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Abstract 

 

This thesis investigates the use of averaging techniques in the development of 

clock distribution networks and an on-chip clock skew measurement circuit. Our flexible 

clock distribution network can be used in both single clock and multiple clock integrated 

circuit applications. The design moves away from clock trees, using a pair of reference 

clocks traveling in opposite directions to perform clock synchronization on a daisy-

chained (serial) clock distribution line. By synchronizing each local clock edge to a 

position directly in between the forward and reverse reference clock edges, we 

demonstrate that sub-10 ps variance in clock arrival times can be achieved between 

local clocks. The design provides a scalable and simple-to-layout solution with multi-

point skew compensation useful for large designs. The system provides the benefits of a 

closed-loop clock de-skewing solution by compensating for process, temperature and 

power supply variations, with the power savings of an open-loop solution at run-time.  

Our technique allows routing switches to be included in the clock path, permitting 

the post-silicon re-sizing and re-shaping of clock domains. Localized clock switches or a 

complete chip-wide switch mesh can be used to re-route clock signals – a capability that 

is impossible without our daisy-chained clock network. We investigate a clock network 

that emphasizes flexibility and reconfigurability without sacrificing tolerance to clock 

skew. We show that this approach is realizable with transistor-level schematic and 

extracted circuit structures in TSMC's 180 nm standard process. We also develop a 



 

modeling infrastructure from which we can create a variety of clock network 

configurations and synthesizable clock network controllers for arbitrary applications 

using ModelSim and Quartus II.  

An on-chip clock skew management system to detect and potentially correct 

clock skew between selected points on an IC is also investigated. Our system, BICSS, 

aids in the debugging of timing errors that may be discovered during testing due to the 

added visibility of the on-chip clock signals and can repair otherwise defective dies using 

high-resolution delay lines in the clock path. BICSS is unique in its ability to detect, 

measure and compensate for clock skew using a single all-in-one solution. 
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Abrégé 

 

Cette thèse étudie une technique de moyennes pour créer un système de 

distribution d'horloge et un circuit pour mesurer le désalignement de phase d'horloge sur 

circuit intégré. Notre circuit de distribution d'horloge est polyvalent et peut être employé 

pour les systèmes avec une horloge simple ou des horloges multiples. La conception 

s'éloigne des circuits de distribution par arbres, utilisant une paire de signaux de 

référence voyageant en directions opposées pour corriger le déphasage de chaque 

horloge répartie linéairement sur la puce. En synchronisant chaque front ascendant 

d'horloge locale directement entre ceux des signaux de référence, on démontre que le 

déphasage peut-être réduit en dessous de 10 picosecondes. La conception permet une 

distribution d'horloges qui est simple à appliquer et extensible. Cette démarche corrige 

les variations de processus, d'alimentation et de température, fournissant la correction 

du désalignement de phase systématique de chaque tranche de la distribution d'horloge.  

Notre technique permet l'introduction des commutateurs de cheminement pour 

commuter les trajets d'horloge et changer la grandeur et forme des domaines d'horloge 

après la fabrication d'un circuit intégré. Des commutateurs localisés ou un réseau de 

commutateur en maille qui couvre le circuit au complet peuvent être utilisés – deux 

possibilités qui sont impossibles sans notre réseau connecté en série. Notre recherche 

souligne la flexibilité et la reconfiguration dynamique d'un réseau d'horloge sans sacrifier 

l’alignement de phase des signaux d'horloges locaux. Nous prouvons que cette 
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approche est réalisable avec des conceptions niveau schémas et niveau circuits-

extraites utilisant le processus de fabrication de 180 nanomètre de TSMC. Nous avons 

également conçu avec ModelSim et Quartus II un modèle pour étudier des diverses 

configurations de réseaux d'horloges et pour créer des contrôleurs réalisables.  

Un système sur circuit intégré qui peut détecter, mesurer et corriger la différence 

de phase entre les horloges d'endroits présélectionnés dans le circuit est aussi conçu. 

Notre système, BICSS, peut réparer les puces autrement défectueuses utilisant des 

lignes à retard à haute résolution. BICSS peut aider à éliminer des erreurs de 

synchronisation qui peuvent être difficilement découvertes pendant l'essai grâce à la 

visibilité supplémentaire que le système permet.  
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Chapter 1:  

 

Introduction 

 

 

 

 

“Much may be done in those little shreds and patches of time which 

every day produces, and which most men throw away.” 

- Charles Caleb Colton [1] 

 

Coordinating activity in a digital integrated circuit is a fundamental problem in 

circuit design. Modern integrated circuits (ICs) use a clock as a common synchronization 

signal to coordinate events within the device’s datapath. Among their many uses, clocks 

can be used by functional blocks to indicate when the data it requires is ready to be 

processed, to divide a task into smaller ones requiring more processing cycles but 
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permitting faster execution of each individual step, or to avoid signal races by preventing 

data from being used before it is stable. Traditionally, high performance circuits are 

designed to have the highest clock frequency possible, but with newer technologies, 

more emphasis has been placed on the amount of work or operations that can be done in 

a given amount of time. However, as clock frequencies continue to increase due to newer 

integrated circuit process technologies, the percentage of unused time in each clock 

period continues to increase largely due to timing uncertainty in the circuitry designed to 

transport clock signals to each circuit block. Any uncertainty in clock arrival times must be 

reserved within a clock period to ensure the correct operation of the device. Since no 

computation can take place during this reserved time, it is important to minimize the 

amount of unused computation time, making the clock distribution network (CDN) in an IC 

among the most important components in any synchronous digital system due to its direct 

effect on circuit performance and functionality.  

Clock networks must broadcast a clock signal throughout an IC minimizing clock 

uncertainty, consuming as little power as possible and providing consistent signal 

characteristics such as rise time and duty cycle. Further, the system must be robust and 

easy to implement. Currently, the most common design approach for clock networks 

relies on automated clock tree synthesis methods that are tailored to a fixed silicon 

implementation with a rigid clock network using user-specified parameterization. The 

outcome is a fixed layout clock tree that is difficult to modify once created, often requiring 

complete re-implementation of the network for every iteration of the design. Once 

fabricated, absence of flexibility in the clock distribution poses a problem on two major 
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fronts: first, errors or process variation in the silicon cannot be corrected; second, 

adapting a design to a variety of configurations and applications become limited by the 

lack of flexibility in the clock network. This is especially true with the ever-increasing shift 

to flexible design methodologies that use programmable devices for reconfigurable 

computing applications.  

 

1.1. Problem description  

With the decreased cost and increased availability of silicon area, ICs have 

become significantly more complex in recent years. With the increase in popularity of 

“system-on-chip” designs, a single modern IC is capable of doing the job of many of its 

predecessors and the potential versatility of a system today is unparalleled. However, it is 

difficult for today’s clock distribution networks to cope with flexible, reconfigurable and 

multi-application integrated circuits due primarily to the fixed tree-based methodologies 

used to minimize clock arrival time variation, or clock skew. With modular design 

strategies, circuit components may derive from many distinct sources such as intellectual 

property (IP) blocks [2] with little knowledge concerning the internal circuit characteristics 

available to IC architects. Field-programmable gate arrays (FPGAs) allow flexible logic 

and clock domains and avoid the upfront design costs of application specific designs, but 

when compared to the application specific integrated circuits (ASICs), they require larger 

devices, consume more power and cannot achieve the same performance. In addition, to 

create flexibility in their clock networks, FPGAs must allow for more significant variation in 
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clock signal arrival times, which is unexploited computation time. Balancing flexibility and 

low skew can pose a significant challenge to clock networks and has not been 

extensively explored in existing designs. 

Today, an ever increasing amount of the ASIC design flow is spent on testing and 

verification challenges due to the complexity of the problem: every 10% increase in 

design complexity increases the test problem 100% [3]. This figure becomes even more 

significant when one considers that a typical design flow places 70% of the effort on 

verification, compared to 30% for design [4]. According to Collett International Research, 

the first iteration success rate for ICs had decreased from 48% to 34% between 2000 and 

2003 due to the added complexity of designs [5]. Approximately 45% of devices fail 

based on logic errors, 33% of devices fail due to fast or slow signal paths and 10% of 

devices fail due to errors in the clock network. It then makes sense to take advantage of 

the low cost of silicon area to consolidate multiple designs into one, validate them 

together, effectively distributing development costs over multiple product lines. This 

silicon reuse application is similar to platform-based design methodologies and allows 

personalization of a single device for a number of possibly unrelated applications. ICs 

with defective sections can be binned to applications that do not require the defective 

component. Some small changes can be performed after silicon implementation to 

existing clock networks with simple “pruning” or removing of clock branches, but the 

modifications required will usually alter the loading of the clock or the frequency required, 

which necessitates the creation of a new CDN. Instead, when a single silicon design is 
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used for multiple applications through the use reprogrammable components and 

processors, the availability of flexible clock distribution networks is useful.  

 

1.2. Thesis objectives  

The goal of this doctoral project was to create a flexible clock distribution network 

that could be used in ASICs, FPGAs or other applications without sacrificing the low clock 

skew performance achievable with today’s clock networks. The desired result is a clock 

network where every region can be connected to and disconnected from one-of-many 

clock regions post-silicon, introducing significant flexibility to the clock distribution 

network. In FPGAs, the benefit of flexibility in the clock network could add additional 

functionality to current designs. In ASIC applications, the goal is to create a single design 

that can be reconfigured dynamically for different tasks or programmed at the factory for 

different applications. Consider the implementation of a single processor design with 

multiple components such as Bluetooth, USB, Firewire, JTAG, floating point arithmetic 

units and video encoders. The idea was to not only create blocks which could be included 

and discarded, but potentially shared between multiple clock domains, all while 

maintaining adequate skew compensation for all the leaves in a clock domain. Such a 

configuration would also allow micro-clock regions, where every component could 

operate at or near their minimum frequency considering its operating requirements 

resulting in a decreased average clock frequency for the design - a helpful trait in 

minimizing overall energy consumption [6]. 
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One challenge in creating such a system is moving away from clock trees and 

finding other approaches to distributing a clock signal on an IC: one that allows routing 

switches to be included in the clock path to connect clock subregions together easily and 

arbitrarily. A switch mesh can be used to re-route clock signals, but this method requires 

a daisy-chained approach that will create skew between every clock region and will call 

for a complete change in the approach used to minimize skew in clock networks. No 

longer would balancing global clock trees be sufficient. We want to first develop a 

methodology to make serially-distributed clock domains possible, and next want to show 

that this approach was realizable with transistor-level circuit structures and we finally want 

to create a modelling infrastructure from which we could create a variety of clock network 

configurations for arbitrary applications. We explore both single clock and multiple clock 

reconfigurable systems. This is the first investigation of a clock network that emphasizes 

flexibility and reconfigurability without sacrificing tolerance to clock skew. Finally, given 

that process variance can occur between ICs (inter-die) and across a single IC (intra-die) 

for any clock distribution network, we want to look at a low-cost method to determine the 

quality of a clock network using an on-chip skew measurement approach known as 

BICSS. BICSS provides post-silicon debug capability of clock distribution networks that 

can aid in diagnosing timing errors that may be discovered during testing. Both BICSS 

and our serial dual reference signal clock distribution networks can improve yield by 

providing post-silicon repair capability to the clock networks of integrated circuits suffering 

from certain timing errors.  
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1.3. Statement of original contributions  

 

1.3.1. Single clock averaging network 

We present a single clock distribution scheme using a dual reference signal 

approach and a single bi-directional conductor between clock taps. We use an averaging 

technique to allow serialization of clock networks. Daisy-chaining the clock decreases the 

clock interconnect load by eliminating the redundant paths used to equalize delays in 

traditional H-tree distributions. Clock skew is accounted for by actively synchronizing 

each local clock to a position directly between forward and reverse-moving reference 

clocks. The design provides simple-to-layout and scalable multi-point skew compensation 

useful for large designs. Our design is unique in its use of a truly bi-directional line and 

buffering in an averaging distribution. This approach compensates for process, 

temperature and power supply variations, eliminating systematic skew in the clock 

distribution network. In addition, a dual reference line averaging approach is explored to 

maximize the system’s tolerance to device mismatch. Device mismatch is a key 

contributor to clock skew in traditional clock distribution networks due to the large 

distances between ideally-matched devices. We show that our serial clock distribution is 

much better able to cope with mismatch since the distances between ideally-matched 

devices in greatly minimized in our system. Tree-based clock distribution networks are 

also susceptible to skew from cross-chip temperature variation due to the distributed 

buffers that they employ. We also explore a serial clock distribution that is highly tolerant 
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to intra-die temperature changes. This work was initially disclosed in 2006 [7]. Additional 

configurations for performing the averaging of the forward and reverse reference signals 

were first disclosed in 2007 [8]1. 

 

1.3.2. Multiple clock reconfigurable clock network 

We present a multiple clock distribution scheme by expanding our single clock 

design, adding clock routing structures into an averaging clock network to enable re-

shaping clock domains, post-silicon. These reconfigurable, reprogrammable clock 

networks can be used in ASICs, SoCs and FPGAs. The technique is useful for 

reconfigurable computing applications to connect the programmable logic to the clock 

domains of the surrounding logic. The proposed design allows for more flexibility in clock 

networks than current designs such as those used in Altera and Xilinx FPGAs. It 

simplifies layout for irregularly-shaped clock domains and provides flexibility to designers 

by enabling post-fabrication changes to the clock distribution network. This work was 

initially disclosed in 2007 [9]. 

 

                                            
1 While the other listed disclosures were in peer-reviewed publications, the TEXPO poster and extended 

abstract submission were by open invitation. 
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1.3.3. On-chip clock skew detection circuitry 

To verify the characteristics of arbitrary clock networks, we present a Built-In 

Clock Skew System (BICSS) that uses a centralized approach to identify, quantify and 

correct skew using a two-step method. The first step is to assess the time-of-flight 

between the central debug circuitry and each region, or tap under test to account for the 

measurement error due to differences in path length. This measurement error is common 

in existing techniques. Typically, timing errors due to faulty clock networks can be very 

difficult to diagnose due to the intermittent nature of the errors that they may cause. The 

result is a scalable solution that provides silicon debug and repair capability of on-chip 

clock skews. This work was disclosed at the 2008 Design, Automation and Test in 

Europe conference [10]. 

