Chapter 8
Combining Range and Precision

 We discuss fixed-point circuits together with range and precision

in this chapter. The important aspects lie in how to allocate

appropriate integer and fractional bit-widths, and estimate the

error. It is necessary to conduct the mathematic model of the circuit

in order to get the optimized implementation. We analyze precision,

and propose an algorithm to calculate range and optimize the

allocation of fractional bit-width. Furthermore, circuits with

feedbacks and floating-point representation are investigated.

Chapter 8: Combining Range and Precision

 159

8.1 Fixed-Point Representation
We have discussed precision and range corresponding to fractional bit-width

(FB) and integer bit-width (IB) respectively in above chapters. A fixed-point

representation often has IB and FB concurrently. Figure 8.1 describes the two

problems in the fixed-point representation.

Fixed-point
Specification

(IB, FB)

Range Precision

Figure 8.1: Exploration of the fixed-point representation

Example 8.1: A datapath with three primary inputs a, b and c is shown in

Figure 8.2. The numerical bounds are given in the square brackets.

b= [-2.8, 5.6]a= [-3.6, 4.2]

Intermeidate
Variable

Output
Variable

d

Input
Variables

c= [-2.5, 2.7]

e

Figure 8.2: The datapath of Example 8.1

 The datapath has one intermediate output d and one primary output e

where d=ab and e=d+c. All variables need to be represented by the

fixed-point format both with IB and FB.

Important problems in the example are stated as follows:

 How to get the value bounds for all variables?

 How to allocate the bit-widths for all variables included the primary

inputs?

Chapter 8: Combining Range and Precision

 160

 How to estimate the error for the primary output?

 How to get the optimized implementation?

The above four questions are most significant to all fixed-point circuits.

Since the primary inputs have FB, we can conclude that the primary output

also has FB. In real applications, engineers generally give the error bound to

make the maximum difference between the exact value and the true value of

the primary output restricted in the bound. The interplay of the four problems

results in hardness of analysis. Determination of IBs relies on the values

bounds of all variables, while determination of FBs and optimization rely on

the error bound.

 Past explorations only focus one aspect. For instance, authors in [55]

investigate how to get ranges and then allocate IB, but they do not explore the

precision so cannot allocate FB. The paper [42] analyzes both range and

precision, and allocates IB and FB. But it has no capability to get the

optimized implementation with the smallest hardware area. Exploring the four

problems concurrently is difficult. In this chapter, we analyze range and

precision, and propose an algorithm to allocate IB and FB, and then obtain the

optimized implementation.

 8.2 Analysis of Range and Precision
 Now we use the Example 8.1 to help analysis of range and precision. The

Chapter 7 has already given the algorithm that combines IA, AA and AT in

Figure 7.3 to get the exact ranges. The algorithm represents primary inputs as

AA expressions, and then checks whether the polynomial representing the

datapath has correlation between monomials. If not, IA is invoked to get

ranges; otherwise, it quantizes the uncertain variables, and the algorithms of

AT conversion and branch searching are invoked to find ranges. The hybrid

method has high efficiency and can get exact ranges to allocate smallest IB for

all variables. Using the hybrid method in the Chapter 7, the minimum and the

maximum integer parts of the intermediate variable d are -21 and 24

respectively, while for the primary output e they are -23 and 26. Therefore, the

Chapter 8: Combining Range and Precision

 161

IBs for the two output are both 6 (included the sign bit).

 So the main problem changes to how to analyze precision. It is easy to

know the biggest error is 2-FB-1 if the fractional part has the length of FB.

Example 8.2: Given the range of [0, 14.95], IB is 4 and let FB be 3. We can

evaluate the precision is 2-4 = 0.0625. The maximum value “14.95” can be

coded to “15” and the error is 0.05. There is a special case. If the range is [0,

15.95], since the IB is only 4, the maximum value “15.95” is coded as 15.875,

the error is 0.075 and beyond 2-4. In this case, the reason is that the IB

restricts the coding to represent 16, so the largest error is not 2-FB-1 but 2-FB.

 Generally, we do not consider the special case that the integer part equals

2N-1. If it occurs, as long as the IB increases one bit, the special case is

cancelled. So we explore the biggest error 2-FB-1. Let a% represent the exact

value and a represent the true value. We get:

 a%= a + 12 aFB− −
1ε b%= b + 12 bFB− −

2ε (8-1)

where FBa is the FB of a. Hence, the error at x due to finite precision effects is

given by

 Ea = 12 aFB− −
1ε

For multiplication: d% = a% b% = ab + a Eb + b Ea + Ea Eb + 12 dFB− −
3ε

 ⇒ Ed = a Eb + b Ea + Ea Eb + 12 dFB− −
3ε

The primary output:

 e%= d% + c% = ab + a Eb + b Ea + Ea Eb + 12 dFB− −
3ε + c + Ec + 12 eFB− −

5ε

⇒ Ee = a Eb + b Ea + Ea Eb + 12 dFB− −
3ε + Ec + 12 eFB− −

5ε

Note that Ee would be at its maximum when the signals a and b are at their

absolute maximum, that is, a = 4.2 and b = 5.6. We get the following

maximum error at the output e% :

max(Ee)=4.2* 12 bFB− − +5.6* 12 aFB− − + 22 a bFB FB− − − + 12 dFB− − + 12 cFB− − + 12 eFB− − (8-2)
We first assume all variables with uniform FBs, so get:

 max(Ee) = 6.4 * 2-FB + 0.25 * 4-FB < 0.01

Solving the inequality, the FB is 10 which means if all variables have 10 bits

for fractional representations, the error of the primary output can be limited in

Chapter 8: Combining Range and Precision

 162

the error bound. However, the uniform FBs do not lead to the optimized

implementation. The Chapter 6 introduces how to use the AT size as the cost

function to find the optimized implementation with the smallest area.

Therefore, we need to represent the datapath by AT.

 The sign bit is assumed to be the most significant bit (MSB) of the input

vector. Figure 8.3 describes the fixed-point representation of a.

 Figure 8.3: Fixed-point representation of variable a

 Since the range of a is [-3.6, 4.2], the IB is 3 and one bit sign, so the AT

representation is:

 AT(a) =
12

3
0 0

(1 2) 2 2
a

a

a a

FB
k FBi

FB FB i k
i k

a a a
−

−
+ +

= =

− +∑ ∑ (8-3)

The first part in Eqn. (8-3) represents the sign and integer number, while the

second part represents the fractional number.

 In Chapter 6, we introduce using AT size to indicate the area because AT

size is in a good correspondence to the overall circuit area. The datapath is

represented by AT as:

 AT(d) = AT(a) * AT(b)

=
12

3
0 0

((1 2) 2 2)
a

a

a a

FB
k FBi

FB FB i k
i k

a a a
−

−
+ +

= =

− +∑ ∑ *
12

3
0 0

((1 2) 2 2)
b

b

b b

FB
k FBi

FB FB i k
i k

b b b
−

−
+ +

= =

− +∑ ∑

 AT(e) = AT(d) + AT(c)

 =
14

5
0 0

((1 2) 2 2)
d

d

d d

FB
k FBi

FB FB i k
i k

d d d
−

−
+ +

= =

− +∑ ∑ +
11

2
0 0

((1 2) 2 2)
c

c

c c

FB
k FBi

FB FB i k
i k

c c c
−

−
+ +

= =

− +∑ ∑

The AT size of the datapath is calculated by:

 |AT(f)| = |AT(d)| + |AT(e)| (8-4)

It requires the smallest |AT(f)| to obtain the optimized implementation with

the smallest area. The uniform FBs for all variables are FBa = FBb = FBc =

FBd =FBe =10 and the maximum error of the primary output is represented as

Eqn. (8-2):

max(Ee) = 2.1* 2 bFB− +2.8* 2 aFB− +0.25* 2 a bFB FB− − +0.5* 2 dFB−

+ 0.5* 2 cFB− +0.5* 2 eFB−

IB FBsign

aFBa+3 aFBa+2 aFBa+1 aFBa aFBa-1 a0

Chapter 8: Combining Range and Precision

 163

 A searching algorithm is proposed in Figure 6.6. Observing the Eqn. (8-4),

FBa and FBb have more impact on the AT size than FBc and FBd. Hence,

starting from the uniform FBs, that is, FBa =FBb =FBc =FBd =FBe =10, the

algorithm first decreases FBa and computs the AT size, until the calculated

error of e is beyond the error bound. Then the algorithm backtracks to search

FBb. After all possible implementations are found, the algorithm compares

their AT sizes, and the implementation with the smallest AT size is the best one.

In Example 8.1, the satisfying sequence is (each value in a bracket represents a

variable FB):

(10, 10, 10, 10, 10)→ (9, 10, 10, 10, 10)→ (8, 11, 11, 12, 13) → (8, 11, 11,

13, 12)→ (8, 11, 12, 11, 13)→ (8, 11, 12, 13, 11)→ (9, 9, 11, 12, 13)→ (9, 9,

11, 13, 12)→ (9, 9, 12, 11, 13)→ (9, 9, 12, 13, 11)

 The above implementations all satisfy the error bound. By calculating their

AT sizes, the implementation of (9, 9, 11, 12, 13) has the smallest AT size, so it

is the optimized implementation. Finally, the bit-width allocation of the

optimized implementation is:

a (4, 9) b (4, 9) c (3, 11) d (6, 12) e (6, 13)

The first value is IB including the sign bit and the second is FB in the bracket.

8.3 Algorithm for Finding

Optimized Implementations
 We propose an algorithm to allocate bit-widths for all variables in the

datapath to satisfy the given error bound and get the optimized implementation

with the smallest area in terms of the above analysis in this section.

Problem 8.1: Finding the optimized implementation for a fixed-point datapath

Inputs: imp, E

Constraints: imprecision < E

Outputs: bit-widths of all variables

Goal: minimum |AT(f)|

Chapter 8: Combining Range and Precision

 164

 The inputs of the algorithm comprise the datapath structure and the error

bound. The constraint restricts that the error of the primary output cannot

break through the error bound. The AT size of the datapath is used as an

indicator to the area, and the optimized implementation demands the smallest

size.

 Figure 8.4: Algorithm of finding the optimized fixed-point implementation

Figure 8.4 describes the algorithm. It first invokes the algorithm introduced

in Chapter 7 to get exact ranges of all variables, and allocates IBs (Step 1).