 

1.3.4. Custom circuitry 

We present the schematic and extracted designs of the required custom circuit 

components in a 180 nm standard process. Of particular interest are the phase detectors 

and delay lines that we explored. The phase detectors are unique due to their use in an 

all-digital application with finite skew bound. This application allows the phase detector to 

create and to use a dead-zone period to speed up resolution time. For the delay lines, 

different configurations are explored to emphasize delay matching through multiple delay 

line pairs, signal characteristics and duty cycle retention. A current-starved all-digital 

approach with good linearity between settings and zero static current consumption is 

 - 9 - 



Chapter 1 

 - 10 - 

chosen. The circuits involved in creating our clock distribution networks were primarily 

disclosed in 2007 [11], and partially disclosed in [7]-[10]. 

 

1.4. Thesis organization 

Chapter 2 describes background on clock networks and some de-skew 

approaches, Chapter 3 describes implementation of a single clock domain network using 

our method, Chapter 4 describes a reconfigurable multiple clock network using a clock 

mesh and our averaging approach, Chapter 5 describes an on-chip approach to 

detecting, measuring and compensating for clock skew in an integrated circuit 

environment, Chapter 6 describes a system-level overview of these components 

including HDL models and the required synchronization controllers, and Chapter 7 

highlights some of the circuitry required to implement these systems in a TSMC 180 nm 

technology.  

 

 

 

 

 

 



Background 
 

 

 

 

Chapter 2:  

 

Background  

 

 

 

 

2.1. Introduction  

This chapter outlines the conventions and definitions that we have adopted. It 

also describes some of the existing work and techniques in the area of clock distribution 

and highlights some of the benefits and drawback of each. The information is compiled 

from sources that include [12]-[16]. Other sources are used as indicated. 
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2.2. Clock characteristics 

The clock is a periodic signal, usually viewed as having the shape of a sine or 

square wave used to synchronize two or more events at different locations using a single 

signal in a synchronous circuit. While clocks are used in other applications such as in 

printed circuit board designs, we limit our discussion here to clocks used on integrated 

circuits such as microprocessors, field-programmable gate arrays and application 

specific integrated circuits. Typical high performance analog circuits use sinusoidal 

clocks due to the large number of high frequency harmonics present the near infinite 

slope of a square wave's edge. Some circuits trigger only on the rising or the falling edge 

of the clock (single clock edged devices) and some trigger events on both rising and 

falling edges (dual clock edged devices). We will use the term multiple clock circuit to 

describe a circuit which has a plurality of clock domains, whether these domains be for 

rising, falling or dual edged circuitry. 

Definition 2.1: Clock period: the time, T, between rising or falling edges of a clock 

signal, usually measured as the signal crosses its 50% voltage level. The inverse 

of the clock period is the clock frequency, f, with units Hertz (Hz), or 1/seconds.  

Definition 2.2: Slew rate: The slew rate is the rate of change of a signal’s output 

voltage level at any given point. 

In digital circuits, sinusoidal clocks have low slew rates and these sloped edges create 

delay uncertainty in most logic families including complementary metal-oxide 

 - 12 - 



Background 
 

semiconductor (CMOS) devices, which is the most widely used digital logic family. In 

practice, the clock for digital devices is usually shaped as a non-ideal square wave with 

finite sloped edges, Figure 2.1.  

Definition 2.3: Duty cycle: for a periodic signal, the duty cycle D represents the 

percentage of time τ that the signal spends in a certain state. For digital circuits, 

this state usually refers to the logical ”1” state.  

T
D

τ⋅= 100    (2.1) 

We utilize the logical “1” convention for our duty cycle purposes, and further specify that 

Figure 2.1: Summary of relevant measurements. 
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the logical “1” state includes all of the time that the signal spends above the 50% voltage 

level. Clocks are usually assumed to have 50% duty cycles, spending half the time 

above the 50% voltage level and half the time below. Ideal square waves are impossible 

to achieve on a physical device due to the non-zero resistance and capacitance in any 

and every portion of the clock network. Ideal square waves would have zero rise and fall 

times.  

Definition 2.4: Rise time: the rise time trise_X of a signal is the time interval between 

a signal at location X transitioning from 10% to 90% of the high voltage level.  

Definition 2.5: Fall time: the fall time tfall_X of a signal is the time interval between a 

signal at location X transitioning from 90% to 10% of the high voltage level.  

Transition times are affected by a device’s inherent drive strength, the load being 

switched and external factors such as coupling noise. Higher temperatures and lower 

power voltage will slow down delay through a device.  

Definition 2.6: Propagation delay: If X and Y are two logically connected points on 

a circuit, and sX and sY are signals at locations X and Y, respectively, then the 

signal propagation delay tpXY is the time (either positive or negative) between the 

50% signal transition at X and the 50% signal transition at Y. 

While signal propagation delay can sometimes refer to the time between the 

input of a gate reaching its switching point to the time that the output of the gate reaches 

its switching point, the more generic definition of Definition 2.6 is used exclusively. For a 

 - 14 - 



Background 
 

clocked element, the signal propagation refers to its clock-to-output delay (tCQ) since it 

represents the delay between the clock input passing 50% of its assertion value and the 

data reaching the 50% signal transition at the output. For both clocked and unclocked 

elements, the signal propagation can be taken separately for a high-to-low transition 

(tpHL) and for a low-to-high transition (tpLH). Unless otherwise stated, the propagation 

delay is the arithmetic average between tpHL and tpLH. This elaboration is necessary due 

to the asymmetry between pull-up and pull-down transistor blocks in complementary 

logic design, and the inherent physical differences between the devices used in the 

circuitry, PFET (p-type metal–oxide–semiconductor field-effect transistor) for pull-up and 

NFET (n-type metal–oxide–semiconductor field-effect transistor) for pull-down. For 

signals which are required to have 50% duty cycle, tpHL and tpLH must be equal. If they 

are not, the duty cycle will get shorter if tpHL < tpLH or it will get longer if tpHL > tpLH. These 

measures are summarized in Figure 2.1. 

 

2.3. Clock uncertainty 

Since the clock is used to synchronize events across a circuit, their arrival times 

at all event points ti need to be well-controlled. Preventing uncertainty in clock arrival 

times can add significant complexity to designing robust circuitry since errors could 

render a circuit unusable. Any signal traveling through a given circuit will have a finite 

propagation delay. As a clock is broadcast through the IC, each path from clock source 
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Figure 2.2: 3-register clock routing. 

to ti will be slightly different due to manufacturing and environmental differences. Figure 

2.2 shows how a clock signal can be routed to three clocked devices (R1, R2 and R3) 

within a clock domain. The arrival times of clock and data at a register must be properly 

coordinated for a system to function correctly, since setup or hold time violations can 

occur if the arrival time of either varies from the expected time. 

Definition 2.7: Sequentially adjacent registers: A pair of arbitrary registers 

connected by a signal path consisting exclusively of unclocked components 

without any other registers directly in the path. [12] 

Definition 2.8: Setup time: The setup time (tSU) is the minimum time that data must 

be stable before a clock signal is asserted. 

Definition 2.9: Hold time: The hold time (tH) is the minimum time that data must be 

kept stable after a clock signal is asserted. 

Often, hold time is satisfied as the input data propagates from the previous 

register to the one in question. The time between active clock edges must be long 

enough for data to propagate between sequential registers while satisfying the setup and 
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hold times. The minimum clock period will be the longest such time between any pair of 

sequentially adjacent registers in the system. Due to fan-out and fan-in, there are usually 

many sequentially adjacent registers to any given register in the datapath and every pair 

must be considered. If the propagation delay of a given combinatorial block is tCLi and 

the propagation delay of a given register is tCQi, the clock period required between 

register Ri and Rj is: 

SUjHjCLiCQipij ttttt ++= ),max(    (2.2) 

For the circuit in Figure 2.2, the minimum clock period will be the maximum 

between tp(1,2), tp(2,3) and tp(3,1). In a typical synchronous system, there will be many 

sequentially adjacent paths and they must all be considered when choosing a clock 

frequency, f, for a specific clock domain. 

Definition 2.10: Clock domain: a collection of all sequentially-adjacent registers 

connected to a single clock source. We will consider mutually exclusive sets of 

sequentially-adjacent registers (with no logical connections between them) to be in 

different clock domains even if they connected to the same source clock.  

Definition 2.11: Clock skew: The clock skew between two clock registers Ri and Rj 

is the difference between the clock arrival times ti and tj, respectively. The times ti 

and tj are taken with respect to an arbitrary, but identical reference point. 

Generically, skew is the variation in arrival times for two signals that are supposed 

to arrive simultaneously.  
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jiijskew ttt −=_    (2.3) 

Clock skew is especially important between sequentially adjacent registers since 

it can affect the clock time required between registers.  

ijskewSUjHjCLiCQipij tttttt _),max( +++=    (2.4) 

When the skew is negative (tskew < 0), the data can arrive at register Rj (the destination 

register) early, potentially violating the hold time constraint or causing a race condition 

where incorrect data is latched. This phenomenon can be useful in certain datapaths 

since it increases the time available between clock assertions for tCQ, tCL and tSU, 

permitting longer datapaths between registers with negative skew. This is sometimes 

called beneficial skew. The opposite is true when tskew > 0; this decreases the time 

available between registers. If not taken into account, this can lead to setup time 

violations and potential loss of data. Clock skew can occur due to different line lengths, 

buffer delays, device parameters, noise or environmental variation. Passive parameter 

variations can include changes in resistivity, fringing capacitance and line dimensions. 

Active parameter variation can include changes in transistor threshold voltages (when a 

device switches) and electron and hole mobility of devices (how quickly a device 

changes).  

For Figure 2.2, the clock is traveling in a left to right direction. It will arrive at R2 

after R1 and R3 after R2. This creates beneficial skew for these paths. However, 

between R3 and R1, there will be positive skew. Beneficial clock skew can be designed 
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into a system and used to increase a system’s clock frequency, but only when clock and 

data are moving in the same direction. In a modern synchronous circuit, there are many 

complex inter-dependent register-to-register paths, where it is difficult to provide 

beneficial skew in one area of the circuit without creating harmful skew in another.  

Definition 2.12: Clock jitter: Clock jitter is the deviation of a clock’s output from its 

ideal position. Deterministic jitter is bounded in amplitude and originates from non-

random specific sources such as device imperfections, cross-talk or power-supply 

or grounding problems. Random jitter originates from Gaussian noise components 

in a system such as from substrate or power noise. [17] 

The term jitter applies to a change in amplitude, phase or frequency in a clock 

that occurs from cycle-to-cycle or over longer periods of time. Under the broadest 

definition of jitter, early or late clock arrival times can be considered a form of jitter, but 

the jitter is usually viewed as a temporary phenomenon. This deviation can be periodic in 

nature as long as the behaviour varies from cycle-to-cycle for a given operating 

condition. This interpretation creates a non-overlapping distinction between clock skew 

and jitter. We will apply the term clock skew to a fixed deviation in a clock arrival time, 

caused by process variation, defects, a change in operating temperature or other such 

occurrence. This skew can affect rising edges and falling edges asymmetrically. We will 

apply the term clock jitter to a temporary phenomenon that causes a non-static variation 

in clock arrival time caused by random or predictable phenomena such as a momentary 

drop in the voltage of the power line. It is important to have well-controlled clock arrival 
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times throughout an integrated circuit to ensure correct behaviour. The primary sources 

of jitter are the clock generator (usually a phase-locked loop, PLL) and the effect of 

power supply and coupling noise on the clock buffers [18]. 

 

2.4. Clock networks  

Definition 2.13: Clock distribution network: A circuit pathway that delivers a clock 

signal to every segment of a synchronous circuit that requires it to ensure the 

correct operation of the system. 

In modern integrated circuits, the clock distribution problem is becoming 

increasingly difficult since device behaviour is becoming increasingly variable, both from 

chip-to-chip (inter-device) and from device-to-device (intra-device) within an IC. In deep-

submicron technologies, wire delays do not shrink as quickly as device delays due to 

their thin and tall wires having higher resistance and higher capacitance. Consequently, 

wire delay consumes a greater portion of the clock period and the transportation of any 

signal across a typical die requires longer than one clock period [19]. This fact and the 

ever-increasing fan-out of the clock make distributing clock signals even more 

challenging. Clock power can range from 30-50% [20],[21] in standard high-performance 

integrated circuits, and up to 70% [22] in some specialized devices like FPGAs. The 

most common approach is for synchronous systems to have zero skew between all 

clock arrival points to simplify the timing specification required for the datapath. Even 
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with systems designed for zero skew, it is necessary to design in a safety margin to 

maintain correct circuit behaviour in the presence of clock and data uncertainty, a 10% 

of the clock period rule of thumb is common here [23],[24]. Timing violations that occur 

at the edge of this range are difficult to detect, as they may be device-dependent and 

intermittent, only occurring under certain conditions. Many circuits have had to increase 

tolerances to assure proper operation, which has a negative effect on the performance 

of the system. Modern devices contain many clock domains, which all must be routed 

properly, which adds further complexity to the problem. 

 

2.4.1. Symmetric clock tree 

Symmetric clock trees are the most commonly studied approach to distribute a 

clock signal to a large number of clocked elements in a synchronous circuit. This 

structure takes a source clock and fans it out into n points using a constant wire length to 

every point. From each of these points, the signal branches out again into n wires 

resulting in n2 intermediate end points. This structure continues recursively until all clock 

destinations are reached. The number of branches required along a single path 

represents the number of levels in the clock tree. In a binary or Y-tree, each branch point 

splits into 2 branches with the same size and shape, but possibly different orientation. 

Every branch at a given level should be the same size with similar geometry. In an H-

tree, the source clock is split into two, twice per level. At every split, the outgoing wire is 

placed at a right angle to the incident wire, creating an “H”-like structure. The length of 
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Figure 2.3: 2-level symmetric clock trees. 

wire is constant for every segment at a level and is halved for each subsequent level. 

Each H-structure fans out to 4 branches and uses Manhattan routing since every wire is 

either vertical or horizontal. In an X-tree structure [25], the horizontal and vertical wires 

are replaced by diagonal wires saving interconnect length, provided diagonal wires are 

possible in the technology.  

Examples of these three symmetric tree structures are shown in Figure 2.3. 

Within a clock tree, the clock source is known as the root, the single path that transports 

the signal to the first branching point is known as the trunk, the distribution paths are 

known as branches and the individual clock destinations (usually registers) are known as 

leaves. These trees may be completely passive with no buffering in the signal path but in 

practice, the fan-out is too large to do so effectively. Clock buffers are almost always 

required on the path and they are placed symmetrically across the clock network. They 

may be placed at every level or at arbitrary (symmetric) intervals in the tree. This creates 
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an active tree with inline buffers or repeaters to regenerate weak signals along the clock 

path. To maximize signal integrity, impedances need to be matched at every branching 

point to minimize reflections. Each branch at level i in the tree must fan-out into n 

branches at level i+1 each with n times the impedance of the line entering the branch 

point [22]. This configuration is known as a tapered tree. The clock signal travels from 

root-to-leaf in this network following congruent paths both in wire geometry (width and 

length of all wire segments) and the clock buffer configuration (size, number and 

location) so barring any manufacturing and environmental variation in the paths, the total 

clock delay for each path will be constant, resulting in zero skew between any two paths.  

 

2.4.2. Asymmetric buffered clock trees 

An asymmetric buffered clock tree is the most commonly used form of clock 

distribution for ASICs. The majority of modern clock networks are designed with this 

approach using specialized CAD tools. These tools start with the location of each of the 

clocked elements and generate a suitable tree structure by varying the wire length, the 

buffer sizing and the fan-out at each branch point to achieve near-zero clock skew 

between all of the sequentially adjacent registers. Figure 2.4 shows a typical asymmetric 

clock tree. It is also possible for an automated clock tool to use the design specification 

for each of the clocked elements, specifically the acceptable range of clock arrival times 

considering its dependencies on a device’s sequentially adjacent components. The clock 

layout tool will take this information, also known as a skew schedule, and create a 
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Figure 2.4: Asymmetric buffered clock tree. 

suitable clock tree. While this approach can make use of beneficial skew to increase 

performance, it also creates dependencies on the clock arrival time of many registers so 

that changing one portion of the design could require complete regeneration of the clock 

network.  

 

2.4.3. Clock mesh 

Since devices and interconnect across an IC will exhibit variances in 

characteristics due to manufacturing discrepancies, clock skew might occur due to the 

mismatched clock delays from clock root-to-leaves. The primary sources of the 

mismatch are the clock buffers, specifically the mismatch between buffers that cause 

devices at a given level of the network to switch at different times [26]. One approach to 

counteract this is to shunt all of the buffer outputs at a given level, creating a clock mesh. 

These shunts delay the switching of buffers that are too fast, and speed up the switching 
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of buffers that are too slow. The primary drawback of this approach is the increased 

power consumption caused by the short circuit currents that will exist in the presence of 

device variation. An additional drawback is the large interconnect cost of connecting 

points that get progressively further from one another for every additional tree level. Due 

to the transport delay of the shunt signals, this methodology cannot completely eliminate 

clock uncertainty. However, due to its ability to compensate for some variation in the 

clock network, this is the most commonly applied clock architecture in high performance 

microprocessors despite its cost. This approach usually requires a global clock tree to 

feed the different portions of the mesh with quasi-simultaneous clocks [27].  

 

2.4.4. Resonant clocking 

Resonant clocking is a newer approach to clock networks that requires removing 

all the clock buffers and creating an LC-tank to allow a natural oscillation in the clock 

signal that requires less energy to maintain than a traditional network [28],[29],[30]. In an 

ideal configuration, the energy consumption would be zero, but due to the resistance of 

the metal lines in the network, the configuration is lossy. The LC-tank is formed by 

adding an inductor and using the capacitance of the clock leaves. Resonant clock 

networks have demonstrated power savings of over 50% and IC core power savings of 

between 20-35% when compared to conventional networks [31],[32]. One of the 

drawbacks of the system is its use of sinusoidal clock signals, which can create short 

circuit currents because their long rise and fall times, and are much more susceptible to 
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clock jitter when compared to clocks with sharper edges. Resonant clocking requires 

modified registers and latches that are compatible with sinusoidal clocks [33],[34]. 

Current research in resonant clocking deals with approaches and techniques to minimize 

jitter and noise [30],[35]. 

 

2.4.5. Standing and traveling wave network 

A standing wave clock network presents another approach to distribute clock 

signals [36]. A standing wave is formed by superimposing a forward clock produced by 

an AC voltage source with a return clock, produced by reflecting the forward clock back 

from a ground termination at the opposite end of the conductor. This approach ideally 

creates a zero skew set of clocks along the length of the line with amplitudes that vary 

between 0 and the initial amplitude of the AC source depending of the position of 

sampling [37]. The resulting clocks then need to be regenerated and possibly converted 

to a square wave for use. Certain portions of the clock line’s output will be unusable 

since the low amplitude signal in that area will render it unrecoverable.   

Travelling waves are used in clock networks to create clocks that allow full 

voltage swing at all sampling points. These networks usually use a rotary clock ring 

[38],[39],[40] to create the traveling wave along a pair of conductors separated by a 

series of cross-coupled inverters to regenerate the signals and maintain the oscillations. 

The frequency of each of these rings will vary depending on the line length, so a number 
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of these rings are usually interconnected to create a mesh with greater tolerance to 

variability [41]. The primary drawback of this approach is that unlike with standing wave 

clock networks, the phase of the clock signal will vary depending on the location of the 

sampling and every point in a ring will only be in phase with its corresponding point in 

every other ring. This leads to significant difficulty in designing synchronous circuitry 

using this technology.  

 

2.4.6. Hybrid structures 

Modern clock networks usually use a mixed clocking strategy, pairing one global 

clock routing technique to another local routing technique [42]. A common pairing would 

be a global H-tree followed by a local mesh [43], minimizing the power consumption of 

the mesh while maintaining low local variability. Link insertion [44]-[47] is another 

approach used to shunt selected portions of the clock networks that should have zero 

skew, thereby realizing many of the benefits of clock meshes. Transport delay through 

the shunt wires will prevent this method from eliminating all skew. Typically, the global 

distribution can be constructed using a mesh or tree, and the local network can use a 

tree, mesh or fishbone structure [16]. A fishbone structure has a clock trunk with leaves 

arbitrarily attached orthogonally to the trunk wherever the clock is needed. We will 

denote any connection point between a global and local clock domain as a clock tap. 
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Figure 2.5: Grover's serial clock distribution [48]. 

 

2.4.7. Serial clock distributions 

Serial clock distributions are a less common form of clocking that aligns each tap 

clock to a position directly in between two reference clocks traveling in opposite 

directions (with respect to their phase). This averaging technique was first proposed by 

Grover et al. [48], Figure 2.5. Their scheme uses a 3-wire method with separate raw 

clock, forward reference line and reverse reference line, with the reference lines tied at 

the far end of the clock distribution. However this technique requires two distinct clock 

alignments to synchronize each local tap. First, the pulse interval between the forward 

and reverse signal is found by delaying the forward (UP) signal to align with the reverse 

(DOWN) signal. This interval is halved to create a local half pulse reference signal Phalf. 

The Phalf signals in every clock region will be ideally synchronized due to averaging. 
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Next, the raw clock is aligned to the region’s Phalf signal to generate the local clock. The 

delay is created using a 128-element non-inverting buffer chain. A 128:1 multiplexer is 

used to choose the appropriate tap, setting the accuracy of each alignment to the 

propagation delay through the non-inverting buffer. Another drawback is that reference 

clock lines may exhibit different propagation delay than the raw clock line due to 

differences in geometry and signal frequency. As such, [48] is susceptible to skew from 

wire mismatches between the reference and the raw clock lines. The system’s lack of 

buffering in the clock path also limits the total load, the distance between taps and the 

number of taps that the reference line can spawn.  

Work in [49] uses an averaging approach for synchronizing digital signals using a 

two-wire method. This technique has recently been employed by Banu and Prodanov 

[50] in another configuration that uses a serially distributed layout that is similar to our 

own2, but the averaging technique they use is distinct, using analog multipliers at each 

tap to create the required averaging, Figure 2.6. Their technique provides low skew, but 

creates a set of sinusoidal clocks that are not of full swing and require level shifting 

blocks at each tap to be useful in most designs, similar to standing wave systems. 

Because of the transmission line nature of their clock network, their method does not 

permit the use of buffers or logic within the clock network, making the system very rigid. 

The analog components can consume more power than the digital components 

                                            
2 Banu and Prodanov’s work [50] was published September 10, 2006, shortly after our initial publication [7] 

on August 6, 2006. 
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Figure 2.6: Banu and Prodanov's bufferless approach [50]. 

employed by our system due to non-zero static bias currents. They describe their system 

as one that uses bi-directional signalling, which differs from our use of the term. The 

authors of [50] use the term to describe the transport of signals propagating in opposite 

directions along two wires, where we will use the same conductor (time-multiplexed).  

 

2.4.8. Reconfigurable clocks networks 

All of the previously described networks must be created following the design of 

the logic, and once established cannot be modified since changing the clock delay to 

one register will affect the clock skew between it and every one of its sequentially-

adjacent registers. Present day designs incorporate many clock domains on the same 

die and special consideration is needed when communicating between them. Many 

integrated circuits are designed by combining a number of different blocks from different 
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sources and require that these components work flawlessly with one another for an array 

of different applications [51]. Connecting these components together in different 

configurations based on the specific application is not an easy task for standard IC clock 

networks. Field programmable gate arrays (FPGAs) are generalized devices that may be 

used for a variety of applications, so their clock domains must be flexible to work for a 

variety of applications. For example, the Altera Stratix IV series of FPGAs can support 

up to 16 global clocks that can be routed anywhere on the device and up to 88 regional 

clocks [52]. For the most part, FPGAs use a spine-and-ribs (fishbone) structure to 

connect regional and local registers, so the flexibility created by this approach comes at 

the expense of skew tolerance.   

 

2.5. Skew compensation  

Deep submicron technologies exhibit an ever-increasing susceptibility to process 

variation [53]. When comparing the effect that process variance has on a clock network, 

the variation between individual devices must be examined. While a certain amount of 

die-to-die variation is always present, this does not create skew since every device on a 

die will be equally affected. There is also a discrete component that will exist between 

every distinct device on a die that is roughly proportional to the effective size of the 

transistors [54]. Discrete mismatch will always be present no matter how closely located 

two devices are. With smaller transistor sizes, there is a discretization of the dopant 
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levels in each device leading to greater fluctuations in threshold voltage and 

subsequently in delay through a device. Current mobility and mismatch between devices 

are also phenomena, which can be deemed statistically independent for different 

devices [55]. Finally there is a distance-related component for variation that will increase 

depending on how far devices are from one another. This usually occurs gradually, with 

the possible difference between the behaviour of two devices increasing the further apart 

they are. Two devices located very close to one another will not be greatly affected by 

proximity dependent mismatch. While a 10% of clock period rule of thumb has 

traditionally been assumed for clock skew, this number is easy to surpass with process 

variance in today’s newest technologies [56].  

Programmable clock buffers and interconnect which require post-silicon tuning 

have been introduced to compensate for process variation for selected regions of a clock 

network [57]. Die temperature can also cause significant variation in the behaviour of 

buffers in a clock distribution network. Worse, the die temperature will vary depending on 

local switching activity leading to temperature gradients across the die that will change 

over time. Increased power density in ICs amplifies this problem by making modern ICs 

run hotter than before. Localized temperature spikes, or hotspots can severely impact 

the skew in a clock network [58]. Temperature and process variance can result in delay 

changes of over 50% for sub-65 nm devices [59]. The authors of [60] have developed a 

clock network with self-adjusting delay buffers to cope with temperature variation, but 

their methodology is designed to only cope with intra-die temperature fluctuations and 
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not localized temperature gradients. Traditional dynamic temperature management 

techniques are limited by the accuracy of their temperature sensors [61]. 

Traditionally, clock network generation tools distribute clock buffers according to 

user-defined specifications using a combination of matching wire length and adjusting the 

placement and sizing of clock buffers to achieve the desired delay, but variability is 

making this passive skew reduction technique less effective. Some clock networks use 

active clock skew reduction techniques to reduce the effect of process variation. Active 

clock skew reduction techniques use controllers and feedback structures to modify the 

local clocks and provide de-skewing capability, usually using delay lines to perform the 

adjustment. This technique can use significant system resources during operation due to  

the large number of local clocks that must be synchronized in a clock distribution network. 

Some active techniques do not therefore operate on all of the clock taps, limiting their use 

to de-skew only two clocks with respect to one another [62], such as with two halves of a 

clock tree. Multi-point skew reduction techniques have become more popular since they 

are better able to cope with the large die and high-speed clocking environments that are 

common [63], but any controllers required must typically be either re-used or replicated 

for each tap. The overhead of active skew reduction techniques translates to higher 

power consumption than their passive counterparts.  

Some schemes simply employ skew reduction techniques on existing tree 

distributions [64],[65], but can require extra wiring or a power overhead due to their heavy 

resource usage. The configuration of Kapoor's approach [66] uses a distribution tree and 
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a co-located feedback tree and employs skew compensation at every leaf as shown in 

Figure 2.7. Some schemes perform root-to-leaf skew compensation at the root or leaf for

 

Figure 2.7: Kapoor's skew-tolerant clock tree [66]. 
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Figure 2.8: Lee's skew compensation scheme [67]. 

 each local area on the IC [67],[68]. This configuration creates a need for a feedback line 

from every synchronization point to the source. These feedback lines are subject to the 

same trace matching discrepancies present with H-trees, introducing error to the skew 

compensation technique [64]. The star configuration of Lee's system [67] employing skew 

compensation at the root for every leaf is shown in Figure 2.8.  

 

2.6. Clock power  

Increased die size and device density of integrated circuits has led to a marked 

increased in the power consumption of deep submicron designs. The clock can consume 

the largest portion of on-chip power, often over 25% of the total power [69]. There are 

three broad sources of power consumption in a device: short-circuit power Psc, leakage 
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power Pleak and dynamic switching power Pdyn. All three of these also contribute to clock 

power Pclk. Short-circuit power results from crow-bar currents that occur when both pull-

up and pull-down portions of a gate simultaneously conduct while the input voltage is 

transitioning.  

Short circuit power is proportional to Vdd-|Vtn|-|Vtp|, the clock frequency, and the 

rise and fall times of the input signals. Vdd is the supply voltage, and Vtn and Vtp are the 

threshold voltages of the pull-down and pull-up devices, respectively. There is no short-

circuit current when either pull-up or pull-down blocks are not conducting and it is 

impossible for both of these to conduct when the sum of their threshold voltages exceeds 

the supply voltage. Since current technologies rely on decreased supply voltage, short 

circuit power is decreasing as Vdd approaches |Vtn|+|Vtp|. Another useful design approach 

is to use signals with high slew rates, ensuring that input signal transition times are not 

much longer than the output signal transition time.  