Then the algorithm constructs the expression of the primary output and gets

the uniform FBs (Step 2 and 3). After that, the AT size expression is obtained

(Step 4). By analyzing the expression, the algorithm determines the variable

searching order (Step 5). A loop begins in Step 6 in terms of the searching

order, and decreases the variable FB with highest priority and calculates the

error until the error is beyond the error bound (Step 6 - 9). Then, FBs of other

variables will be updated (Step 10). The algorithm calculates the AT size, and

stores it for the obtained satisfying FBs (Step 11 and 12); while the loop is

finished, all AT sizes are compared to find the smallest one, so the optimized

FBs are found.

Example 8.3: Starting from the first group with the uniform FBs (10, 10, 10,

Design_Opt_Imp (imp, E)
1. { IBs = Calculate_Range (imp);
2. Construct expression e of the primary output;
3. FB = Uniform_FB (e);
4. Construct expression of AT size |AT(f)|;
5. Determine the searching order V;
6. for (i=0; i< var_num; i++)
7. { e = Calculate_error (--FBvi);
8. if (e < E) continue;
9. else ++ FBvi ;
10. Re-compute FBs of other variables;
11. |AT(f)| = Calculate_AT_size (AT(f), FBs);
12. Store (FBs, |AT(f)|);

}
13. Compare (|AT(f)|);
14. return FBopt;

}

Chapter 8: Combining Range and Precision

 165

10, 10), Figure 8.5 describes how to find the satisfying group (8, 11, 11, 12,

13).

The FBa is first decreased to get the group (9, 10, 10, 10, 10) and the

calculation of the error is within the error bound, so the new group is

satisfying. Then the algorithm continues to cut down FBa and finds that the

group (8, 10, 10, 10, 10) cannot satisfy the error bound. However, the error

caused by FBa is within the error bound, so the algorithm increases FBb to get

the group (8, 11, 11, 10, 10). The new group does not satisfy the error bound,

but the error addition caused by FBa and FBb is smaller than the bound, then

FBc is increased to form the group (8, 11, 11, 11, 10). The procedure is

continued until the group (8, 11, 11, 12, 13) is reached. Since the error is

limited in the bound, the group satisfies the error bound. The searching

process is repeated until all satisfying groups are found. Figure 8.5 lists all the

traversed groups and the satisfying groups are marked by gray color.

10,10,10,10,10

9,10,10,10,10

8,10,10,10,10

8,11,11,10,10

8,11,11,11,10

8,11,11,12,10 8,11,11,12,11

8,11,11,12,12

8,11,11,12,138,11,10,10,10

Figure 8.5: Finding next satisfying FBs

If the coefficients also have fractional numbers, we can use the same

multiplication analysis like d% to process precision and search them together

with other variables, so in the datapath all fixed-point variables can be

allocated appropriate bit-widths to get the optimized implementation.

Chapter 8: Combining Range and Precision

 166

 8.4 Discussion of Cost Functions
 In above analysis, AT size is a cost function to estimate hardware cost and

choose the optimized implementation. There are other cost functions besides

AT size. The usual one employs factorization. Given a polynomial to describe

the specification, factorization allows us to find the optimized implementation

with the smallest area. For example, the polynomial of c = ab + b2 has two

word-level variables a and b. The direct implementation needs two multipliers

and one adder. However, if using factorization method to change the form as c

= b(a+b), the implementation only needs one multiplier and one adder. In this

example, factorization plays as a cost function to shrink the number of

multipliers.

 However, factorization has an obvious disadvantage. For example, given

two implementations of Taylor series with the first implementation having 5

finite terms and 12-bit inputs, and the other with 6 terms and 10-bit inputs.

They both have Horner forms and structures as Figure 6.11. Although the

second implementation has one more stage, the input bit-width is smaller, that

is, the multiplier size is 10*10 and smaller than the first one with multiplier

size of 12*12.

The case generates a problem: which factor has more impact on area, stage

or multiplier size? The cost function of factorization (counting the number of

multipliers) cannot answer the question because it is too coarse to estimate the

cost. That is the reason why we use AT size as a cost function in Taylor series.

 More commonly, given a specification represented by a polynomial, it can

be minimized by many ways. Factorization is one possibility. However, as

there is not a unique answer how to conduct factorization, we must be very

careful here, as different approaches may have different multiplier sizes. For

instance, using factorization needs a 12*12 multiplier, and another

implementation needs two multipliers as 6*6 and 9*9, so the question is how

to determine which implementation is better? Of course AT size can solve the

problem. So there is a prerequisite to use factorization as a cost function, that

is, all implementations must keep same size of multipliers.

 It is possible to combine factorization and AT size. Consider an example: d

= ab +b2+ac with different bit-widths of a, b and c. There are three

Chapter 8: Combining Range and Precision

 167

implementations:

 Direct implementation with 3 multipliers and 2 adders

 Factorization by b: d= b (a+b) +ac with 2 multipliers and 2 adders

 Factorization by a: d= a(b+c)+b2 with 2 multipliers and 2 adders

The first one may need more area so factorization is possibly leading to the

optimized implementation. Consider the latter two implementations. They

have same numbers of multipliers and adders. Comparing AT sizes in the two

implementations, we can choose the one with smaller AT size. That means,

factorization and AT size can play together. In this case factorization is a

coarse cost function and then using AT size refines it.

 8.5 Sequential Fixed-Point Circuits
 The above analysis and past explorations of fixed-point representations are

based on combinational circuits. Given a datapath with FFs like Figure 8.6, the

analysis of range and precision depends on the lengths of the FFs.

b= [-2.8, 5.6]a= [-3.6, 4.2]

Intermeidate
Variable

Output
Varialbe

d

Input
Variables

c= [-2.5, 2.7]

e

FFs

FFs

g

h

Figure 8.6: A sequential datapath with FFs

 If the lengths of the FFs equal to the lengths of their inputs, that is, (dIB= eIB,

Chapter 8: Combining Range and Precision

 168

dFB= eFB) and (gIB= hIB, gFB= hFB), the analysis of range and precision is the

same as the combinational circuit without FFs. Otherwise, the sequential

circuit may cause overflow, and the analysis expression is different with the

combinational circuit. For instance, d and e are two different variables so they

have their own precision expressions. Therefore, the analysis of sequential

fixed-point designs has no special essence.

8.6 Extension to Feedback Datapaths
 Past explorations cannot process the datapaths with feedbacks. The usual

datapaths with feedbacks are IIR (infinite impulse response) filters which

apply to DSP. In this section, we propose algorithms to find ranges of circuits

with feedbacks.

8.6.1 Delay Units

 A feedback circuit always includes delay units that consist of registers, so

analyzing the characteristic of delay units is the first step. Figure 8.7 describes

the relationship of the input range and the output range.

z-1x [xmin, xmax] y [ymin, ymax]

Figure 8.7: A delay unit with ranges

Since the delay unit only has the shift operation and cannot change the input

value, its output keeps the same range as the input range, that is, ymin = xmin and

ymax = xmax. Here xmin and xmax, ymin and ymax represent the lower bounds and the

upper bounds of the input and the output respectively.

8.6.2 FIR Filters
 First, we explore FIR (finite impulse response) filters. The impulse response

Chapter 8: Combining Range and Precision

 169

is finite because it settles to zero in a finite number of sample intervals. The

difference equation of Eqn. (8-5) defines the output of an FIR filter based on

the input:

0

[] []
N

i
i

y n h x n i
=

= −∑ (8-5)

where x[n] is the input signal, hi are the filter coefficients and N is the filter

order which are commonly referred to as taps. The Z-transform of the impulse

response yields the transfer function of the FIR filter:

 FIR filters are inherently stable because all the poles are located within the

unit circle. The absence of feedbacks means that any rounding errors are not

compounded by summed iterations. The same relative error occurs in each

calculation which makes implementation simpler. The main disadvantage of

FIR filters is that a lot of taps cause considerably more computation

especially when low frequency (relative to the sample rate) cutoffs are needed.

Figure 8.8 describes an implementation of the FIR filter with k+1 taps.

Z-1 Z-1 Z-1......

+

y[n]

x[n]

h0 h1 h2 hn-k

x[n-1] x[n-2] x[n-k]

Figure 8.8: Implementation of the FIR filter with k+1 taps

 Given the range of the input x, calculating ranges of intermediate variables

and the primary output is easy. The ranges of the intermediate variables are

calculated by the multiplication of the coefficients and the range of the

primary input, and the range of the primary output is calculated by the addition

of intermediate ranges.

Example 8.4: The following circuit is a FIR filter with three taps. All ranges

0

()
N

n
n

n

H z h z−

=

= ∑

Chapter 8: Combining Range and Precision

 170

are described in the square brackets.

z-1 z-1
x [-5, 10]

0.1 0.3
-0.2

y [-4, 5]

a [-5, 10] b [-5, 10]

c [-0.5, 1]

d [-1.5, 3]

e [-2, 4]

f [-2, 1]

Figure 8.9: Ranges of a FIR filter

 In the figure, the delayed variables a and b have the same ranges as the

primary input x. The ranges of the intermediate variables c, d and f equal to

the range of x multiplying the tap coefficients, and the range of the primary

output y equal to the summation of the ranges of e and f.

8.6.3 Linear Feedbacks – IIR Filters
 Calculating the ranges of FIR filters without feedbacks is a simpler task

compared to the much more complex case of IIR filters. IIR systems have an

impulse response function that is non-zero over an infinite length of time. A

condensed form of the difference equation is:

 ∑∑
==

−+−=
S

j
j

R

i
i jnyainxbny

10
][][][(8-6)

where R is the feedforward filter order, and bi are the feedforward filter

coefficients; S is the feedback filter order, and ai are the feedback filter

coefficients. The Z-transform of the impulse response yields the transfer

function of the IIR filter:

0

1

()
1

P
i

i
i

Q
j

j
j

b z
H z

a z

−

=

−

=

=
−

∑

∑

 The first part in Eqn. (8-6) is the same as Eqn. (8-5) so the ranges are easy to

find. We focus on the second part as feedbacks possibly leading to unstability,

meaning that the range of the output is not convergent and will increase (or

decrease) to infinity (or become infinitesimal).