Leakage power creates non-zero static current in an IC. There are three major 

contributors to leakage power: gate oxide leakage which allows current to flow through 

the gate of devices, sub-threshold threshold which allows current between transistor drain 

and source when devices are supposed to be in a non-conducting state and junction 

leakage across the reverse-biased diodes in the diffusion area of the transistors 

[13],[70],[71]. Generally speaking, leakage power is increasing in newer technologies due 

to a decrease in threshold voltage and an increase in operating temperature. However, 

the total power consumption decreases overall due to lower supply voltages. Clock 
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networks are less affected by leakage power than logic circuits since clock power is 

dominated by the dynamic power of the clock buffers due to the large capacitances 

involved. As a result, clock networks are better able to take advantage of decreased 

supply voltages and the proportion of device power consumed by clock networks will 

decrease in future process generations [69].  

Dynamic power consumption is the dominant factor in overall power consumption 

in an integrated circuit, decreasing relative to the total power consumed, typically around 

80%, but increasing absolutely due to the greater number of devices on an IC and the 

increase in the operating frequency of newer devices. The dynamic power in an 

integrated circuit is:  

fVCKP ddLdyn ⋅⋅⋅= 2    (2.5) 

where K is a configuration constant between 0 and 1, CL is the total capacitance being 

switched, Vdd is the supply voltage and f is the operating frequency. The CL term includes 

clock driver input capacitance, clock interconnect capacitance and the capacitance of the 

clock loads [72]. Sometimes K and CL are combined into a signal term describing the 

average capacitance being switched from 0 to 1 during each clock cycle. Charge is 

sourced when the output capacitance toggles from 0 to 1 and sunk when it is transitions 

from 1 to 0, so power is only consumed once every two transitions. For logic, this means 

that each output charge/discharge cycle will take at least two clock cycles since the 

output value is only expected to change once per clock cycle. Glitching in the logic 

circuitry can create spurious transitions resulting in additional power consumption. 
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Typically then, K in Equation 2.5 will be 0.5*q, where q is the probability of the output 

toggling during a clock cycle, or switching activity. For a clock network, the devices in the 

clock path will toggle twice every clock cycle. As such, the switching activity is of the clock 

network logic is 2 and K is 1! This results in significant dynamic power consumption for 

clock networks since the switching activity and the total capacitive load in a clock network 

is large. Clock power due to interconnect wiring will increase for newer technologies as 

inter-wire capacitance increases due to closer wire spacing and taller wires [69]. While 

dynamic power can be reduced by shrinking the clock buffers, this has a negative effect 

on short circuit power since each clock buffer will be forced to switch larger capacitances 

and the signal transition times will fall as a result. Power can also be decreased by 

operating at lower voltages, but then leakage power will increase. Currently, most of the 

power consumed by an IC is dynamic with approximately 10% going to short circuit 

consumption [73]. Leakage accounts for approximately 30% of dynamic power [74].  
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3.1. Introduction 

The clock distribution problem represents an increasingly difficult challenge due to 

progressively more complex systems, decreased power supply voltages, larger die sizes 

and higher clock frequencies [66],[75]. Traditionally, passive forms of clock skew 

reduction were used to balance all the leaves in a clock distribution network by a 

combination of matching wire length and adjusting clock buffer delays [67],[76]. While the 

performance of automated clock layout tools has improved significantly, the problem has 
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Figure 3.1: Underlying concept of averaging. 

been complicated by the move to a component-based design approach using pre-

designed blocks and IP cores from several pre-existing sources. Clock buffer mismatches 

and in-die process variations have become a limiting factor in maintaining tight skew 

tolerance [14],[68],[77]. Buffer mismatch due threshold voltage (Vt) and the short-cicuit 

drain current (Idss) increase with newer silicon generations and the mismatch accumulates 

as clock signals propagate through the distributed buffers in a design [78]. The 

considerations for appropriate clock distribution networks include clock signal 

characteristics such as fast transition times, a balanced duty cycle and low clock skew 

[79]. Floorplanning requirements add additional complication to the clock distribution, 

since matching clock trace lengths over irregularly shaped domains is difficult.  

We discuss here an alternative to traditional H-trees, incorporating a dual 

reference signal based clocking strategy to distribute clocks serially, using averaging to 

eliminate systematic skew, post-silicon. Figure 3.1 shows the concept behind averaging. 

The reference clocks are treated as pulses for presentation purposes, but they are, in 
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fact, periodic with equal duty cycles. The technique that we employ facilitates the 

construction of multi-tiered clock distribution networks, such as those in ICs using multiple 

IP blocks. We use one bi-directional line to connect every tap, so any local process 

variation present in the line affects all taps equally, and is thus not a source for additional 

skew. Portions of the clock domain can be pruned easily by pausing the clock at the 

appropriate taps without disturbing the rest of the clock domain. While [66] and [67] are 

based on a similar idea, their use of different forward and reverse clock lines between 

taps can lead to trace length discrepancies that can hurt the effectiveness of the skew 

compensation circuitry.  

This approach compensates for fixed global and local process variation, 

temperature and power supply variations of the distributed buffers in clock networks, 

which can create significant skew [80]. Our clock distribution has all the benefits of active 

skew compensation techniques, using a closed loop synchronization approach to align 

the clocks for each domain. During operation, the circuitry operates in an open loop with 

the synchronization hardware disabled, providing significant power savings – a typical 

benefit of passive clock networks. We are able to easily incorporate clock gating at each 

tap into our design, without disrupting the loading of the clock drivers or increasing wiring 

cost [81]. Our system can also provide many of the benefits of clock root gating since 

large portions of the serial clock line can be paused [82]. The system can also be used 

to provide beneficial skew between taps or to balance different local clock distribution 

components for different tree depths or latencies, such as those found when 

incorporating multiple IP blocks [63]. In this chapter, we examine the design 
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requirements and operating characteristics of reference-based clocking: our dual 

reference signal averaging clock distribution network. 

 

3.2. Implementation approach 

To implement a single clock design using our dual reference signal averaging 

clock network, the clock domain is divided into n smaller subsections, each of which is 

connected to a tap. Each of these subsections should be roughly equal in size to help 

match the tap-to-leaf delays for every tap, but this can also be achieved through buffer 

placement and sizing for arbitrarily sized local regions. The clock taps do not need to be 

distributed in close proximity, nor do they need to be regularly spaced. The smaller the 

area of these subregions, the more taps are required, but there is less variability within 

each subregion.  

The underlying concept of our clock network is shown in Figure 3.2 for four taps. 

Each tap contains the necessary hardware to delay the local clock and to route the 

reference clocks between subregions. All the taps are connected together as a “thread” 

using a single wire to create a clock domain with the required shape and size. Both the 

region 1 input node (forward clock) and the region n input node (reverse clock) are tied 

to the global clock. Since the clock distribution line has a constant delay (K+δs) over its 

entire length (where δs is the delay through a switch), if the delay of the forward clock at 

a tap is δ+, the delay of the reverse clock will be δ−=K-δ+. For every tap, the local clock is 
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Figure 3.2: Reference-based clocking for a single clock domain. 

 
aligned to the midpoint between the forward and reverse reference clocks, resulting in 

an averaging of the temporal positioning of the clock edges. For every tap, the resulting 

rising edges all occur at a fixed time: 

( )
222
KK

=
+−

=
+ +++− δδδδ    (3.1). 

Since the reference clocks are distributed along a single signal path, the delay 

between two adjacent taps can be very closely matched for signals traveling in either 

direction. The bi-directional clock line can be routed around obstacles easily without 

compromising skew tolerance since the clock taps are daisy-chained. The clock threads 

can cross other clock domains easily and are simple to lay out. The clock distribution 

network requires three distinct phases to work properly: synchronization, calibration and 

operation. These are discussed in the following sections. 
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3.2.1. Synchronization 

During the synchronization phase, each clock tap is sequentially calibrated, 

starting with the region 1 tap and ending with the region n tap. The forward and reverse 

delays are all taken modulo the clock period to account for the periodic nature of the 

signals. Synchronization for each clock thread can be achieved by predicting what each 

source-to-tap delay might be and hard-coding the required delay line setting into the 

system. This method has a number of benefits including zero synchronization time and 

reduced circuitry overhead by eliminating the reverse path of the clock thread, the phase 

detector and the control circuitry. However, it does not compensate for any variation-

induced skew, but it would still be useful for distributing irregularly shaped clock domains 

where clock skew is not a great concern.  

To take full advantage of reference-based clocking, online skew calibration should 

be included. To produce a fully dynamic system, each tap requires a clock routing switch 

which can be set to FORWARD, REVERSE (bypass) or SYNCHRONIZE, a delay line, a 

phase detector and control circuitry. When set to FORWARD, the forward reference 

signal is routed from the current tap (tap i ) to the next tap (i+1). When set to REVERSE, 

the reverse reference signal is sent from the current tap to the previous tap (i-1). When 

sent to synchronize, both the forward and reverse reference signals are routed to the 

current tap. This configuration allows the forward clock to be averaged using delay lines.  
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3.2.2. Calibration 

With all the taps synchronized, the forward clock is routed through the entire clock 

thread for the calibration and operation phases. The reverse clock is disabled. Because 

of the nature of the synchronization method, the resulting synchronized tap clocks can 

either have positive or negative polarity with respect to one another, depending on the 

relative phase of the reference clocks at each individual tap. This result could be sufficient 

for a dual clock edged device, but for a single clock edged device, a calibration phase 

may be required.  

To perform the polarity adjustment, the system could examine each pair of 

adjacent clocks individually and perform an inversion for the higher order (number) clock, 

starting with the output of taps 1 and 2 and ending with the clocks in taps n-1 and n. The 

relative phase is known a priori for most configurations, so the simplest method would be 

to determine the required polarity in advance and program the system accordingly. 

 

3.2.3. Operation 

Following calibration, the components of the clock distribution that are unused 

during operation such as the synchronization controller, phase detector and calibration 

circuitry are disabled to save power. The taps in the clock domain are not affected by a 

fixed phase shift in the global source clock, since this simply delays or advances all the 

clocks in a domain by a constant amount. The resulting phase shift in the clock domain 
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will equal the shift in the global clock. All of the clock domains derived from this global 

clock will shift accordingly, maintaining a fixed phase relation between the clock domains. 

For clocks derived from an unrelated global clock, the phase relation will change with 

respect to the clocks in our serial clock domain. However, as with most other such 

instances, synchronizers would typically be employed between these clock domains to 

enable inter-clock domain communication [83] since it is difficult to maintain a constant 

phase difference between two unrelated clocks. Centroid layouts and properly sized 

devices can greatly minimize local intra-die process variation, assuring constant forward 

path and reverse path delays through the clock routing switches. Inter-die variations can 

be compensated for using dynamic tap synchronization. The primary source of skew for 

our method is the in-die process variation that can occur between the delay line pair used 

for averaging. Variation can alter the drive strength, loading or delay of devices, so it is 

critical to minimize its impact. 

 

3.3. Wire length savings 

Our method goes beyond just eliminating systematic (structural) offsets, as is the 

case with most active de-skewing circuits [84], by compensating for any line or non-local 

transistor imbalances that may exist on the global clock routing path better than any 

other active skew reduction technique. Because the reference-based distribution can 

simply route a clock in the shortest possible path to each tap, there are significant wire 

savings with respect to a traditional H-tree that requires redundant wires to match the 
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Figure 3.3: A 64-tap H-tree. 

path length from source to every tap. It is important to consider wire length since 

decreasing wire length will also decrease the amount of capacitive loading in the clock 

network. In deep submicron devices, interconnect and device delays are roughly equal 

contributors to total device delay [85]. An averaging clock distribution can contain an 

arbitrary number of nodes and can be laid out manually or using standard cells, whereas 

H- or other tree solutions require special balancing tools to generate synchronized 

clocks. Figures 3.3 and 3.4 show how a 64-tap H-tree distribution compares with our 

reference-based one. A decrease in wire length will reduce clock load. Replacing an H-

tree with 5 levels or more with a reference-based design can save over 30% of the clock 

wire length. Table 3.1 shows a summary of the wire lengths (in units) that can be 
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Figure 3.4: A 64-tap reference based clock distribution. 

achieved between different depths or levels (n) of square H-trees and comparably-sized 

referenced-based clocking solutions assuming unit length spacing between each of the 

clock taps. The wire length numbers assume 2n-1 length wires for each level of the tree 

[86]. These numbers ignore the tap-to-leaf distributions, which will be identical for both 

implementations. The wire length is governed by Equation 3.2 for serial clocks and 

Equation 3.3 for H-tree clocks. 

2nLength linear =   (3.2). 

)12(23 1 −⋅⋅= − nn
HLength   (3.3). 
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The wire length has a direct influence on the power consumption of the clock distribution 

network, since a longer wire length has a larger capacitance that must be switched twice 

per clock cycle. The variable wire length is reflected in the CL term in Equation 2.5. 

H-tree depth Number of taps Wire length 
(H-tree) 

Wire length 
(serial) Savings (%) 

1 4 3 4 -33.33 
2 16 18 16 11.11 
3 64 84 64 23.81 
4 256 360 256 28.89 
5 1024 1488 1024 31.18 
6 4096 6048 4096 32.28 
7 16384 24384 16384 32.81 
8 65536 97920 65536 33.07 
9 262144 392488 262144 33.21 
10 1048576 1571328 1048576 33.27 

Table 3.1: Wire length comparison 

 

3.4. Architecture variants  

The average of the reference clocks at each tap is taken by delaying the forward 

clock to align with the reverse clock through two delay lines. The placement and 

architecture of these delay lines affect the area required, the matching between delay 

lines, the susceptibility to process variation and the usability of the system. Four such 

variants were explored for an n tap single clock structure: one using 2n delay lines, one 

with n+1 delay lines, one with n delay lines and one with 2n delay lines using 

unidirectional conductors for the forward and reverse reference signals.  
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Figure 3.5: Architecture using 2n delay lines. 

 

3.4.1. Architecture with 2n delay lines  

The most intuitive approach for averaging is to include a pair of delay lines at 

each tap and use identical settings on both to perform the required clock alignment, as 

shown in Figure 3.5. Each tap consists of two delay lines, one clock thread switch (2:2 

Switch) and one phase detector (PD). CLKA represents the forward clock path within the 

tap and CLKB represents the reverse clock path. Once aligned, either the clock path can 

be modified to bypass one of the two delay lines, or the delay setting on one of the two 

delay lines can be set to an arbitrary constant delay for every tap. Modifying the clock 

path requires the addition of clock routing, which could potentially add skew due to tap-

to-tap variances. An arbitrary constant delay will induce unnecessary signal transitions 

that will add to the power consumption of the device. During operation, half of the delay 
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Figure 3.6: Architecture using n+1 delay lines. 

lines are not required, meaning there is wasted circuit area using this configuration. Our 

180 nm layout of this configuration requires an area of 6000 μm2 per tap. This method 

achieves tolerance to process variability since it only requires good matching between 

the two adjacent delay lines at each tap, which is expected considering their proximity to 

one another. The averaging method compensates for tap-to-tap variances since the 

delay line pairs since the accuracy of the average is solely dependent on the matching 

between the two in-tap delay lines. 

 

3.4.2. Architecture with n+1 delay lines 

One drawback of the previous configuration is its inefficient use of area. Since 

one of the two delay lines are only used for synchronization, it is possible to share a 

single delay line for synchronization for all taps at the clock source, requiring only one 

dedicated delay line at each tap. The source delay line could be kept in the signal path 
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or bypassed at a designer’s discretion during operation. This architecture is shown in 

Figure 3.6, and the circuit layouts for each tap and a clock selector to bypass the source 

delay line are shown in Figures 3.7 and 3.8, respectively. The area required for each 

2n+1 tap is 3750  μm2 and the 3400 μm2 for the clock source. Any constant delay 

injected at the clock source affects all taps equally, so it does not alter clock skew 

between taps. In this manner, the source and the tap delay lines must each be 

programmed separately which complicates the controller design slightly. This 

configuration also delays the time required to synchronize the clock domain since any 

 

Figure 3.8: Circuit layout of n+1 delay line clock selector. 

 

Figure 3.7: Circuit layout of n+1 delay line tap. 
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change to the source clock must be allowed to propagate to the tap being synchronized 

between every test. The source clock for the first 2n method does not change, so the 

controller needs only to wait for the forward clock to propagate to the next tap between 

tap synchronizations. For the n+1 configuration, the matching between delay lines can 

be affected by intra-die process variation. However, because the source delay line is 

shared amongst all taps, the amount of skew generated between taps will be 

proportional to the variance between all of the dedicated delay lines. This is a single 

instance of variation, which is acceptable when one considers that a conventional tree-

distribution has buffers scattered throughout the IC and skew will accumulate as the 

clock propagates through the IC.  

 

3.4.3. Architecture with n delay lines 

The third configuration eliminates all the delay lines not required during operation 

and eliminates the need to match delay lines by using a single delay line at each tap to 

perform the required averaging. Since the same delay line is re-used twice to perform 

the averaging step, there is no device mismatch error between the delay lines creating 

each half delay, making this architecture tolerant to process variation. The delay line is 

modified to prevent signal races by converting the 50% duty cycle reference clock to a 

pulse for the clock synchronization phase and a multiplexer is added to choose between 

the forward reference clock and the feedback clock at the delay line input. The delay line 

requires additional circuitry to control the input multiplexer and the pulse generator. The 
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Figure 3.9: Architecture using n delay lines. 

circuitry is designed to operate autonomously and asynchronously using signal 

transitions as cues. Since the rising edges are synchronized, the system modifies only 

the falling edge so the rising edge follows an identical signal path for synchronization 

and operation. These changes simplify the design of the phase detector, since the reset 

condition of the detector where both inputs are zero is longer than the previous cases, 

simplifying the detection when the reference clocks are out of phase by 180o. This 

architecture, shown in Figure 3.9, contains the best features of the first two variants. It 

will synchronize as quickly as the first method with less area overhead. Including the 

clock to pulse conversion circuitry and controller, each shared delay line tap requires 

5100 μm2 of area. The layout is shown in Figure 3.10. One other important benefit is that 

both delay lines are identically loaded.  
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Figure 3.10: Circuit layout of n delay line tap. 

 
 

3.4.4. Hotspot tolerant architecture  

Once synchronized, temperature hot-spots can shift, arise or disappear in 

different areas of the IC. Device delay is significantly affected by temperature so it is 

important to synchronize the system at the correct operating conditions. If operating 

conditions shift during operation, the system will need to re-synchronize the clock taps at 

run-time. If pausing the complete system is not possible, the architecture will require a 

shift from a bi-directional clock line to a dual reference line based clock network to 

perform the averaging.  

The system can re-synchronize without pausing by controlling changes to the 

delay setting to prevent glitches in the local clock, or shortened clock pulses [83] and 

preserving sufficient high and low times. On-line skew corrections are effective when all 

taps were previously synchronized and require fine adjustment around their initial 

synchronization point. Two reference signal lines are needed since every tap needs to 
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Figure 3.11: Dual reference line hot-spot tolerant configuration. 

simultaneously have access to both the forward and reverse reference signals. This 

configuration is shown in Figure 3.11.  

 

3.5 Clock jitter and skew. 

Clock distribution networks must overcome two significant issues that can 

undermine their effectiveness if ignored. The first is the issue of jitter and the second is 

the issue of clock skew. Jitter behaviour can change quickly from cycle-to-cycle or slowly 

over many thousand clock cycles.  
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3.5.1. Jitter sources 

Traditionally, cycle-to-cycle jitter is the most dangerous since it is the most 

difficult to predict. A late clock edge followed by an early clock edge can reduce the 

effective clock period significantly enough to cause errors. The primary source of clock 

jitter is power supply noise cause by switching activity [87],[88]. When a large number of 

transistors switch simultaneously, noise is generated on the power and ground signals 

and this noise can alter the delay of the devices near the perturbation. By their 

architecture, clock trees are a source for clock jitter since large capacitances are 

simultaneously switched at every buffering instance.  

Jitter can accumulate through each buffering level. Since the noise level will vary 

depending on the switching activity within a particular region, the jitter across the IC will 

also vary. While the components along the clock distribution path are susceptible to 

power supply fluctuations, the analog circuits traditionally used to generate the global 

clocks in a system are significantly more sensitive to noise [89]. These circuits must be 

designed carefully to reduce jitter levels through techniques such as having dedicated 

power signals and carefully placed guardbands. These techniques will also be beneficial 

for generating global clocks for our dual reference signal design. However, our serial 

distribution will have less impact on the power distribution system, similar to using a 

spread spectrum approach to the global distribution. Since clock signals toggle at twice 

the frequency as normal signals, they both generate and are susceptible to significant 

noise, so similar to currently employed methods, adding a dedicated clock power line 
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and guarding clock lines against coupling capacitance effects can only positively affect 

clock jitter. As jitter accumulates through a number of different stages, the total jitter will 

decrease and be bounded by the random nature of the jitter sources [90]. 

 

3.5.2. Skew  

Clock jitter has traditionally been a concern with clocks on an IC because of the 

analog PLL and DLL components that are traditionally used to generate the global 

clocks. However in deep sub-micron technologies, device and interconnect variance is 

leading to an ever-increasing amount of fixed uncertainty that must be addressed [91]. 

Inter-die mismatch and intra-die mismatch are two general kinds of mismatch that will 

prevent no two dies from being identical [55]. The first variety affects all devices on a die 

equally, and does not pose significant issues when dealing with clock distribution. The 

effects of intra-die mismatch can be mitigated somewhat by using larger devices and 

placing them as close together as possible. These observations have been summarized 

by Pelgrom et al.’s relation for variance due to parameter (P) deviation [54]: 

22
2

2 )( DS
WL

A
P p

p +=Δσ    (3.4). 

Here, the discrete variances are grouped together with the AP2 term whose influence 

decreases as the transistor sizes involved increase. The proximity variances are 

modeled by the SP2 term whose influence increases as the distance between the devices 

increase. AP2 and SP2 wind up being technology dependent constants [54],[92],[93]. This 
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relation is a first order model for process variance reflecting trends in the behaviour of 

devices and interconnects. With deep submicron technologies, these grouped terms 

have been elaborated to better reflect the sources of variance. In addition, the transistor 

sizes W and L have been updated to reflect the effective size of the transistors (Leff and 

Weff) [94]. Higher order models will lead to more accurate results, but further study would 

improve them further still.  

 

3.5.2.1. Effect of skew on an H-tree 

Mismatch is an important factor in clock distribution networks since clock buffers 

are scattered throughout a device and each may exhibit different operating 

characteristics [56]. The potential skew will increase as leaves become further apart and 

centroid configurations are not possible with distributed clock buffers. As such, the worst 

case skew will be present between the two leaf nodes that are furthest from one another. 

If 4N represents the number of leaves in the system and the smallest distance between 

clock leaves in an H-tree clock network is x, the distance between the first pair of 

diagonal clock drivers in the clock tree is:  

( )212 22 xD N−=   (3.5). 

Assuming that every clock buffer will drive four identical loads, N-1 sets of different clock 

buffers will be traversed while distributing a clock from source to leaf. The total variance 

will accumulate as the clock signals propagate through each level of buffering. The 

 - 59 - 



Chapter 3 

worst-case distance between diagonally opposite clock drivers at any given level will 

continue to increase causing greater mismatch through every subsequent tree level. The 

total variance through a 4N clock tree will be: 
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The discrete variance is identical for every level of buffering and the proximity variance 

increases as the devices get further from the clock source.  

 

3.5.2.2. Effect of skew on a serial architecture 

Our serial architecture will have many more stages, but each stage is separated 

by a much smaller, fixed distance. Along the distribution path, the only mismatch that 

does not get eliminated is the one between the clock drivers which drive the forward and 

reverse reference signals on a single bi-directional line between adjacent taps. 

Assuming the same distance x between taps, and an identical 4N taps (4N-1 connection 

segments) to the previous equation, the total variance for a serial clock network is:  
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=Δσ    (3.7). 

Assuming that the discrete component’s effect can be mitigated by using sufficiently 

large transistors, let us examine the effect of the proximity dependent component. The 

value of the summed D2 component of Equation 3.4 is displayed in Table 3.2 for various 
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values of N. This result shows that the serial clock distribution network has better 

proximity variance levels due to quadratic dependence on distance. 

Number of 4N tree levels H-tree distribution Serial Distribution 

1 0 3x2 

2 8x2 15x2 

3 104x2 63x2 

4 808x2 255x2 

5 5032x2 1023x2 

6 27816x2 4095x2 

7 143016x2 16383x2 

8 701096x2 65535x2 

9 3324584x2 262143x2 

10 15387304x2 1048575x2 

Table 3.2: Sum of squares distance component of variance relation. 

3.5.2.3. Centroid layout 

Eliminating the directional circuitry at each tap for the serial configuration in 

Figure 3.11 allows a clock buffer to propagate a clock to m sequential taps before 

requiring regeneration. By placing clock buffers and switches next to each other between 

clock taps and using common centroid layout techniques, it is possible to practically 

eliminate all proximity induced variation. Common centroid layout is a typical approach 

for minimizing mismatch for constant process variance gradients by decreasing proximity 

mismatch by a significant factor. Equation 3.8 extends Pelgrom’s relation for common 

centroid configurations.  
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where Dx and Dy are the horizontal and vertical distances between devices and Dw is the 

wafer diameter [95]. In practice, however, process gradients are not perfect planes 

meaning that there will always be a small mismatch component present. Centroid layout 

are not possible for broadcasted clocks so this is not a technique which can work for 

eliminating mismatch in the vast majority of clock distribution networks. The proximity of 

matched components will also lessen the negative effect of hot-spots on the system [58]. 

The total mismatch of a dual reference line system with centroid layout is shown in 

Equation 3.9: 

mWL
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P

N
p

centroidlinear
4

)(
2

2 ⋅
≅Δ−σ    (3.9). 

 

3.5.3. Temperature variation 

These results reflect fixed manufacturing variation, but there are other transient 

sources of skew such as temperature and power supply defects. In particular, increased 

power density in integrated circuit have caused cross-die temperature gradients, or so 

called “hot spots” to have a significant effect on transistor behaviour, both with respect to 

interconnect delays which can change about 20% with a 75oC variation from ambient 

and for device delays that can increase by 50% with a temperature shift of 75oC in a 

modern IC [87]. Our serial distribution will compensate for intra-die temperature 

gradients present during synchronization. In our serial network, there can be a difference 

in temperature for the clock drivers located at adjacent taps, but the change will be small 
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when compared to that present between distributed drivers in a tree network. Our 

averaging system is unique when compared to similar systems since it uses a pair of 

delay lines or a single delay line twice to establish the midpoint between reference 

clocks. The clock buffers in these configurations are located in relatively close proximity 

to each other, thereby exhibiting similar temperature and power supply characteristics. 

Even if the operating characteristics of the delay lines change, as long as the two delays 

are well matched, the average will still be accurate. Using the n delay line architecture 

aids in guaranteeing this.  

  

3.5.3.1. Effect of temperature-induced variation on dual reference line system 

The configuration shown in Figure 3.11 achieves a much greater tolerance to 

hot-spots and mismatch variation in devices due to the proximity of devices that require 

matching. It will also permit higher clock frequencies due to a potential decrease in the 

loading each segment of the serial network. This dual line configuration eliminates the 

buffer spacing component between taps from the variance calculation by switching from 

a single bi-directional clock line to a dual reference line approach. As will be shown, this 

move will result in a significant decrease in device mismatch, but could result in a 

greater wire mismatch so co-locating the forward and reverse reference clock wires and 

ensuring complementary behaviour between taps is essential in maintaining good clock 

characteristics. This is a cost-effective approach to skew compensation when compared 
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with the tree-based techniques such as [66] due to the inherent wire-savings achieved 

by a serial clock distribution 

 

3.5.4. Dynamic operation 

Once synchronized, a reference-based clock network may undergo 

environmental changes that require resynchronization. We suggest here three 

possibilities for resynchronization: periodic, on-demand or polled. A periodic 

resynchronization can be triggered after a user-set period of time. The system can 

resynchronize each tap sequentially like the initial pre-operation synchronization, 

however the period synchronization will be significantly quicker since it only requires 

small adjustments to the previous delay setting. Resynchronization here would only 

require a delay in the tens of clock cycles per tap. The second is an on-demand 

approach that requires the inclusion of a dummy tap at the end of the serial distribution. 