Chapter 8: Combining Range and Precision

 171

Example 8.5: The following circuit has a feedback. The primary input x is

limited in the range [-5, 10], and the output z has the expression of z =2(x+

z-1). It is obvious that the circuit is unstable since the range of z has no

limitation.

x [-5, 10]

2 z-1

z

Figure 8.10: A circuit with a feedback

Now we analyze why the circuit is unstable. We assume the circuit is stable

and the range of z is [r0, r1] (r1 > r0). In terms of the above analysis of delay

units, z-1 has the same range of z and they are considered as same variables

since z-1 is driven completely by z, so the expression representing the datapath

is:

 2(2.5+7.5 1ε + 2
0101

22
εrrrr −

+
+

) = 2
0101

22
εrrrr −

+
+

 ⇒ 5+15 1ε = 2
0101

22
εrrrr −

−
+

−

Since the assumption requires the convergence of z, the parts with certainty

and the parts with uncertainty in the left and the right of the above equation

should equal respectively:

5
2

01 =
+

−
rr

 15
2

01 =
−

−
rr

By solving the two equations, we obtain r1= -10 and r0=20. The results violate

the assumption r1 > r0 so the circuit is unstable and the output has no

convergent range.

 Example 8.5 describes how to explore whether the circuit with linear

feedbacks is stable by AA. Now we amend the multiplicand coefficient in the

Figure 8.10 to re-calculate the output range.

Chapter 8: Combining Range and Precision

 172

Example 8.6: The output z has the expression of z =0.25(x+ z-1).

x [-5, 10]

0.25 z-1

z

Figure 8.11: A circuit like Example 8.5 with the different coefficient

We get the expression by AA forms:

0.25(2.5+7.5 1ε + 2
0101

22
εrrrr −

+
+

) = 2
0101

22
εrrrr −

+
+

 ⇒ 18
15

8
5 ε+ = 2

0101

8
)(3

8
)(3 εrrrr −
+

+

8
5

8
)(3 01 =

+ rr

8
15

8
)(3 01 =

− rr

By solving the equations, we get r1 =
3

10 and r0 =
3
5

− . The results fit the

assumption of r1 > r0 that denotes the circuit is stable. Using this initial range

to replace the unknown variable z-1 in the polynomial 0.25(x+ z-1) gets the

final output range [
3
5

− ,
3

10] which is the same as the initial range. .The

experiment proves the circuit is convergent to the range.

Based on the two examples, we propose a method in Figure 8.12 to explore

whether IIR is stable and calculate the ranges in the datapath if stable. It uses

AA forms to express the implementation, and partitions the forms into parts of

certainty and uncertainty after simplification (Step 2 - 4). Here CL and CR

represent the certainty expressions in the left and the right of the AA form

while UL and UR are the uncertainty expressions. The initial range is obtained

by solving the equations of certainty and uncertainty (Step 5). If the condition

r1 > r0 is satisfied, the initial range replaces the unknown feedback variable

and the algorithm re-calculates the final output range (Step 7). Please note that

the Step 7 is necessary since the initial range may under-estimate the bounds

Chapter 8: Combining Range and Precision

 173

so it needs refinement.

 Figure 8.12: Algorithm of finding ranges of IIR filters

Example 8.7: An IIR filter is described in the Figure 8.13. It has two taps with

coefficients 0.2 and -0.3.

Find_Linear_Range (imp)

{

1. Assume the range (r0 , r1);

2. AA_form = AA_Express (imp, r0 , r1);

3. Simplify (AA_form);

4. ({CL, UL}, {CR, UR}) = Partition (AA_form);

5. (r0 , r1) = Solve (CL= CR , UL = UR);

6. if (r1 < r0) return “The circuit is unstable!”;

else

7. { (r0 , r1) = AA_Range (imp, r0 , r1);

return range (r0 , r1);

}

}

AA_Express (imp, r0 , r1)

{ Using AA to replace known inputs;

AAout = (r1 + r0)/2 +ε (r1 - r0)/2 ;

Replace all feedback variables with AAout ;

return AA_form;

}

AA_Range (imp, r0 , r1)

{ loop all uncertain terms in the expression

{ if (term.coeff < 0) uncertain_var = -1;

 else uncertain_var = 1;

 r1 += term.coeff * uncertain_var;

}

r0 = -r1 + constant; r1 += constant; return (r0 , r1)

}

Chapter 8: Combining Range and Precision

 174

Figure 8.13: An IIR filter with two taps

The expression of the IIR filter is: x+ 0.2* z-1 - 0.3* z-2 = z
Using the AA form of z replaces z-1 and z-2 to get the representation in terms of

step 2

in Figure 8.13:

2
0101

2
0101

2
0101

1 22
)

22
(*3.0)

22
(*2.05.75.2 εεεε rrrrrrrrrrrr −

+
+

=
−

−
+

−
−

−
+

++

 2
0101

1 20
)(11

20
)(115.75.2 εε rrrr −
+

+
=+

 5.2
20

)(11 01 =
+ rr

 5.7
20

)(11 01 =
− rr

The results are r1 =9.09 and r0 = -4.56 so the filter is stable and the output has

the convergent range. The initial range replaces the unknown variables z-1 and

z-2 by the AA form 2.27+ 6.83 2ε in the expression of x+ 0.2* z-1 - 0.3* z-2, so

the polynomial changes to:

21221 683.05.7273.2)83.627.2(*3.0)83.627.2(*2.05.75.2 εεεεε −+⇒+−+++

The coefficient of the term “ 15.7 ε ” is positive so the algorithm sets 11 =ε

while sets 12 −=ε to get r1. Based on Step 7, the final output range is

re-calculated as [-5.91, 10.46]. The ranges of the two intermediate variables

can be calculated by the coefficients of taps as a=[-0.1.82, 2.09], b=[-3.14,

1.77]. The range of the intermediate variable c cannot be calculated directly

by the range addition of a and b because the two variables are both driven by

z so present correlation leads to a coarse range. Using IA to calculate the

range of c by range subtraction of z and x obtains [-0.91, 0.45]. By

experiments, the output range is [-5.901, 10.447], after 14 iterations and the

experiments prove the correctness of the calculated results.

z-1

z-1

0.2

-0.3

zx [-5, 10]

c
a

b

Chapter 8: Combining Range and Precision

 175

Example 8.8: An IIR filter is described like Example 8.7 in the Figure 8.13. It

has two taps with coefficients 0.2 and 0.3.

z-1

z-1

0.2

0.3

zx [-5, 10]

a [-2, 4]

b [-3, 6]
Figure 8.14: An IIR filter like Example 8.7 with different coefficients

The expression of the IIR filter is: x+ 0.2* z-1 + 0.3* z-2 = z

The representation of AA forms is:

2
0101

2
0101

2
0101

1 22
)

22
(*3.0)

22
(*2.05.75.2 εεεε rrrrrrrrrrrr −

+
+

=
−

−
+

+
−

−
+

++

⇒ 2

0101
1 44

5.75.2 εε rrrr −
+

+
=+

5.2
4

01 =
+ rr

 5.7
4

01 =
− rr

The results are r1 =20 and r0 = -10 so the filter is stable and the output has

the convergent range. Using the initial range to replace the unknown variables

z-1 and z-2 by the AA form 2155 ε+ in the polynomial of x+ 0.2* z-1 + 0.3* z-2,

and the final output range is re-calculated as [-10, 20] which is the same as

the initial range. By experiments, the output range is [-9.96, 19.92], and the

two intermediate variables a and b have ranges [-1.98, 3.978] and [-2.96,

5.95] respectively after 13 iterations. The experimental results are quite

suitable to the calculated results.

8.6.4 Non-linear Feedbacks
 Consider a circuit with a non-linear feedback in the Figure 8.15. The

expression is z = x + (0.25* z-1) 2.

Chapter 8: Combining Range and Precision

 176

x [-1, 2]

0.25

z-1

z

a

b

c

Forward
Path

Backward
Path

Figure 8.15: A circuit with a non-linear feedback

If using the above method processing the non-linear feedback, we obtain:

 2
0101)(323264 rrrr +−+=

 2
01

2
0

2
101)()(2)(32128 rrrrrr −−−−−=

 Obviously solving the two equations is difficult, so we need to develop a

new method to handle the circuits with non-linear feedbacks. First we

introduce a lemma.

Lemma 8.1: If all intermediate variables have convergent ranges, the primary

output is also convergent; vice versa, if the primary output has a convergent

range, all intermediate variables are convergent.

Proof: Convergent ranges of input passing through basic operations of

multiplication and addition in a datapath results in a convergent output, that

is,
econvergenceconvergenceconvergenc →×

econvergenceconvergenceconvergenc →+

 So traversing the entire datapath creates a convergent primary output.

 In Figure 8.15, we assume the primary output z is convergent. We split the

datapath into the forward path and the backward path, and the feedback is

included in the backward path. By Lemma 8.1, the variables a and b should be

both convergent. The expression of the non-linear variable c is c = b2. Based

Chapter 8: Combining Range and Precision

 177

on the knowledge of power series, when the range of b lies in [-1, 1], the

variable c obtains the range [0, 1] and forms a closure space to b, that is,

)()(brangecrange ⊆ , to guarantee convergence of the non-linear feedback.

By the addition of x in the forward path, we obtain that the range of z is [-1, 3]

labeled as zforward. We go back to the variable a from b, and conclude that the

range of a is [-4, 4], and then we obtain that the range of z is [-4, 4] labeled as

zbackward. The convergence requires the condition of backwardforward zz ⊆ because

if the condition is violated, the real range of z will increase in each iteration

and ultimately reach infinity (or infinitesimal). Now the ranges of zforward and

zbackward satisfy the condition, we confirm that the circuit is stable.

The different ranges of zforward and zback denote that the obtained ranges are

coarse and they need to be refined. Let z = zforward then a loop calculation of z

starts. Each loop begins to go through the backward path to get the range of c,

and then follows the forward path to obtain the new range of z. The threshold

value “0.01” is set. In two consecutive iterations, if the error of the two

obtained ranges is smaller than the threshold, that is, |znew – zold| < threshold,

the loop calculation is stopped. In this example, after four loops the threshold

condition is reached, so finally we get the convergent range of z as [-0.944,

2.341]. Figure 8.16 describes the algorithm to find ranges for circuits with

non-linear feedbacks.

The algorithm first splits the datapath to two sub-paths as the forward path

and the backward path. The coarse range of the feedback variable is calculated

in terms of the non-linear feedback expression. Then two ranges of the output

are obtained due to the forward path and the backward path by the subroutine

Calculate_range introduced in Chapter 7. Comparing the two ranges, if

the circuit is stable, the algorithm starts a loop calculation until the error

between the two consecutive obtained ranges is limited in the threshold.

Therefore, the convergent range of the primary output is found.

Chapter 8: Combining Range and Precision

 178

Figure 8.16: Algorithm of finding ranges of circuits with non-linear feedbacks

8.6.5 Experimental Results
We implement the algorithm in Figure 8.12 in C++. Several benchmarks are

sued to assess its performance. Experiments are done on a 512MB, 2.4GHz

Intel Celeron machine under Linux. Using the variable y represents the first

part in Eqn. (8-5) and the primary output is z.

A) Butterworth Filters
Butterworth filters are also known as "maximally flat" filters because they

have no passband ripple. They also have a monotonic response in both the

stopband and passband. The indicators of (wp, ap, ws, as) represent passband

frequency, amplitude error, stopband frequency and stopband attenuation.

The first Butterworth filter has indicators (0.2π , 1dB, 0.35π , 10dB), and

the coefficients from smaller orders to larger orders are:

b = (0.0456, 0.1027, 0.0154) a = (1.9184, -1.6546, 0.6853, -0.1127)

 The second Butterworth filter has indicators (0.2π , 3dB, 0.6π , 40dB), and

Find_Nonlinear_Range (imp, threshold, input_range)

{

(forward_path, backward_path) = Split (imp);

feedback_range = Converge (feedback_expression);

zforward = Calculate_range (forward_path, input_range);

zbackward = Calculate_range (backward_path, feedback_range);

if (backwardforward zz ⊄) return “The circuit is not stable.”;

else

{ znew = zforward ;

while (|znew – zold| ≥ threshold)

 { zold = znew ;

 feedback_range = Calculate_Range (backward_path, zold);

 znew = Calculate_Range (forward_path, input_range, feedback_range);

 }

 return znew ;

}

Chapter 8: Combining Range and Precision

 179

the coefficients are:

b = (0.0473, 0.0709, 0.0473, 0.0118)

 a = (1.8778, -1.6214, 0.663, -0.1087)

The third Butterworth filter is a bandpass filter which has indicators ((0.3π -

0.4π), 3dB, (0-0.2π , 0.5π), 18dB), and the coefficients are:

b = (-0.042, 0.021) a = (1.491, -2.848, 1.68, -1.273)

B) Chebyshev Filters
Chebyshev filters are analog or digital filters having a steeper roll-off and

more passband ripple or stopband ripple than Butterworth filters.

 The first Chebyshev filter has coefficients:

b = (9.055E-5, 0, -0.00027, 0, 0.00027, 0, -9.055E-5)

a = (5.765, -13.899, 17.936, -13.067, 5.095, -0.831)

The second Chebyshev filter corresponds to the indicators (0.2π , 1dB, 0.3

π , 15dB) and has the coefficients:

b = (0.0073, 0.011, 0.0073, 0.0018)

 a = (1.5548, -2.9809, 2.2925, -0.5507)

C) Cauer Filters
A Cauer filter has a feature of equalized ripple behavior in both the

passband and the stopband. The indicators of the Causer filter are (0.1π ,

0.1dB, 0.5π , 32dB) and the coefficients are given:

b = (-0.724, 0.0984, 0, 0.00027, 0,-9.055E-5)

 a = (3.3553, -4.3439, 2.5578, -0.5771)

Table 8.1: Performance of the algorithm finding IIR ranges

 Table 8.1 describes the ranges of the benchmarks. Column 2 denotes the

input ranges, and the intermediate ranges and the primary ranges are shown in

Column 3 and 4. Column 6 describes the real obtained ranges by simulation

after iterations whose number is listed in Column 5. Column 7 and 8 indicate

IIR Input Range Range of y Output Range z Time
(s)

Memory
(MB)

Butter [-500, 1000] [-81.85, 163.7] [-511.9, 1023.1] 0.12 0.16
Butter [-2000, 1000] [-354.6, 177.3] [-1970.3, 985.3] 0.15 0.19
Butter [-5000, 10000] [-210, 105] [-2100, 4200] 0.15 0.2
Cheby [-4E+5, 1E+6] [-504.8, 504.8] [-504800, 504800] 0.26 0.25
Cheby [-3000, 2000] [-82.2, 54.8] [-120.9, 80.6] 0.16 0.2
Cauer [-500, 800] [-500.3, 312.7] [-63309, 39602] 0.18 0.17

Chapter 8: Combining Range and Precision

 180

the algorithm performance of time and memory. From the table, we can find

that the real ranges approximate the calculated ranges very well, and the

requirements of time and space are satisfiable. Using simulation will spend

huge time by a lot of iterations such as Row 5 and is hard to determine the

lower bound and the upper bound. However, the algorithm can complete the

job very easily.

8.7 Extension to Floating-Point Circuits
 If the radix point (decimal point, or, more commonly in computers, binary

point) can "float", that is, it can be placed anywhere relative to the significant

digits of the number, the representation refers to the term “floating-point”.

Because the position of the radix point is indicated separately in the internal

representation, floating-point representation can thus be thought of as a

computer realization of scientific notation.

The floating-point representation can support a much wider range of values

than the fixed-point representation. For example, a fixed-point representation

that has eight decimal digits, with the decimal point assumed to be positioned

after the sixth digit, can represent the numbers 123450.67, 87654.32, 2345.00,

and so on, whereas a floating-point representation (such as the IEEE 754

decimal32 format) with eight decimal digits could in addition represent

12.3456789, 123.4567, 0.0001234567, 1234567000000000, and so on. The

floating-point format requires a little more storage (to encode the position of

the radix point), so the floating-representation can achieve greater range at the

expense of precision when stored in the same space.

Floating point numbers are used to obtain a dynamic range for representable

real numbers without having to scale the operands. Floating point numbers are

approximations of real numbers and it is not possible to represent an infinite

continum of real data into precisely equivalent floating point value.

Logically, a floating-point number consists of [156]:

 A signed digit string of a given length in a given base (or radix). This is

known as the significand, or sometimes the mantissa or coefficient. The

Chapter 8: Combining Range and Precision

 181

radix point is implicitly assumed to always lie in a certain position within

the significand — often just after the most significant digit. The length of

the significand determines the precision to which numbers can be

represented.

 A signed integer exponent is a scale to modify the magnitude of the

number.

A floating point number system is completely specified by specifying a

suitable base β, significand (or mantissa) M, and exponent E. A floating point

number F has the value

 F = M βE
β is the base of exponent and it is common to all floating point numbers in a

system. Commonly the significand is a signed - magnitude fraction. The

floating point format consists of a sign bit S, e bits of an exponent E, and m

bits of an unsigned fraction M, as shown below:

S Exponent E Unsigned SignificandM

The value of such a floating point number is given by:

 F = (-1)SM βE
The most common representation of exponent is as a biased exponent,

according to which E = Etrue + bias, where bias is a constant and Etrue is the

true value of exponent. The range of Etrue using the e bits of the exponent field

is:

122 11 −≤≤− −− etruee E

The bias is normally selected as the magnitude of the most negative exponent;

i.e. 2e-1, so that

120 −≤≤ eE
When comparing two exponents, which is required in the floating point

addition for example, the sign bits of exponents can be ignored and they can

be treated as unsigned numbers. This is an advantage of using biased

exponent.

Chapter 8: Combining Range and Precision

 182

Representable
Negative Numbers

Representable
Positive Numbers

Negative
Underflow

Positive
Underflow

Negative
Overflow Positive

Overflow

< -21 27
> -2-126 < 2-126 > 2127

Figure 8.17: Range of floating point numbers

 Not only cannot all real numbers be expressed exactly, there are whole

ranges of numbers that cannot be represented. Consider the real number line as

shown in Figure 8.17. The number zero can be represented exactly because it

is defined by the standard. The positive numbers that can be represented fall

approximately in the range 2-126 to 2+127.

Numbers greater than 2+127 cannot be represented; this is called positive

overflow. A similar range of negative numbers can be represented. Numbers

to the left of that range cannot be represented; this is negative overflow.

Example 8.9: S=0, E=3 bits, M = 4 bits. Then the bias is 2E-1 -1 =3. The

maximum range is:

0 1 1 1 1 1 1 1

(-1)0 1.1111 27-3 = 1.1111 24 = 11111 = 3110

The minimum range, assuming exponent 000 is reserved for zero.

0 0 0 1 0 0 0 0

(-1)0 1.0000 21-3 = 1.0000 2-2 = 0.01 = 0.2510

 The precision of floating-point numbers is not like fixed-point numbers

which have uniform error as 2-FB-1. The error in each exponent value is

different. Figure 8.18 describes the error with non-uniform distribution for

Example 8.9.

......

0.25 0.25+2-6 0.5 0.5+2-5

......

1 1+2-4

.....

16 16+20 31

......

 Figure 8.18: Non-uniform distribution error in floating-point representation

 In the figure, there are 2M = 16 values in each exponent interval, and the

smallest error is 2-7, that is,
1(2 1)2

E M−− − + in the left axis, while the largest error is

Chapter 8: Combining Range and Precision

 183

12 12
E M− − − = 2-1 in the right axis. We can obtain the expression of each interval

error as 12c bias M− − − . Here c is the coded value of the interval, and bias is

calculated as 2E-1-1. For example, the interval “2” includes values from 2 to

2+15*2-3. “2” is coded as “100” and bias is “011”, so they correspond to the

values of “4” and “3” respectively. The interval error is calculated as 24-3-1-4 =

2-4.

 In terms of the above analysis, we can perform range and precision analysis

for floating-point circuits. The range analysis is the same as the Chapter 7, and

the hybrid method is also suitable for floating-point circuits to find exact

ranges. Precision analysis is a bit different with the fixed-point circuits. Given

the input range as [r1, r2], Eqn. (8-1) represents the relation between the exact

value and the real value for fixed-point circuits. Since the floating-point

representation has no uniform distribution error, the coefficient of the

uncertain variable must set the largest error value:

 a%= a + 12c bias M− − − ε

Here c is chosen the larger coded value in the two intervals of r1 and r2, that is,

if | r1| > | r2|, we choose the interval coded value of r1; if not, we choose the

interval coded value of r2.