This tap will always have access to both forward and reverse clocks so it can use its 

phase detector, likely a variable tolerance phase detector (Figure 7.17), to monitor 

alignment. The forward clock passes through every tap in the clock domain and is 

affected by all the environmental fluctuations along the clock thread, but the reverse 

clock will not deviate significantly from its initial position since it follows a different and 

much shorter path from the clock root in the design. If either the forward or reverse clock 

shifts, an indication of environmental changes, the phase detector could trigger a thread-

wide resynchronization. An n delay line architecture can be used if the clock network is 
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paused while resynchronizing. A third approach would be to poll each tap continuously 

and sequentially, and resynchronize them during operation. This method requires the 

use of the dual reference line architecture, Figure 3.11. This method would not require 

any additional hardware at the taps, but would need the synchronization controller to be 

on-chip. With the availability of both the forward and reverse reference signals at all 

times for every tap using this configuration, the controller can adjust each tap delay as 

necessary to compensate for (long-term) temperature and voltage related changes in the 

delay behaviour of the system. Each synchronization here would not require a significant 

amount of time since the system would only require small changes in the delay line 

setting. A tap can be re-synchronized on the fly without pausing using a 2n delay line 

architecture. The dual reference line strategy, combined to our averaging approach 

makes this system highly tolerant to process variance, device mismatch and cross-die 

temperature variations including hot-spots.  

 

3.6. Controller requirements 

There are many approaches to designing a control system for our reference-

based clocking system. A controller needs to read the phase detector output and modify 

the delay settings for each delay line and the 2-bit direction control of each clock routing 

switch. These control lines will change in a regular pattern, with a REVERSE direction 

initially, a SYNCHRONIZATION state next, and a FORWARD direction finally. By 

propagating the control signals produced by the phase detector and not the reference 
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clocks themselves, our solution eliminates another source of skew when compared to 

other solutions like [66]. The controller can be constructed in the hardware itself, or 

externally on an FPGA, microprocessor or other controller. The phase detector is 

designed to indicate when the delay line setting is correct, too slow or too fast.  

 

3.6.1 Synchronization time 

The time required for synchronization will depend on the architecture being used. 

The n+1 method is the most complicated configuration and will be examined first. The 

lock time for each clock tap is a function of its proximity to the clock source. The time for 

each test can include up to 4 extra clock periods: two for the worst-case delay before 

both forward and reverse rising edges arrive, one for the additional delay that can be 

injected into the path from the source and local delay lines and one more for the 

resolution time of the phase detector. The worst-case time for each test is:  


=

+⋅=
j

i
izTTime

1
4   (3.10) 

where j is the tap number, z1 is the time-of-flight from the source to tap 1, zi is the 

forward path delay from the input of tap i-1 to the input of tap i and T is the longest 

possible clock period. The reverse reference signal root-to-tap delay does not affect the 

lock time since it is not modified during synchronization.  

The synchronization delay is implementation-dependent since it is related to the 

structure of the variable delay line. The following discussion reflects our delay line, but a 
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similar discussion can be made for any implementation. Our delay line contains fine and 

coarse components. One possible run-time synchronization approach would be to begin 

with the closest tap to the clock source, verify each coarse grain setting from fastest to 

slowest, using the longest fine grain setting for each test. If C represents the number of 

unique coarse delay settings, the proper coarse setting can be found in a maximum of 

c=C-1 tests. To synchronize the fine delay, an appropriate strategy is to use a binary 

search to traverse the fine delay settings. If F represents the number of fine settings, a 

maximum of f=a fine tests are needed, where 2a+1 represents the first integer greater 

than or equal to F. The worst-case synchronization time will occur at the minimum clock 

frequency that can be found by: 
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where n is the number of taps, x=c+f is the maximum number of tests per tap and the 

other variables are defined for Equation 3.10.  

To find the average synchronization delay for the mid-point frequency, we 

assume that each test requires an average of c coarse and f fine tests. There are 2a-F-1 

fine settings in all, a tests unused and the shortest tests are preferred for the remaining 

settings. The average number of tests needed per tap is: 
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  (3.12). 

The average case delay assuming that each tap reaches a locked state is thus: 
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using x from Equation 3.12. The 2.5 extra clock periods (instead of 4) are divided as 

follows: one-half to account for the average delay due to the source and local delay 

lines, one for the average delay for both forward and reverse edges to arrive at the 

phase detector and one more to account for the resolution time at the phase detector.  

For the n and 2n cases, the synchronization time need not take into account the 

source-to-tap delays for every test. As such, the worst case for each test is simply: 

TTime ⋅= 4    (3.14) 

where T is the longest possible clock period. The worst-case synchronization time will 

occur at the minimum clock frequency and can be found by: 
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The average number of tests is the same as Equation 3.12. The average case delay 

assuming that each tap reaches a “locked” state is thus: 
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where the forward path delay between taps is zj. 

Using the same synchronization approach as discussed above, another 

alternative would be to do a linear search for the fine grain setting, starting with the 

slowest (longest) setting and trying each faster setting in turn until the correct one is 
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found. In this case, the worst case synchronization times would be the same as above, 

except the worst case number of fine grain tests would be F and the average number of 

fine grain tests would be F/2. The equations would need to be modified for a different 

delay line, but the underlying analysis approach would remain valid. The initial 

synchronization could also be sped up by programming the system with cached 

expected delay data 

A post-synchronization calibration phase is needed to obtain the correct polarity 

of each local clock. This step can be performed using a multiplexer to select between an 

inverted and a non-inverted signal at each tap without modifying the overall delay of 

each clock path. This step is quick because the source delay line is no longer used at 

this point – modifying the polarity simply involves changing a multiplexer setting at the 

clock tap. This step can be done in four clock cycles per tap: one to measure, one to 

toggle and two to propagate the current tap’s polarity to the next tap. Our method can 

only be used at the frequency it was calibrated with so in dynamic frequency scaling 

applications, the system must be recalibrated each time the frequency is changed. 

However, each desired operating frequency could be synchronized in advance with the 

required delay settings stored in memory. Thus, the delay settings could be changed 

quickly to align the tap clocks. 
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3.7. Simulation results 

This single clock averaging clock distribution discussed here has been designed 

for TSMC’s 0.18 µm P-well process using the Cadence Virtuoso design environment and 

simulated with SpectreS and the Analog Artist simulation tool. Using an n+1 architecture, 

the schematic circuit simulated as follows. For each delay line, five alternate coarse 

grain paths provides a 93.5 ps delay increment over the base setting and the fine grain 

delay provides and additional 93.5 ps delay, resulting in a total delay of 1122 ps 

considering the positive and negative polarity signals available at the output. The 

minimum clock frequency that can be used is 445 MHz, equal to twice the maximum 

delay through the delay line. The extracted simulations show that the coarse grain delay 

increment is 80 ps, resulting a total net delay of 960 ps and a minimum clock frequency 

of 521 MHz. The resolution of the phase detector is +/- 1.5 ps. The error between any 

two taps can be up to the sum of twice the phase detector error and twice the maximum 

delay increment. Since one of the variable delay elements are removed during run-time, 

the net skew will be half this amount. Thus, the expected skew of the system is 6.25 ps. 

In practice, the expected skew is actually approximately 10 ps using this delay line 

because of the duty cycle changes that occur through the fine delay line. 

The clock distribution circuitry for the extracted system is capable of routing 

frequencies up to 1.90 GHz, corresponding to periods of 525 ps and higher. The limiting 

factor is the clock routing switch that drives the large capacitive load bi-directional clock. 

Should higher performance be required, these nodes can be designed with larger 
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devices to provide faster transition times. The remaining circuitry is capable of operating 

at up to 2.12 GHz (470 ps periods). For an n+1 system, the worst-case synchronization 

delay is 1587.9 ns, or 708 clock cycles from Equation 3.15. The average synchronization 

delay is 347.9 ns, or 408 clock cycles from Equation 3.16. 

Figure 3.12 shows a simulation at 1.90 GHz of how each forward clock needs to 

be synchronized with the reverse reference clock. The forward clock in Tap 0 (CLA_0) is 

aligned to the reverse clock (CLB_0) between 10 and 20 ns, the forward clock in Tap 1 

(CLA_1) is aligned to the reverse clock (CLB_1) between 20 and 30 and so on. Once the 

correct delay line setting for every tap is determined, the forward clock can be set to 

bypass the delay line at clock source to save power in the n+1 configuration clock 

network. A maximum skew of under 10 ps was achieved in this case. For clarity, only the 

final synchronized delay setting is shown. Given that CLK 0 to CLK 8 represent each 

tap's local clock, Figure 3.13 shows that clocks 0, 4, 5, 6 and 7 all have positive polarity, 

while clocks 1, 2 and 3 have negative polarity at the end of the synchronization stage (at 

90 ns). Polarity, in this case, is always taken with respect to clock 0. Figure 3.13 also 

shows the calibration process for the 8-tap design with CLK 1 being inverted at 98 ns, 

CLK 2 being inverted at 101 ns and CLK 3 being inverted at 104 ns. Figure 3.14 shows 

the resulting polarity-adjusted clocks for the 8-tap distribution network. Figures 3.13 and 

3.14 use an 891 MHz reference clock. Comparable solutions offer similar or worse levels 

of skew reduction, sub-10 ps for [96], 28 ps for [76], 70 ps for [67] and 15 ps for [62]. [97] 

demonstrates a skew reduction scheme capable of reducing skew to within 10% of the 

clock period, versus under 4% here. Work in [66] ideally achieves 3 ps skew resolution, 
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Figure 3.13: Calibration phase to align polarity of resulting clocks.  

\

 

Figure 3.12: First 3 synchronization steps for an 8-tap CDN. 

but is susceptible to intra-die variation, modifying a traditional H-tree distribution and 

requiring a duplicate co-located return path for all the leaves in the network also entails 

an area overhead. 

 - 72 - 



A dual reference signal averaging single clock distribution network 
 

 

 

  

Figure 3.14: Resulting low-skew output clocks for an 8-tap system.   

 

Once the polarity detection is complete, the calibration and phase detection 

circuitry is turned off, resulting in significant power savings at runtime. Simulations show 

that for a typical forward and reverse clock skew setting, power consumption for an 8-tap 

clock distribution circuit at the maximum frequency is 33.2 milliwatts (mW) during the 

phase alignment cycle and 18.0 mW during run time. At 891 MHz (the minimum 

frequency of operation without considering the inversion capability of the delay line), the 

power consumption during phase alignment is 18.6 mW and 9.97 mW during run time. 

While one would expect quadrupled power consumption for doubling the frequency, the 

energy consumption is somewhat smaller than expected at higher frequencies because 

shorter paths are taken through the coarse grain delay line. These power consumption 

numbers are much better than PLL based solutions that typically consume hundreds of 

 - 73 - 



Chapter 3 

 

Figure 3.15: Using pulses to align clocks in n delay line architecture. 

mW [65]. In comparison, [98] demonstrates 0.21 mW power consumption per de-skew 

tap for a 56 ps skew bound. 

Tests on a laid out and extracted 4-tap single clock domain n delay line 

architecture were performed using a 1 GHz sample clock. Figure 3.15 shows how the 

pulses are used to align the clock region output and the reverse clock rising edges. The 

performance of this system mirrored that of the other architectures, with an overall skew 

bound of 12 ps and power consumption of 2.5 mW per tap at 1 GHz. 

 

3.8. Conclusion 

Traditionally, most integrated circuits operated using a single global clock. Great 

care was needed to ensure that the clock had good characteristics and low skew.  

Today, most clock networks are designed using CAD tools which require precise 
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information on the exact clock load for each branch, the placement of each tap on the 

die and the location of the clock root. Once generated to satisfy the required skew and 

latency metrics using wire and driver re-sizing and placement, the clock network cannot 

be altered without affecting clock skew. Our dual reference signal clock network allows 

designers to delay some of the critical clock tuning requirements to facilitate the design 

flow. It allows circuit blocks to be moved around conveniently and re-sized easily with a 

simple change in the number or location of the taps. Our cell based approach to clock 

distribution allows components to be designed independently, connecting components 

as is convenient and even replacing blocks if needed. The presence of the digitally 

programmable delay lines allows the system to accommodate blocks with different tree 

depths and latencies. 

We have designed a clock network with multi-point active skew compensation. By 

using delay lines instead of PLLs and with a single reference and distribution line, our 

method is small enough to be useful for many clock applications. Using a single common 

forward and reverse clock reference line to cut down on in-die process variation skew is 

unique. Using a dual reference signal approach places all critical devices in close 

proximity, minimizes process variation and permits online clock resynchronization which 

can help eliminate intra-die temperature deviation. Using a daisy-chained approach 

minimizes the total clock line length and thus the required clock load and the power 

consumption can be reduced. The system can also be used to provide beneficial skew 

between each of the local taps in the IC [62]. Any reduction in clock skew obtained by our 

clock distribution is extremely useful since this time can be added directly to the available 
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cycle time within a clock period [68]. Simulations show that the proposed CDN is 

scalable, compatible with irregularly-shaped distribution areas, and combines low power 

operation with tight skew bounds.  
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Skew-tolerant reconfigurable clock networks  

based on averaging 

 

 

 

4.1. Introduction 

Reference-based clock distributions have a number of advantages when 

compared to their tree-based counterparts. The modular nature of the system allows 

components to be easily added and modified throughout the design phase without 

requiring the clock distribution to be re-synthesized at every step. The ability to postpone 

the fine tuning of the clock distribution until after fabrication is useful and can be used to 

account for process variation and to correct for certain defects in the clock network.  
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Traditional clock distribution networks are built to match the delays from a clock 

root to every clock leaf in the system. These clock networks are rigid once generated 

and it is impossible for anything other than a single clock to be broadcast to every leaf in 

the domain. Some systems get around this by creating multiple clock trees and allowing 

the clock fed to each individual tree to be selected at the clock root. The main drawback 

of this approach often used with FPGAs is that the size of each clock domain is not very 

flexible. In addition, a system requiring many small clock domains could result in a 

significant waste of resources. Using our serial approach, there is no requirement for the 

clocks in the global distribution to be synchronized.  

To perform accurate dynamic skew compensation at each regional tap, clocks 

travelling in opposite directions have corresponding delays between destinations and the 

delay lines used at average the forward and reverse clocks are well matched. This 

implementation allows programmable clock routing to be added into the path creating a 

complete fully-programmable and reconfigurable multiple clock distribution network with 

a fine level of granularity for the first time. Such functionality would not be possible if the 

system was not designed from the ground up to cope with non-aligned clocks and have 

a skew-tolerant approach built into the alignment system. 
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Figure 4.1: A 3-clock domain static clocking solution. 