Example 8.10: The floating-point representation is as Example 8.9. The input

range is a= [-7.5, 13]. Since the absolute values of the lower bound and the

upper bound are 7.5 and 13 respectively, we choose the interval value of 13.

Because the value “13” is located in the interval of “8”, the interval coded

value is 110 as c=6, so the coefficient of the uncertain variable is 12c bias M− − −

= 2-2. The expression of the exact input value is changed to a%= a + 2-2ε .

 After we amend the input expression, the method of performing precision

analysis in section 8.2 can also be used for floating-point datapath. So we

extend the fixed-point process to the floating-point process.

Chapter 8: Combining Range and Precision

 184

8.8 Conclusions
 Fixed-point representations often comprise integer and fractional bit-widths.

The problems of exploring fixed-point circuits include range analysis and

precision analysis. Since the circuits cannot get the exact fractional numbers,

the satisfying implementation must fit the error bound, that is, the maximum

error of the primary output is restricted by the bound. In order to find the

attractive optimized implementation with the smallest area, it is necessary to

obtain ranges and construct the precision models. The AT size plays an

indicator to describe area. We propose an algorithm to find the optimized

implementation in this chapter. It invokes the algorithm in Chapter 7 to get

ranges and allocates IBs, and then calculates uniform FBs. Starting from the

FBs, the algorithm searches all satisfying implementations and calculates their

AT sizes. The implementation with the smallest AT size is the optimized one

that can fit the error bound and have the smallest area.

 The circuits with feedbacks are more complex to find ranges like IIR filters.

We handle FIR filters without feedbacks only with delay units, and then

propose a method to process IIR filters with linear feedbacks. The method can

explore whether IIR filters are stable and calculate the ranges if stable.

Furthermore, we analyze the circuits with non-linear feedbacks.

Sequential datapaths with FFs are investigated to extend combinational

models based on previous chapters. Floating-point representation is different

with non-uniform error distribution. We analyze floating-point representation

and develop the mathematical models for error distribution, then extend the

methods processing fixed-point representation to the floating-point datapath.

 185

Chapter 9
Conclusions and Future Work

 9.1 Conclusions
 As the complexity of integrated circuit increases rapidly, the challenge of

time-to-market arises. In the overall design procedure, verification plays a

significant role since it concentrates on most steps from system specification

to manufacturing. Verification often requires beyond 70% time and capital in

the whole ASIC design process. Because of its importance, engineers are

forced to explore verification techniques. Simulation as a main technology has

advantages of easy operation but low efficiency is the fatal weakness, so

formal verification emerged. Various bit-level and word-level decision

diagrams adapt to equivalence checking and model checking.

 Fixed-point data format is suitable for a number of implementations of

digital circuits. Traditional methods of dealing with imprecise fixed-point

circuits have disadvantages in both verification and optimization. In our

exploration, we adopt a spectral technique, that is, Arithmetic Transform, to

investigate fixed-point circuits. Basic AT only represents combinational

circuits, so three transform extensions have been proposed. The total four

types of transforms form a complete group to represent complex

combinational and sequential circuits, and every circuit can be represented by

one type. Because obtaining a circuit transform is a significant step for

verification, various spectral transformation methods have been explored. The

most straightforward method relies on matrix multiplication, and a fast

algorithm has been proposed. These methods all compute the transform

directly. We design a new algorithm to obtain transform of a complex circuit

 186

by composing transforms of detached blocks in the circuit. It is a method

based on traversing the sub-block topology, to provide an efficient way to get

the transforms for complex arithmetic circuits.

 The fixed-point representation often includes IB and FB. First, we explore

them separately. As a big category, imprecise circuits need to be explored

carefully. They are different with common circuits because they have a feature

that the implementations do not match the specifications exactly, so decision

diagrams have no capability to handle them. Many methods have been

developed. Dynamic analysis based on simulation is usually used to

investigate range and static analysis is applied such as IA and AA to avoid its

disadvantage. They primarily handle optimization of input bit-width but do not

consider other factors, so AT is introduced in the work to make up the

weakness.

We explore imprecise circuits such as ones realizing Taylor series-based

algorithms, and construct mathematical expressions for each imprecise factor

due to AT representations. A series of algorithms that can process function

approximation and bit-widths concurrently and handle Taylor series and

real-valued polynomial with multiple variables are designed for verification

and optimization due to various constraints.

 Imprecise circuits do not confine the utilization of AT. We develop a fast and

accuracy-guaranteed method to perform range analysis for arithmetic circuits

by mixed techniques. The method can find the maximum value and the

minimum value for each intermediate output in the datapath in terms of given

input ranges, and allocate the smallest bit-width. Since the method does not

extend the range and handles polynomials statically, it can obtain exact ranges,

and avoid low efficiency simulation. The obtained smallest bit-widths lead to

the optimized implementation with the smallest area.

 Finally, we combine range and precision together. In the datapath of

fixed-point representation, given the error bound, the most important problem

is confirming the bit-widths include IBs and FBs for all variables. The

appropriate bit-widths must fit the error bound, and lead to the implementation

with the smallest area. We propose an algorithm to solve the problem. It can

allocate the smallest IBs, and find non-uniform FBs to satisfy the error bound

and obtain the optimized implementation with the smallest area.

 187

 9.2 Future Work
 Exploring range value and component difference are always hot topics.

They refer to circuit optimization with smaller area or faster speed and keep

attracting engineers. We resolve the problem for fixed-point circuits and obtain

good results. In the future, we will continue to explore optimized

implementations in different constraints, and extend the method to process

floating-point circuits and more subtle error models will be investigated.

 In the area of formal verification, the derived transformations for

compositional verification encourage verification for Intellectual Property (IP)

cores. It would be helpful if a set of appropriate benchmarks are devised to

quantify the quality of such methods. Additionally, although highly promising,

AT might not be the only transformation that is appropriate for the formal

verification applications presented in this thesis. The greatest opportunities in

verification lie in the combination of the two approaches: simulation-based

and formal. A study of suitable data structures and their concrete

implementations would complement the research presented here.

 188

References
[1] Jacob Abraham; “Hardware Verification - Application of formal

techniques to chip designs”, University of Texas

[2] Evans, A.; Silburt, A.; Vrckovnik, G.; Brown, T.; Dufresne, M.; Hall, G.;

Tung Ho; Ying Liu; “Functional verification of large ASICs”, Design

Automation Conference, 1998. Proceedings, 15-19 Jun 1998 Page(s):650

– 655

[3] S. Tahar; Slides of “Formal Verification”, Concordia University.

[4] Zilic, Z.; Vranesic, Z.G.; “Reed-Muller forms for incompletely specified

functions via sparse polynomial interpolation”, Multiple-Valued Logic,

1995. Proceedings., 25th International Symposium, 23-25 May 1995

Page(s):36 – 43

[5] I. L. Zhegalkin, “Arithmetization of Symbolic Logic - Part One”,

Matematicheskii Sbornik, 35(1), pp. 311-373, 1928, (in Russian with

French summary).

[6] B.J. Falkowski, “A Note on the Polynomial Form of Boolean Functions

and Related Topics”, IEEE Transactions on Computers, 48(8),

pp.860-864, August 1999.

[7] Rolf Drechsler and Bernd Becker, “Binary Decision Diagrams: Theory

and Implementation”, Kluwer Academic Publishers, 1998

[8] E.Clarke, M.Fujita, P.McGeer, K.L.McMillan, J.Yang and X.Zhao. Multi

terminal binary decision diagrams: An efficient data structure for matrix

representation. In Int’l Workshop on Logic Synth., pages P6a:1-15, 1993

[9] R. P. Bryant and Y. A. Chen, “Verification of Arithmetic circuits with

Binary Moment Diagrams”, Proc. of 32nd Design Automation Conference,

pp. 535-541, 1995.

[10] K. Hamaguchi, A. Morita and S. Yajima, “Efficient Construction of

Binary Moment Diagrams for Verification of Arithmetic Circuits”, In

Proc. ICCAD, pp.78-82, 1995.

[11] R. Drechsler, B. Becker and S. Ruppertz, “The K*BMD: A Verification

Data Structure”, IEEE Design and Test of Computers,Vol. 14, No. 2, pp.

51-59, April-June 1997

[12] Ciesielski, M.; Kalla, P.; Zhihong Zeng and Rouzeyre. B, “Taylor

 189

Expansion diagrams: a new representation for RTL verification”,

High-Level Design Validation and Test Workshop, 2001. Proceedings.

Sixth IEEE International, 7-9 Nov. 2001 Page(s):70 – 75

[13] M. Ciesielski, P. Kalla, Z. Zeng and B. Rouzeyre, “Taylor Expansion

Diagrams: a Compact, Canonical Representation with Applications to

Symbolic Verification”, Proc. Design Automation & Test in Europe,

DATE-2002, pp. 285-289, March 2002

[14] Ciesielski, M.; Priyank Kalla; Askar, S.; “Taylor Expansion Diagrams:

A Canonical Representation for Verification of Data Flow Designs”,

Computers, IEEE Transactions on, Volume 55, Issue 9, Sept. 2006

Page(s):1188 - 1201

[15] M. Ciesielski, P. Kalla, Z. Zeng and B. Rouzeyre, “Taylor Expansion

Diagrams: a Compact, Canonical Representation with Applications to

Symbolic Verification”, Proc. Design Automation & Test in Europe,

DATE-2002, pp. 285-289, March 2002.

[16] Becker, B.; Drechsler, R.; Enders, R.; “On the representational power

of bit-level and word-level decision diagrams”, Design Automation

Conference 1997. Proceedings of the ASP-DAC '97. Asia and South

Pacific, 28-31 Jan. 1997 Page(s):461 – 467

[17] B. Alizadeh, M. Fujita, “Modular-HED: A Canonical Decision

Diagram for Modular Equivalence Verification of Polynomial

Functions”, in the fifth Workshop on Constraints in Formal Verification

(CFV), pp. 22-40, 2008.

[18] S. Kim and W. Sung, “Fixed-point error analysis and word length

optimization of 8 × 8 IDCT,” IEEE Trans. Circuits Syst. Video Tech.,

Vol. 8, No. 8, Dec. 1998, pp. 935–940.

[19] K. Kum and W. Sung, “Combined wordlength optimization and

highlevel synthesis of digital signal processing systems,” IEEE Trans.

CAD Vol. 20, No. 8, Aug. 2001, pp. 921–930.

[20] M. Willems, V. Bürgens, H. Keding, T. Grötker and H. Meyr, “System

Level fixed-point design based on an interpolative approach,” Proc.

Design Autom. Conf. 1997, pp. 293–298.

[21] A. Gaffar, O. Mencer, W. Luk, and P. Cheung, “Unifying bit-width

optimisation for fixed-point and floating-point designs,” in Proc. IEEE

 190

Symp. Field-Programmable Custom Comput. Mach, FCCM 2004, pp.

79–88.

[22] C. Shi and R. Brodersen, “Automated fixed-point data-type

optimization tool for signal processing and communication systems,”

Proc. Design Automation Conf. 2004, pp. 478–483.

[23] A. Nayak, M. Haldar, A. Choudhary, P. Banerjee, “Precision and error

analysis of Matlab applications during automated synthesis for FPGAs,”

Proc. DATE, 2001, pp. 722–728

[24] W. Sung and K. I. Kum, “Simulation-based wordlength optimization

Method for fixed-point digital signal processing systems,” IEEE Trans.

Signal Processing, vol. 43, pp. 3087–3090, Dec. 1995.

[25] S. Roy and P. Banerjee; “An algorithm for trading off quantization

error with hardware resources for MATLAB-based FPGA design”,

IEEE Transactions on Computers, 54(7), July 2005.

[26] E.R. Hansen, A generalized interval arithmetic, in “Interval

Mathematics” (K. Nickel, ed.), Lecture Notes in Computer Science 29,

pp. 7–18, Springer, 1975.

[27] R.B. Kearfott and V. Kreinovich, eds., Applications of Interval

Computations (Kluwer, Dordrecht, 1996).

[28] R. Baker Kearfott, Algorithm 763: INTERVAL ARITHMETIC — A

Fortran 90 module for an interval data type, ACM Transactions on

Mathematical Software, 22, No. 4 (1996), 385–392.

[29] R. Moore, Interval Analysis. Englewood Cliffs, NJ: Prentice- Hall, 1966.

[30] W. Barth, R. Lieger, and M. Schindler. Ray tracing general parametric

surfaces using interval arithmetic. The Visual Computer, 10, No. 7

(1994), 363–371.

[31] K. Ichida and Y. Fujii, An interval arithmetic method for global

optimization, Computing, 23 (1979), 85–97.

[32] J. Stolfi, L.H. de Figueiredo, “An Introduction to Affine Arithmetic”,

 TEMA Tend. Mat. Apl. Comput., 4, No. 3 (2003), 297-312.

[33] L.H. de Figueiredo and J. Stolfi, Affine arithmetic: Concepts and

applications, Numerical Algorithms, (2004), to appear.

[34] J. Stolfi and L. de Figueiredo. Self-Validated Numerical Methods and

Applications. Institute for Pure and Applied Mathematics (IMPA), Rio

 191

de Janeiro, 1997.

[35] J.L.D. Comba and J. Stolfi, Affine arithmetic and its applications to

computer graphics, in “Anais do VI Simp´osio Brasileiro de

Computa¸c˜ao Gr´aficae Processamento de Imagens (SIBGRAPI’93)”,

pp. 9–18, Recife (Brazil), October, 1993.

[36] A. Bowyer, R. Martin, H. Shou and I. Voiculescu, Affine intervals in a

CSG geometric modeller, in “Proc. Uncertainty in Geometric

Computations”, pp. 1–14. Kluwer Academic Publishers, July, 2001.

[37] F. Messine, Extentions of affine arithmetic: Application to

unconstrained global optimization, Journal of Universal Computer

Science, 8, No. 11 (2002), 992–1015.

[38] Q. Zhang and R.R. Martin, Polynomial evaluation using affine

arithmetic for curve drawing, in “Proc. of Eurographics UK 2000

Conference”, pp. 49–56, 2000.

[39] C. Fang, R. Rutenbar, and T. Chen, “Fast, accurate static analysis for

fixed-point finite-precision effects in DSP designs,” in Proc.

ACM/IEEE Int. Conf. Comput.-Aided Des., 2003, pp. 275–282.

[40] C. Fang, R. Rutenbar, M. Püschel, and T. Chen, “Toward efficient

static analysis of finite-precision effects in DSP applications via affine

arithmetic modeling,” in Proc. ACM/IEEE Design Automation Conf.,

2003, pp. 496–501.

[41] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho, and W. Luk.

“Automatic accuracy guaranteed bit-width optimization for fixed and

floating-point systems”. In Field- Programmable Logic and

Applications. 17th International Conference, FPL 2007, August 2007.

[42] D.-U. Lee, A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G.

Constantinides, “Accuracy-Guaranteed Bit-Width Optimization”, IEEE

Trans. CAD, Vol. 25, No. 10, Oct. 2006, pp. 1990 –2000.

[43] D.-U. Lee, J.D. Villasenor, “A Bit-Width Optimization Methodology

for Polynomial-Based Function Evaluation”, IEEE Trans. Computers,

Vol.56, No.4, Apr.07 pp. 567 – 571.

[44] D. Lee, A. Abdul Gaffar, O. Mencer, and W. Luk, “MiniBit: Bit-Width

Optimization via Affine Arithmetic,” Proc. ACM/IEEE Design

 192

Automation Conf., pp. 837-840, 2005.

[45] W.G. Osborne, J. Coutinho, R. Cheung, W. Luk, O. Mencer,

“Instrumented Multi-Stage Word-Length Optimization”, Proc. Field-

Programmable Technology，Dec. 2007, pp. 89 – 96

[46] G. Constantinides and G. Woeginger, “The complexity of multiple

wordlength assignment,” Appl. Math. Lett., vol. 15, no. 2, pp. 137–140,

2001.

[47] G. Constantinides, P. Cheung, and W. Luk, “Wordlength optimization

for linear digital signal processing,” IEEE Trans. on CAD vol. 22, no.

10, pp. 1432–1442, Oct. 2003.

[48] G. Constantinides, P. Cheung, and W. Luk, “Optimum wordlength

location,” in Proc. IEEE Symp. Field Program. Custom Comput.

Machines, 2002, pp. 219–228.

[49] G. Constantinides, “Perturbation analysis for word-length

optimization,” in Proc. IEEE Symp. Field-Program. Custom Comput.

Machines, 2003, pp. 81–90.

[50] CONSTANTINIDES, G., CHEUNG, P., AND LUK, W. 2001.

Heuristic datapath allocation for multiple wordlength systems. In

Proceedings of the Design Automation and Test in Europe (DATE)

(Munich).

[51] S. Gopalakrishnan and P. Kalla, “Optimization of polynomial datapaths

using finite ring algebra”, ACM Transactions on Design Automation of

Electronic Systems (TODAES), Volume 12 Issue 4, Sep.2007.

[52] N. Shekhar, P. Kalla, F. Enescu, “Equivalence Verification of

Polynomial Datapath with Multiple Word-Length Operands”, in Proc.

of Design Automation and Test in Europe (DATE), pp. 824-829, 2006.

[53] N. Shekhar, P. Kalla, F. Enescu, and S. Gopalakrishnan, “Equivalence

Verification of Polynomial Datapaths with Fixed- Size Bit-Vectors

using Finite Ring Algebra”, in Intl. Conf. on Computer- Aided Design,

ICCAD, 2005.

[54] A. Ahmadi and M. Zwolinski; “Symbolic noise analysis approach to

computational hardware optimization”, DAC 2008. 45th ACM/IEEE,

8-13 June 2008 Page(s):391 – 396

[55] Kinsman, A.B.; Nicolici, N.; “Finite Precision bit-width allocation

 193

using SAT-Modulo Theory”, Design, Automation & Test in Europe

Conference & Exhibition, 2009. DATE '09. 20-24 April 2009 Page(s):

1106 – 1111

[56] S.L.Hurst, D.M.Miller and J.C.Muzio, Spectral Techniques in Digital

Logic, Academic Press, 1985

[57] Radomir S. Stankovic; Jaakko T. Astola; “Spectral Interpretation of

Decision Diagrams”, Springer, 2003

[58] Radomir S. Stankovic, Tsutomu Sasao; “A Discussion on the History of

Research in Arithmetic and Reed–Muller Expressions”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol.20, no.9, September 2001

[59] Falkowski, B.J; “Calculation of Rademacher-Walsh spectral

coefficients for systems of completely and incompletely specified

Boolean functions”, Circuits and Systems, 1993., ISCAS’93, 1993 IEEE

International Symposium, 3-6 May 1993 Page(s):1698 - 1701 vol.3

[60] Falkowski, B.J.; Chip-Hong Chang, “Efficient algorithms for the

calculation of Walsh spectrum from OBDD and synthesis of OBDD

from Walsh spectrum for incompletely specified Boolean functions”,

Circuits and Systems, 1994., Proceedings of the 37th Midwest

Symposium, Volume 1, 3-5 Aug. 1994 Page(s):393 - 396 vol.1

[61] Falkowski, B.J.; Perkowski, M.A; “Walsh type transforms for

completely and incompletely specified multiple-valued input binary

functions”, Multiple-Valued Logic, 1990., Proceedings of the Twentieth

International Symposium, 23-25 May 1990 Page(s):75 – 82

[62] K. Radecka and Z. Zilic, “Specifying and Verifying Imprecise

Circuits by Arithmetic Transforms”, Proceedings of IEEE/ACM

International Conference on Computer-Aided Design, pp. 128-131,

2002.