 

4.2. Multiple clock architectures 

 

4.2.1 Static clock network with multiple clocks 

There are multiple methods to deploy our reference-based clock network in a 

multiple clock environment. Multiple clocked designs with independent clock domains 

are common for designing large modular ASIC and SoC designs [99]. One option is to 

deploy multiple static clock threads, as illustrated in Figure 4.1 for an example 3-clock 

domain distribution. Each component in the clock thread is replicated as needed, 

including a global clock generator for each domain. The clock generators can either be 
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placed in close proximity in one area of an IC and suitably routed to and from the clock 

thread, or spread out over the IC. A single clock generator can also be connected to a 

series of dividers (or multipliers) to drive all the clock lines if the required frequencies are 

related by division, multiplication or other realizable operation. The only constraint is that 

the clock must have 50% duty cycle and be connected to both the head and the tail of 

the clock thread. These threads can cross other clock domains and are easy to lay out 

since the taps do not need to be placed at regular intervals. Irregularly-shaped clock 

regions, like the one shown in Figure 4.1 is much easier to implement using our method, 

since adjacent areas are all connected serially. Disjoint clock regions in a single domain 

can also be connected using a single wire with little attention paid to the wire length. This 

trait is convenient for pin-limited designs where it may not be desirable to locate a large 

sub-circuit in a given area of an IC. Small blocks can be placed near the required pins 

and associated to larger blocks elsewhere on the IC, while still maintaining one skew-

tolerant synchronous clock domain. Similarly, clock domains can be divided to allow 

access to certain regional features that would be difficult to implement using an H-tree, 

but it is performed automatically by the design of our reference-based architecture. Each 

of these threads will have the same characteristics and synchronization requirements as 

the single clock solution previously discussed.  
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Figure 4.2: Sharing a resource with reference-based clocking. 

 

4.2.2 Locally-reconfigurable clock network 

It is possible to create a clock network with flexible clock domains by taking 

advantage of clock routing in the serial distribution path. In this application, the clock 

domains are primarily static with sub-sections that can be added or removed from a 

domain, or switched between domains. This post-fabrication reconfigurability in the clock 

network facilitates the re-use of common components for multiple clock domains and 

can also be used to prune areas from the clock network to save power, Figure 4.2. The 
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Figure 4.3: A potential fully programmable clocking architecture.  

design of the network switches are discussed in Section 7.3. To use a shared resource, 

the domain must be synchronized with its clock thread extending through the shared 

device. The shared resource can be attached and detached without altering the phase or 

alignment of the two clock domains provided it is connected to the end of the affected 

clock threads. By storing the configuration data required for each mode, the transfer of a 

shared resource between clock domains can be made nearly instantaneously.  

 

4.2.3. Globally-reconfigurable clock network 

The approach can also be used to create a fully reconfigurable and 

reprogrammable clock network. Figure 4.3 shows one such network with 40-taps. The 

shaded squares represent switch points and the white squares represent each local 

clock (tap). To re-route clocks during operation, it is necessary to synchronize and 

calibrate each modified clock domain for the distribution to remain skew-tolerant. 
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Predicted delay settings can be used to configure the clock distribution network, 

resulting in little to no setup time for the distribution at the expense of greater clock 

skew.  

 

4.3. Versatility of a programmable multiple clock mesh network  

Different fully programmable clock networks can be created by inter-connecting 

various combinations of clock taps and clock switches. The number of taps between 

switches, the number of switches present and the number of ports within each switch 

can all be modified to tailor the clock network to the application. While Figure 4.3 shows 

a 40-tap solution, Figure 4.4 shows three variations on a 15-tap solution. Figures 4.4A 

and 4.4B both exclusively contain 8-port switches which allow up to 4 simultaneous 

connections; only the orientation of the ports is different. Figure 4.4C contains a mix of 

both 4-port switches which allow up to 2 simultaneous connections and 8-port switches. 

The networks are shown with only one tap on a single vertical edge between each 

Figure 4.4: 3 potential 15-tap clock distributions. 
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switch, but the taps can be placed anywhere. The more ports present in a clock switch 

and the more clock switches present in the system, the greater the number of clock 

configurations are possible, but the larger the area and power penalty of the network. 

The number of unique configurations allowed through a p port crossbar switch assuming 

that NULL connections (unconnected ports) are not allowed is: 

)12()(
1

−∏=
=
iswitchionsconfigurat

p

i
   (4.1). 

The number of switch configurations possible in an m x n switch (rows x columns) 

network using a crossbar switches containing p ports is: 
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Should the network be made up of an arbitrary assortment of switches with each switch i 

containing pi  ports, the number of possible switch configurations is: 
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This calculation assumes that every port is connected, but NULL connections are 

possible and will always occur in pairs. These NULL connections do not need to be dealt 

with independently when considering the total number of switch configurations since 

every unconnected state can be considered a special subset of a connected case 

already in the calculation. The number of unique configurations possible for a given 

switch counting NULL connections as unique is:  
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While the number of possible network configurations for the switches is a 

relevant concern when designing a clock network using our methodology, a more 

important consideration is the number of clock domain configurations which can be 

generated by such structures. While clock taps can be added to any edge in the switch 

mesh, taps added to the edges around the mesh perimeter cannot easily be re-routed, 

so we limit the position of taps to the edges located between clock switches. For our 

mesh networks like the one shown in Figure 4.4 with taps located along a vertical edges, 

assuming c clock domains, the total number of configurations is: 

[ ]cmntapsionsconfigurat )1()( −⋅=   (4.5). 

Similarly, if we assume that there is a single tap horizontally between each switch, the 

total number of configurations is: 

[ ]cmntapsionsconfigurat ⋅−= )1()(   (4.6). 

If a single tap is added between every vertical and horizontal switch, the number of 

configurations will be: 

[ cmnmntapsionsconfigurat −−= 2)( ]   (4.7). 

Multiple taps can be added in series between a pair of switches. This approach is often 

desirable for grouping taps that will always be connected to the same domain. This 

group of taps represents a single local clock region and is conceptually no different than 

the single tap case and does not change the analysis. Clock taps can be added to any 

and all edges leaving a clock switch. However, fully populating a clock switch with taps 

will limit the edges available for routing, affecting the routability within the mesh network. 
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Assuming that all the configurations are realizable, the number of clock configurations 

that can be achieved using clock switches with p ports capable of p/2 connections and 

with each perimeter switch connected to the clock generation ring by d ports is: 

c
mndpmn

tapsionsconfigurat 
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2
)422()(   (4.8). 

For an arbitrary mesh network, given pi ports per switch with each switch connected to 

the clock generation ring by di ports, the number of configurations is: 

c
nm

i
ii dpnetworkionsconfigurat 














 −= 
⋅

=12
1)(    (4.9). 

 

4.4. Controller requirements 

As with the single clock network, a multiple clock distribution network requires 

three distinct phases to work properly: synchronization, calibration and operation. The 

complexity of synchronizing each thread is linearly proportional to the number of taps in 

each thread. Similarly, the complexity of adding another clock thread is proportional to the 

total number of taps, independent of the number of threads. As such, the synchronization 

delay analysis performed in the previous chapters can apply to each individual clock 

thread present in the multiple clock system. 

There is a network mapping problem that must be solved to route all of the clock 

threads through the crossbar matrix. The crossbar matrix is an undirected graph with 
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Figure 4.5: The mesh mapping problem. 

multiple edges connecting each vertex. The number of edges can vary depending on the 

network configuration. This graph, otherwise known as a multigraph, is allowed to have 

loops, or feedback paths that can connect a vertex to itself. Since each clock tap is 

located along a specific graph edge, connecting all the taps in a clock domain together 

involves covering all of their associated edges and connecting these edges together. 

Figure 4.5A shows a 2-tap graph with 8 vertexes and 14 edges. Figure 4.5B shows the 

covering of the two tap edges, Figure 4.5C connects the tap edges together and Figure 

4.5D shows the connection of the edges to the entry points. This problem cannot be 

classified as a typical problem in graph theory as the paths that are created are complex 

since vertices may not be uniquely traversed within the path, since the edges that must 
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be covered are not necessarily adjacent and since we do not need to determine an 

optimal solution. All clock domains must be solved simultaneously while competing 

together for the finite edges available in the switch mesh.  

To solve the problem, our approach is to cover all edges corresponding to a tap 

and to start assigning paths at an arbitrary (random) location for each thread. This initial 

location may end up becoming a starting node, an ending node or an intermediate node 

since the clock thread will grow out from this initial edge. Then, we use a greedy heuristic 

algorithm with primary and secondary cost functions to help determine the next step. The 

primary cost function looks at the actual number of switches that must be crossed from 

the starting and terminating edge to reach every uncovered edge in the domain. At the 

beginning, the first arbitrary node chosen represents both the starting edge and the 

terminating edge. This is done for every domain simultaneously. For a tie, the path with 

the most remaining edges is chosen first as the secondary cost function. Once a path is 

established, the primary cost function is recalculated for the new state. If all connections 

are not possible at this point, the algorithm will backtrack one step and try with the next 

least costly choice.  

To help alleviate the routing problem, it is possible to add express clock paths into 

the mesh network. This will create a hierarchical mesh network with multiple possible 

hops that could help transport clocks longer distances in the mesh network without 

causing excessive congestion and avoid potentially crowded subregions occupied by 

multiple clock threads. The number of and the spacing between the express paths as well 
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Figure 4.6: Mesh architecture incorporating express paths. 

as the distance propagated between each hop on the path is flexible. These paths come 

at the expense of additional wire cost. Figure 4.6 shows four sections of one such 

possible network. The unshaded boxes represent the clock taps, and the lightly shaded 

boxes represent each local clock subregion. The larger of the clock switches represent 

the ones used for the express paths. Horizontally, there are 2-sets of express paths 

between each section: one spaced by 3 columns with a 6 column hop between switches 

and one spaced by 6 columns with a 12 column hop between switches, each creating two 

horizontal concurrent paths. Vertically, there is 1 extra express path per section. In total, 
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each section has 8 horizontal routing paths and 5 vertical routing paths in addition to the 

6 vertical distribution paths.  

 

4.5. Single clock fixed methodology 

Let us examine how to implement a clock distribution using our averaging 

technique. We will first examine a single clock system and then a reconfigurable one. 

We first need to establish how many clock taps will be required by the system. Our 

averaging system assumes a two tiered approach to distribution, a global one using our 

technique, and a local one using a mesh (with shunts), tree or fishbone. A fishbone 

approach is the simplest to implement, but also injects the largest amount of skew 

between local clocks. The clock mesh benefits from near zero skew, but will also 

consume the most power [46]. A local clock tree is a compromise between the two. So 

assuming that there are F total registers that must be connected to the clock domain 

with each regional clock network consisting of G registers, then we will need F/G taps to 

distribute clocks to the entire system.  

To determine an optimal number for G, we need to establish to total variance 

through the system. This will be the sum of the variances between the global (serial) and 

local portions of the clock distribution assuming the use of centroid components where 

possible: 
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If another exponential buffer multiplier other than 4 is used, the base of the log 

expression will need to be changed as will the squared distance relation. Recall that AP2 

and SP2 are constants for a given technology, and F is the total number of clock loads 

and x is the largest distance between two clock loads located in the same region, which 

are both fixed for a given design. For a fixed W and L, there will be a maximum number 

of tap input loads m that can be driven. It is always beneficial to use this maximum 

number to minimize variance. Once a target variance for the clock distribution is chosen, 

G can be chosen. The optimal number will depend on the discrete and proximity 

variance coefficients since the serial architecture is more tolerant to proximity variance 

and the tree architecture contains less buffers thereby exhibiting less discrete variance.  

Whenever possible, smaller local trees should be chosen since trees are susceptible to 

temperature gradients and hotspots. This approach will also minimize the maximum 

distance between clock taps.  

If extremely low levels of variance are required, it is possible to shift to local 

mesh architectures which contain negligible amounts of variance: 

mGWL
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Finally, if large amounts of skew can be tolerated, it is possible to switch to a fishbone 

architecture where the fishbone skew, or the longest interconnect delay between clock 

loads, can be added to any skew generated through the serial portion of the clock 

network. 

 

4.6. Reconfigurable methodology 

To design a reference-based clock distribution for a reconfigurable clock 

distribution like the ones found in FPGAs, we again need to begin with the total number 

of clock loads, F, and the desired number of clock regions, R. Then we can calculate the 

required granularity of the network, G. Let G represent the number of clock loads per 

region and can be as little as one load, or alternatively, as many as required.  

RFG /=    (4.12) 

We assume an n x m clock switch mesh for reconfiguration with each switch containing 

P ports for P/2 clock signals. We also assume that clock taps are distributed 

symmetrically on the mesh network with P/2 ports connected to clock taps except for the 

ports along the perimeter of the switch mesh. The number of clock regions, R, for such a 

configuration is: 

4
)(

4
PmnnmP

R
+−=   (4.13) 

This allows us to figure out suitable values for n and m to create an appropriate mesh 

network for this number of independent clock regions. To determine how many taps are 
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required for a given clock region, a regional skew bound can be established and a 

similar methodology to that used in Section 4.5 can be applied to determine an 

appropriate number of taps per region and clock loads per tap. 

Let us apply this methodology to a recent Altera FPGA. An FPGA was chosen for 

the comparison due to the presence of reconfigurable clock domains and readily 

available data. We take for example, the Stratix IV EP4SE680 containing roughly 680k 

logic elements (LE) and assume a single clock load per LE. The device literature [52] 

states that the device is capable of 104 distinct clock domains. Assuming a square clock 

switch mesh (n=m) and 8 clock ports per switch (P=8). Solving for n in Equation 4.13 

yields a mesh network size of 8.28, or 9 x 9 (81 total) switches with 120 regions. From 

Equation 4.12, the original clock distribution contains just over 6500 clock loads per 

region. We could either use this number of clock loads per region, leaving 16 regions 

unused in our switch mesh, or redistribute the clock loads evenly over the 120 regions 

we have. Choosing the latter results in just under 5600 clock loads per tap. Since the 

technology variance constants are proprietary information for the given FPGA, we will 

arbitrary assume 3 levels of clock buffering and 4 taps between buffers in a dual 

reference line serial network. This leaves us with 64 clocks per tap, 22 taps per region 

and 3 clock buffers (F/mG roundest to the lowest integer) per region of the local clock 

network. The regional skew variance for this configuration would be: 

2
2

222 1706)()()( p
p

centroidlineartreefull S
WL

A
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This type of structure has many beneficial aspects for the construction of an FPGA or an 

ASIC, including post-silicon correction of clock skews which could otherwise cause the 

device to fail testing and it eases difficulties in layout by eliminating some difficult path 

matching constraints and allowing a standard cell based approach to clock distribution. 