[63] Chip-Hong Chang; Falkowski, B.J.; “Operations on Boolean functions

and variables in spectral domain of arithmetic transform”, Circuits and

Systems, 1996. ISCAS '96., 'Connecting the World'., 1996 IEEE

International Symposium, Volume 4, 12-15 May 1996 Page(s):400 -

403 vol.4

[64] Clarke, E.M.; McMillan, K.L.; Zhao, X.; Fujita, M.; Yang, J.; “Spectral

 194

Transforms for Large Boolean Functions with Applications”, Design

Automation, 1993. 30th Conference, 14-18 June 1993 Page(s):54 – 60

[65] K.D. Heidtmann, “Arithmetic spectrum applied to fault detection for

combinational networks”, IEEE Trans. On Comput., vol.40, no.3, pp.

320-324, March 1991

[66] P.K. Lui and J.C. Muzio, “Spectral signature testing of multiple

stuck-at faults in irredundant combinational networks,” IEEE Trans.

Comput., vol. C-35, pp. 1088-1092, Dec. 1986

[67] J. C. Muzio and D. M. Miller, "Spectral fault signatures for internally

unate combinational networks," IEEE Trans. Comput., vol. C-32, pp.

1058-1062, Nov. 1983.

[68] K. Radecka and Z. Zilic; “Using Arithmetic Transform for

Verification of Datapath Circuits via Error Modeling”, VLSI Test

Symposium, 2000. Proceedings. 18th IEEE 30 April-4 May 2000

Page(s):271 - 277

[69] Kartarzyna Radecka’s Ph.D Thesis

[70] K. Radecka and Z. Zilic, “Arithmetic Transforms for Compositions

of Sequential and Imprecise Datapaths”, Computer- Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, Volume

25, Issue 7, July 2006 Page(s):1382 – 1391

[71] K. Radecka and Z. Zilic, “Arithmetic Transforms for Verifying

Compositions of Sequential Datapaths”, Proc. IEEE international

Symposium on Computer Design, pp. 348-358, 2001.

[72] Z. Zhou and W. Burleson, “Equivalence Checking of Datapaths Based

on Canonical Arithmetic Expressions”, Proceedings of 32nd Design

Automation Conference, pp. 546-551, San Francisco, 1995

[73] Kuo-Hua Wang; TingTing Hwang , “Boolean matching for

Incompletely specified functions”, Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions, 23-25 May 1995

Page(s):36 – 43

[74] Purwar, S.; “Polynomial representation of spectral coefficients”,

Electronics Letters, Volume 28, Issue 15, 16 July 1992 Page(s):1412 –

1413

[75] Keim, M.; Martin, M.; Becker, B.; Drechsler, R.; Molitor, P.;

 195

“Polynomial formal verification of multipliers”, VLSI Test Symposium,

1997., 15th IEEE, 27 April-1 May 1997 Pp:150 – 155

[76] J. Smith and G. De Micheli，” Polynomial methods for component

matching and verification”, Computer-Aided Design, 1998. ICCAD 98.

Digest of Technical Papers. 1998 IEEE/ACM International Conference,

8-12 Nov 1998 Page(s):678 – 685

[77] J. Smith and G. De Micheli, “Polynomial Circuit Models for

Component Matching in High-level Synthesis”, IEEE Transactions on

VLSI, vol. 9, no. 6, pp. 783-800, Dec. 2001.

[78] D. W. Currie, A. J. Hu, S. Rajan and M. Fujita, “Automatic Formal

Verification of DSP Software”, Proceedings of 37th ACM/IEEE Design

Automation Conference, pp. 130-135, 2000.

[79] D. Knuth, “The Art of Computer Programming,” Addison-Wesley,

1998.

[80] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens, “A

methodology and design environment for DSP ASIC fixed point

refinement,” in Proc. ACM/IEEE Design Automation Test Eur. Conf.,

1999, pp. 271–276.

[81] D. Menard and O. Sentieys, “Automatic evaluation of the accuracy of

fixed-point algorithms,” in Proc. ACM/IEEE Design Automation Test

Eur. Conf., 2002, pp. 1530–1591.

[82] S. Wadekar and A. Parker, “Accuracy sensitive word-length selection

for algorithm optimization,” in Proc. IEEE Int. Conf. Comput. Des.,

1998, pp. 54–61.

[83] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho, and W. Luk.

“Automatic accuracy guaranteed bit-width optimization for fixed and

floating-point systems”. In Field- Programmable Logic and

Applications. 17th International Conference, FPL 2007, August 2007.

[84] J. Smith and G. De Micheli, “Polynomial methods for allocating

complex components”, In Proc. Design, Automation and Test in Europe,

DATE, pp. 217 –222, 1999.

[85] Yu Pang, Katarzyna Radecka and Zeljko Zilic, “Arithmetic Transforms

of Imprecise Datapaths by Taylor Series Conversion”, ICECS-2006, pp.

696-699, Dec. 2006.

 196

[86] Yu Pang; Radecka, K.; “Optimizing imprecise fixed-point arithmetic

circuits specified by Taylor Series through Arithmetic Transform”,

Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE,

8-13 June 2008 Page(s):397 - 402

[87] Yu Pang; Radecka, K.; Zilic, Z.; “Verification of Fixed-Point Circuits

Specified by Taylor Series Using Arithmetic Transform”, Circuits and

Systems and TAISA Conference, 2008. NEWCAS- TAISA 2008. 2008

Joint 6th International IEEE Northeast Workshop on, 22-25 June 2008

Page(s):261 – 264

[88] Gok, M.; Schulte, M.J.; Arnold, M.G.; “Integer multipliers with

overflow detection”, Computers, IEEE Transactions on, Volume

55, Issue 8, Aug. 2006 Page(s):1062 - 1066

[89] Schuite, M.J.; Balzola, P.I.; Akkas, A.; Brocato, R.W; “Integer

multiplication with overflow detection or saturation”, Computers, IEEE

Transactions on, Volume 49, Issue 7, July 2000 Page(s):681 - 691

[90] Landauro, A.; Lienard, J.; “On Overflow Detection and Correction in

Digital Filters”, Computers, IEEE Transactions on, Volume

C-24, Issue 12, Dec. 1975 Page(s):1226 - 1228

[91] P.D. Pai and A. Tran, “Overflow Detection in Multioperand Addition”,

Int'l J.Electronics, vol. 73, no. 3, pp. 461-469, Sept. 1992.

[92] Falkowski, B.J.; Chip-Hong Chang; “Efficient algorithms for the

calculation of arithmetic spectrum from OBDD and synthesis of OBDD

from arithmetic spectrum for incompletely specified Boolean functions”,

Circuits and Systems, 1994. ISCAS '94., 1994 IEEE International

Symposium on, Volume 1, 30 May-2 June 1994 Page(s):197 - 200

[93] N.S. Nedialkov, V. Kreinovich, S.A. Starks, “Interval Arithmetic, Affine

Arithmetic, Taylor Series Methods: Why, what next?”, Numerical

Algorithms, vol.37, no. 1-4, pp. 325-336, 2004

[94] Falkowski, B.J.; Chip-Hong Chang; “Fast generalized arithmetic and

adding transforms”, Design Automation Conference, 1995. Proceedings

of the ASP-DAC '95/CHDL '95/VLSI '95., IFIP International

Conference on Hardware Description Languages; IFIP International

Conference on Very Large Scale Integration., Asian and South Pacific,

29 Aug.-1 Sept. 1995 Page(s):723 - 728

 197

[95] Rene Krenz, Elena Dubrova, Andreas Kuehlmann; “Circuit-based

Evaluation of the Arithmetic Transform of Boolean Functions”, Int.

Workshop on Logic Synthesis, 2002

[96] Whitney J. Townsend, Mitchell A. Thornton, Rolf Drechsler, D.

Michael Miller; “Computing Walsh, Arithmetic, and Reed-Muller

Spectral Decision Diagrams Using Graph Transformations”,

Proceedings of the 12th ACM Great Lakes symposium on VLSI, New

York, New York, USA, pp. 178 – 183, 2002

[97] M. A. Thornton, D. M. Miller, R. Drechsler; “Transformations

Amongst the Walsh, Haar, Arithmetic and Reed-Muller Spectral

Domains”, International Workshop on Applications of the Reed-Muller

Expansion in Circuit Design (RMW), August 10-11, 2001, pp. 215-225

[98] C. Moraga, T. Sasao, and R. Stankovic; “A Unifying Approach to

Edge-valued and Arithmetic Transform Decision Diagrams”,

Automation and Remote Control, Vol. 63, No. 1, 2002, pp. 125–138.

[99] Cintra, R.; de Oliveira, H.; “How to interpolate in arithmetic transform

algorithms”, Acoustics, Speech, and Signal Processing, 2002.

Proceedings. (ICASSP '02). IEEE International Conference on, Volume

4, 13-17 May 2002 Page(s):IV-4169 vol.4

[100] Yu Pang; Radecka, K.; Zilic, Z.; “Fast Algorithms for Compositions of

Arithmetic Transforms and Their Extensions”, Circuits and Systems

and TAISA Conference, 2008. NEWCAS-TAISA 2008. 2008 Joint 6th

International IEEE Northeast Workshop on, 22-25 June 2008

Page(s):314 – 317

[101] Pang, Yu; Radecka, Katarzyna; Zilic, Zeljko; “Algorithms for

Compositions of Arithmetic Transforms and Their Extensions”,

Electronics, Circuits and Systems, 2006. ICECS '06. 13th IEEE

International Conference on 10-13 Dec. 2006 Page(s):379 – 382

[102] A.Madisetti and A.N.Willson, Jr., “A 100 MHz 2-D 8x8 DCT/IDCT

processor for HDTV applications”, IEEE Trans, Circuits Syst. Video

Technol., vol.5, no.2, pp. 158-165, Apr. 1995.

[103] B. Alizadeh and M. Fujita, “A Canonical and Compact Hybrid

Word-Boolean Representation as a Formal Model for Hardware/

Software Co-designs”, in the fourth Workshop on Constraints in

 198

Formal Verification (CFV), pp. 15-29, 2007.

[104] D. Brand, “Incremental Synthesis”, in Proc. of International

Conference on Computer-Aided Design (ICCAD), pp. 14-18, 1994.

[105] M. Fujita, T. Kakuda, Y. Matsunaga, “Redesign and Automatic Error

Correction of Combinational Circuits”, in Proc. of the IFIP

TC10/WG10.5 Workshop on Logic and Architecture Synthesis, pp.

253-262, 1990.

[106] M. Kubo, M. Fujita, “Debug Algorithm for Arithmetic Circuits on

FPGAs”, International Conference on Field-Programmable

Technology, (FPT), pp. 236-242

[107] D. Stoffel, W. Kunz, “Verification of Integer Multipliers on the

Arithmetic Bit Level,” in Proc. of International Conference on

Computer-Aided Design (ICCAD), pp. 183-189, 2001.

[108] O. Sarbishei, B. Alizadeh and M. Fujita, “Polynomial Datapath

Optimization Using Partitioning and Compensation Heuristics”,

Accepted to appear in Proc. of International Design Automation

Conference (DAC), 2009.

[109] T. Stanion, “Implicit Verification of Structually Dissimilar Arithmetic

Circuits”, in Proc. of IEEE International Conference on Computer

Desgin (ICCD), pp. 46-50, 1999.

[110] M. J. Schulte and E. E. Swartzlander, Jr., “Hardware designs for

exactly rounded elementary functions,” IEEE Trans. Comput., vol. 43,

no. 8, pp. 964–973, Aug. 1994.

[111] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. Low-power

optimization by smart bit-width allocation in a SystemCbased ASIC

design environment. IEEE Transactions on Computer- Aided Design of

Integrated Circuits and Systems, 26(3):447-455, March 2007.

[112] A. Peymandoust and G. DeMicheli, “Application of Symbolic

Computer Algebra in High-Level Data-Flow Synthesis”, IEEE Trans.

CAD, vol. 22, pp. 1154–11656, 2003.

[113] D. Cyrluk, O. Moller and H. Rues, “An Efficient Decision Procedure

for the Theory of Fixed-Size Bitvectors”, In Proc. of LNCS, Computer

Aided Verification, vol 1254, 1997.

[114] S. Kim, K. Kum, and W. Sung, “Fixed-point Optimization Utility for C

 199

and C++ Based Digital Signal Processing Programs,” in Workshop on

VLSI and Signal Processing ’95, (Osaka), pp. 197-206, Nov. 1995.

[115] G. De Micheli, Synthesis and optimization of digital circuits.

McGraw-Hill, 1994.

[116] F. Catthoor, J. Vandewalle, and H. De Man, “Simulated annealing

based optimization of coefficient and data word-lengths in digital

filters,” Int. J. Circuit Theory Applicat., vol. 16, pp. 371–390, Sep.

1988.

[117] J.-I. Choi, H.-S. Jun, and S.-Y. Hwang, “Efficient hardware

optimization algorithm for fixed point digital signal processing ASIC

design,” Inst. Elect. Eng. Electron. Lett., vol. 32, no. 11, pp. 992–994,

May 1996.

[118] Y. C. Lim and S. R. Parker, “Finite word-length FIR filter design using

integer programming over a discrete coefficient space,” IEEE Trans.

Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 661–664, Aug.

1982.

[119] D. Menard, and O. Sentieys, “A methodology for evaluating the

precision of fixed-point systems,” Proc. IEEE Int. Conf on Acoust.,

Speech, and Signal Processing, vol. 3,2002. pp. 3152-3155.

[120] M. A. Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic

word length optimization procedures,” Proc.IEEEInt. Sym. Circs.

andSys, 2002, vol. 2, pp. 612 -615.

[121] C. Shi, and R. W. Brodersen, “A perturbation theory on statistical

quantization, effects in fixed-point DSP with nonstationary inputs,”

IEEE Int. Sym. Circs. and Sys, 2004.

[122] C. Shi, and R. W. Brodersen, “Floating-point to fixed-point conversion

with decisipn-errors due to quantization,” IEEE Int. Conf on Acoust.,

Speech, and Signal Processing, 2004.

[123] B. Lee and N. Burgess, “Some Approximations on Taylor-Series

Function Approximation on FPGA,” Proc. Asilomar Conf. Circuits,

Systems, and Computers, vol. 2, pp. 2198-2202, 2003.

[124] A. Tzidon, I. Berger and Y.M. Yoeli, “A practical approach to fault

Detection in combinational circuits”, IEEE Trans. Comput., vol. C-27,

pp. 968-971, Oct. 1978

 200

[125] H. Choi and W. P. Burleson, “Search-based wordlength optimization

for VLSI/DSP synthesis,” in Proc. VLSI Signal Processing, La Jolla,

CA, 1994, pp. 198–207.

[126] M.-A. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie, “An automatic

word length determination method,” in Proc. IEEE Int. Symp. Circuits

and Systems (ISCAS), Sydney, Astralia, 2001, vol. 5, pp. 53–56.

[127] M. Berz and G. Hoffstätter, Computation and application of Taylor

polynomials with interval remainder bounds, Reliable Comput. 4 (1998)

83–97.

[128] A. Hosangadi, F. Fallah, and R. Kastner, “Energy Efficient Hrdware

Synthesis of Polynomial Expressions”, in Int’l. Conf. on VLSI

Design, pp. pp. 653–658, 2005.

[129] Xing X W, Jong C C. “Using symbolic computer algebra for

subexpression factorization and subexpression decomposition in

high-level synthesis”. Proceedings of the IEEE International

Symposium on Circuits and Systems (ISCAS’ 05), Kobe, 2005,

pp.5645-5648.

[130] Hosangadi A, Fallah F, Kastner R. “Optimizing polynomial

expressions by algebraic factorization and common subexpression

elimination”. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 2006; 25(10), pp.2012-2022.

[131] M. Gok, M.J. Schulte, P.I. Balzola, and R.W. Brocato, “Efficient

Integer Multiplication Overflow Detection Circuits,” Proc. 35th

Asilomar Conf. Signals, Systems, and Computers, pp. 1661-1665,

2001.

[132] Y.H. Cha, G.Y. Cho, H.H. Choi, and H.B. Song, “N Bit Result Integer

Multiplier with Overflow Detector,” IEE Electronic Letters, vol. 37, pp.

940-942, July 2001.

[133] Erick L. Oberstar, “Fixed-Point Representation & Fractional Math”,

Aug. 2007

[134] Randy Yates, “Fixed-Point Arithmetic: An Introduction”, Jul. 2009
[135] K. Radecka and Z. Zilic, "Verification by Error Modeling: Using

Testing Techniques for Hardware Verification" , Kluwer Academic

Publishers, 2003.

 201

[136] A. Veneris and M. Abadir, “Design Error Diagnosis and Correction via

Test Vector Simulation”, IEEE Transactions of CAD of Integrated

Circuits and Systems, 18(12), pp. 1803-1816, 1999.

[137] Synopsys Inc, “Co-centric Fixed Point Designer Datasheet”, 2002.

[138] M. Huhn, K. Schneider, Th. Kropf and G. Logothetis, “Verifying

Imprecisely Working Arithmetic Circuits”, Proc. Design Automation

and Test Europe, pp. 65-69,1999.

[139] T. Damarla, and M. Karpovsky, “Fault Detection in Combinational

Networks by Reed-Muller Transform”, IEEE Transactions on

Computers, 38(6), pp. 788-797, Jun.1989.

[140] G. Even and W. J. Paul, “On the Design of IEEE Compliant Floating

Point Units”, IEEE Trans. Computers, Vol. 49, No. 5, pp. 398-413,

May 2000.

[141] Y. A. Chen and R. Bryant, “ACV: An arithmetic circuit verifier,” in

Proc. ACM/IEEE Int. Conf. Computer-Aided Design, San Jose, CA,

Nov. 1996, pp. 361–365.

[142] A. J. Al-Khalili; Slides of “Digital Systems Designs and Synthesis”,

Concordia University.

[143] M. Huhn, K. Schneider, Th. Kropf and G. Logothetis, “Verifying

Imprecisely Working Arithmetic Circuits”, Proc. Design Automation

and Test Europe, pp. 65-69,1999.

[144] L. Entrena and K-T. Cheng, “Combinational and Sequential Logic

Optimization by Redundancy Addition and Removal”, IEEE

Transactions on CAD, 14(7), pp. 909-916, Jul. 1995.

[145] T. Damarla, “Generalized Transforms for Multiple Valued Circuits

and their Fault Detection”, IEEE Transactions on Computers, 41(9),

pp. 1101-1109, Sep. 1992.

[146] T. Kropf, “Introduction to Formal Hardware Verification”, New York,

Springer, 1999

[147] T. Larrabee, “Test Pattern Generation using Boolean Satisfiability”,

IEEE Transactions on CAD of Integrated Circuits and Systems, 11(1),

pp. 4-15, Jan. 1992.

[148] C. Lee, “Representation of Switching Circuits by Binary-Decision

Programs”, Bell Systems Technical Journal, vol. 38, pp. 985-999, July

 202

1959.

[149] Z. Zilic and Z. G. Vranesic, “A Deterministic Multivariate

Interpolation Algorithm for Small Finite Fields”, To appear in IEEE

Transactions on Computers, Sep. 2002.

[150] http://en.wikipedia.org/wiki/Simulation#Engineering.2C_technology

or process_simulation

[151] http://en.wikipedia.org/wiki/Hardware_emulation

[152] http://en.wikipedia.org/wiki/Satisfiability_problem

[153] SoftJin Infotech Private Limited; “Enabling RTL-to-gate equivalence

checking”.

[154] Swaroop Ghosh, Swarup Bhunia, Kaushik Roy; “Low-Power and

Testable Circuit Synthesis Using Shannon Decomposition”, ACM

Transactions on Design Automation of Electronic Systems,

2007vol.12(no.4)

[155] http://en.wikipedia.org/wiki/Formal_verification

[156] http://en.wikipedia.org/wiki/Floating_point

[157] M. Boule and Z. Zilic, "Generating Hardware Assertion Checkers for

Hardware Verification, Emulation, Post-Fabrication Debugging and

On-Line Monitoring" , Springer, 2008. ISBN: 978-1-4020-8585-7

[158] K. Radecka and Z. Zilic, "Verification by Error Modeling: Using

Testing Techniques for Hardware Verification" , Kluwer Academic

Publishers, 2003. ISBN: 978-1-4020-7652-7

[159] Morin-Allory, K.; Boule, M.; Borrione, D.; Zlic, Z.; “Proving and

disproving assertion rewrite rules with automated theorem provers”,

HLDVT '08. IEEE International, 19-21 Nov. 2008, pp: 56 - 63