Tests have shown that upto 88% of devices that fail could be salvaged using small 

changes to the circuit’s critical paths [100]. Unlike H-tree distribution networks, our 

method combines well with a mesh network based interconnect approach used in 

FPGAs. [51] has shown that increasing the number of global regions in an FPGA can 

result in significant power savings for the device overall. Since our technique makes 

every region a global one, it could exploit this trend. 

 

4.7. Simulation results  

Figure 4.7 shows a typical application of our reconfigurable multiple clock 

distribution. The design is that of a 3-clock domain 15-tap distribution with each region 

numbered in column-wise fashion. Taps 1, 2, 3, 5, 6 and 10 are connected to clock 

domain A with a frequency of 1.11 GHz. Taps 11, 12, 14 and 15 are connected to clock 

domain B with a frequency of 1.33 GHz. Taps 4, 7, 8, 9 and 13 are connected to clock 

domain C with a frequency of 1.66 GHz. Figure 4.8A shows the synchronized clocks 

produced by our clock network using an extracted-level simulation for each of the 

domains. Figure 4.8A shows a close up of the resulting rising clock edges. The total 

skew from the first-to-last edge is 5.5 ps for domain A, 4.7 ps for domain B and 3.9 ps for 
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Figure 4.7: Potential fully programmable clocking architectures.  

domain C. Comparable solutions offer similar or worse levels of skew reduction for a 

single domain as discussed in Chapter 3, without the ability to reconfigure clock post-

silicon. This method reduces skew to under 4%, versus the typical 10% metric which is 

usually desired. The total power consumed is 62.82 mW, or 4.188 mW per tap. Roughly 

half of the power is consumed by the routing switches of the reconfiguration circuitry due 

to the capacitive load that they each must drive. According to [76], PLL-based clock 

networks typically consume hundreds of milliwatts due to their analog components. This 

fact will be true regardless of technology, so it is beneficial to use an all-digital approach 

for skew compensation such as ours.  

The synchronization process will account for loading effects and inter-die process 

and fixed temperature variation to create negligible skew within a clock domain. Using 
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Figure 4.8: Simulation of a 3-clock domain reconfigurable clock network 

a) Synchronized, calibrated 3-clock domain reference circuit simulation          
b) Clock edges for a 3-clock domain reference circuit                        

(left to right: Domain A, Domain B and Domain C).                 

a) 

b) 

 

the circuit in Figure 4.7, we study here the durability of the synchronization to thermal 

and voltage variation in these conditions over time. We define the absolute skew δ to be 

the range in picoseconds of the first-to-last rising edges of all the clocks in a domain 

given a temperature or voltage perturbation. The standard deviation σ of the delay 

between all the rising edges for a given clock event, or sample, is also found. Table 4.1 

shows the complete synchronized network’s response to changes in temperature. The 

system can be synchronized at any initial temperature since we are studying the effect of 

temperature changes, so the 27oC starting point is arbitrary. At 37oC, the worst-case 

skew is roughly 10% of the clock period, and 20% at 47oC. It is possible to re-
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synchronize the clock distribution dynamically to account for the variation to obtain near 

zero clock skews once again. While this test shows that the circuitry can tolerate small 

changes to operating temperature, it is important to synchronize it at or near the 

expected operating conditions. 

Table 4.2 shows the system under the influence of a fixed voltage variance of 

plus and minus 5% of the nominal supply voltage at each of the taps. Here, the worst-

case skew of 4.2% occurs at a 5% undervoltage. There is 2.4% worst-case skew at a 

5% overvoltage. This is quite acceptable for any clock distribution. Table 4.3 shows the 

worst-case scenario where the entire distribution experiences a 5% fluctuation in the 

supply voltage. In this case, the clock fails to propagate to the taps in 3 out of 5 cases for 

the undervoltage test, and 2 out of 5 cases for the overvoltage test for clock domain C. 

The worst-case skew for the remaining domains is roughly 13%, occurring at the slowest 

clock frequency for the 1.71V case. This shows that the circuitry can operate correctly 

under these conditions, but the range of frequency that can be used is decreased. While 

a fixed voltage fluctuation is unlikely to occur since such a non-transient variance such 

as this will be accounted for dynamically at synchronization time. The CDN can also be 

re-synchronized at any time to account for any of these fixed variations to obtain near 

zero skew.  

Since our clock distribution operates in an open loop after synchronization, the 

average clock period for a number of consecutive samples is ideal, as long as the clock 

source generates accurate clock periods. However, voltage fluctuations due to noise can 
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advance or delay an individual clock edge resulting in the injection of jitter. Noise 

simulations usually are time-intensive due to the short time steps required to replicate 

high frequency noise components. However, work in [80] has shown that low frequency 

noise has the dominant role in clock characteristics. We use a statistical approach to 

inject the supply with noise in a manner similar to [101] and [102]. Using the Verilog – 

AMS tool available in Cadence to generate a 1.8V source with standard deviation of 0.3 

at a 100 GHz sampling frequency, we obtain 99.73% of supply voltage samples within 

+/- 5% of nominal. Since the voltage fluctuates over time, a number of consecutive 

samples must be observed and analyzed. Each sample represents a subsequent rising 

clock edge. In addition, the simulation is run twice to ensure that the results are well 

correlated.  

The result of the test is shown in Table 4.4. The jitter represents changes in the 

clock period. The worst-case jitter ϕ  here is the maximum amount that a clock period 

differs from ideal for all samples in the complete series. The standard deviation σ of the 

jitter is taken for every jitter measurement in the series. The ideal period is calculated by 

calculating the average of the time difference between a clock signal’s rising edges. The 

maximum skew we found for our noisy supply test is roughly 2% of the clock period in 

the worst-case. The jitter of under 4 ps is predictably low due to the open loop nature of 

the clock distribution. This level of jitter is negligible when compared to the jitter injected 

by the clock source.  
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27C 37C 47C Temp. (ps) 
δ σ δ σ δ σ 

CLKA 0.0054 0.0023 51.3100 19.4379 108.859 41.0760 

CLKB 0.0047 0.0025 34.6850 15.7428 68.8730 30.7528 

CLKC 0.0040 0.0017 63.0500 22.8735 124.288 44.8673 

Table 4.1: Temperature effect on synchronized network. 

1.8V 1.71V 1.89V Voltage I (ps) 
δ σ δ σ δ σ 

CLKA 0.0054 0.0023 11.3451 4.7666 16.6580 5.8075 

CLKB 0.0047 0.0025 21.9480 10.3804 13.4140 5.7539 

CLKC 0.0040 0.0017 25.4460 9.1542 14.8680 5.9829 

Table 4.2: Effect of voltage variance on taps. 

1.8V 1.71V 1.89V Voltage II (ps) 
δ σ δ σ δ σ 

CLKA 0.0054 0.0023 118.210 44.2412 95.8270 36.8799 

CLKB 0.0047 0.0025 51.3270 23.5288 19.9130 9.9043 

CLKC 0.0040 0.0017 8.2915 N/A 31.0580 N/A 

Table 4.3: Effect of voltage variance on synchronized network. 

Trial 1 Trial 2 

Skew Jitter Skew Jitter Voltage III (ps) 

δ σ δ σ δ σ δ σ 

CLKA 8.382 1.005 3.028 0.642 8.508 1.001 2.330 0.529 

CLKB 6.869 1.448 1.306 0.402 6.945 1.495 3.163 0.797 

CLKC 11.374 2.623 3.069 0.916 9.933 2.417 3.959 0.858 

Table 4.4: Effect of voltage supply noise on jitter. 
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4.8. Conclusion 

We have designed a novel skew-tolerant multi-point clock distribution that is 

suitable for irregularly-shaped clock domains. The programmable repeater stages allow 

us to redirect clocks post-silicon at certain pre-defined switchpoints, making the 

distribution reconfigurable. The use of a single conductor to provide both forward and 

reverse reference signals is unique. In addition, our clock network will suppress intra-die 

process variation by being tolerant to proximity-based device mismatch and variance 

caused by cross-die temperature fluctuations and hot-spots.  

Hot-spots and thermal management are becoming increasingly challenging 

problems for designers that can also be a significant source of skew in traditional clock 

networks. Clock networks can be modified to correct for some manufacturing defects, 

including bypassing certain clock lines and clock buffers. The operating clock frequency 

can be changed to fit an IC’s many possible target applications. This method is scalable 

and simplifies the way a design can be floorplanned onto an integrated circuit and is 

useful for both static and programmable designs. Our tests show that the reference-

based programmable clock distribution is resilient enough to be used in an ASIC, SoC or 

FPGA environment, exhibiting good operating characteristics, once synchronized, 

everywhere in the design envelope.  
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A built-in system for online clock skew  

debug and correction 

 

 

 

5.1. Introduction 

We present a low-cost on-line system for clock skew management in integrated 

circuits. Our Built-In Clock Skew System (BICSS) uses a centralized approach to 

identify, quantify and correct skew. It is a low-cost design that can be applied using a 

simple and cheap microprocessor-based tester. The circuitry employs a two-step 

method to first assess the time-of-flight between the central debug circuitry and each 

region, or tap under test, to account for measurement error. The system eliminates the 

difference in the measurement path delay between the clock regions under test and the 
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central measurement block using an averaging technique. The system then uses a high 

resolution digitally-controlled delay line in each clock region to perform the required skew 

compensation. BICSS can be used to detect skew above a user-adjustable margin using 

a variable tolerance phase detector.  

The technique is unique in its ability to assess the time-of-flight between the 

central debug circuitry and each tap to account for the path length measurement error 

common in existing techniques. The result is an all-in-one solution that provides silicon 

debug and repair capability, providing added visibility to clock skew between differenct 

regions of the clock distribution network, post-silicon. The system has been simulated 

using an extracted-level design in TSMC's 180 nm standard process technology. 

 

5.2. Background 

Clock skew in integrated circuits is a significant problem facing designers and IC 

architects. The clock periods have shrunk to the point where they are now on the same 

order as intra-die propagation delays [103]. While device delays decrease with newer 

process generations, the interconnect delay is increasing due to fringe capacitance and 

electromigration effects on the interconnect [14]. Since clock signals on an IC are 

equally susceptible to interconnect variances as data or control signals. As a result, a 

growing portion of clock skew uncertainty is interconnect related and must be accounted 

for in a design. This often requires newer designs to dedicate a higher proportion of a 

clock’s period to clock uncertainty hurting overall performance. 
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There exist a number of both passive and active clock distribution schemes 

presented to help alleviate the problem [66],[79],[104],[105],[106]. Some clock skew 

reduction methods place many PLLs on an IC [97],[107]. This circuit duplication creates 

wasted silicon area and increased power consumption. Some analog solutions [79],[105] 

continually adjust to changes in clock delays, but generate jitter and are slow to lock 

because of the use of feedback in their approach. They also tend to hide exactly how 

much clock skew is present in a system. Digital solutions [66],[106] are quick to 

synchronize, but may be susceptible to environmental or operational conditions, such as 

temperature and power noise. This sensitivity requires digital solutions to be monitored 

to determine when the system requires resynchronization, although they also tend to 

handle a variety of clock frequencies, such as those used in a dynamic frequency 

scaling applicable, much better.  

The verification of clock skew reduction techniques is a difficult problem due to 

the precision required and the non-negligible interconnect delays encountered between 

measurement points. There is a need for two distinct types of post-silicon verification of 

clock distribution networks: functional verification and run-time verification [108]. Off-chip 

testing is an effective way to perform functional verification, but too often these tests are 

not performed at speed, yielding a test procedure that may ignore skew-induced timing 

violations. In a microelectronics world where variances are measured in picoseconds, 

routing clock signals off-chip through pins or test pads can induce the skew that needs to 

be measured. The cost of the equipment required to precisely measure clock skew may 

also be prohibitive to their use. On-chip functional testing approaches, while cheaper, 
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still suffer from path length variances when not placed directly in between the clock 

points being measured and accounted for in any skew measurements. Some solutions 

ignore the transport delay from the clock tap or leaves to the location of the skew 

detection component which can lead to intrinsic error in the approach [65],[97] since the 

distances can vary widely across an IC. [109] creates an effective method of measuring 

clock jitter at a latch with picosecond precision by clocking the latch with a reference 

clock and feeding the global clock into the data input. However, their methodology will 

experience error due to skew in the reference clock when used to measure skew in the 

global clock.  

We present here a system designed to be a built-in approach incorporating 

silicon debug circuitry into integrated circuits to allow users to debug timing faults, 

determine their source and potentially correct them as well. Our system can be used as 

a low-cost functional verification solution that can be applied using a simple and cheap 

microprocessor-based tester. This approach can limit the test time required on more 

expensive alternatives to correct skew due to process variation in a CDN at the factory. 

While there has been an increasing amount of design and research effort placed into 

designing low skew clock distribution networks and fault testing clock distribution 

networks, there has been relatively little emphasis placed on run-time verification of 

skew in clock distribution networks to ensure the correct behaviour of designs over real 

world operating conditions. Changes in temperature and power supply output can create 

significant changes to device delay in ICs and this can adversely affect the CDN during 

in-system operation. Our design can be used for run-time verification to detect skew and 
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correct for environmental changes. No other method can compensate for line length 

variances and measure, monitor and, if necessary, compensate for clock skew using a 

single centralized approach.  

Our approach uses a dedicated central block to first compensate for mismatches 

in line length between clock measurement points and then to minimize any detected 

clock skew. Other solutions place many phase detectors or PLLs on an IC equidistant 

from their measuring points [107],[110]. This circuit duplication represents wasted silicon 

area and increased run-time power consumption unless the additional hardware can be 

disabled. A centralized approach such as ours has the advantage of component reuse 

[111] when used with multiple test pairs of clocks. Our system differs from others such 

as [112] by being entirely digital. By precisely accounting for differences in global and 

local clock distribution, our solution is highly effective in dealing with architectures such 

as those shown in Figure 5.1. The components in these designs may all have clock 

distributions with different latencies, highlighted in Figure 5.2 for clock regions A and B. 

These latencies can result in significant clock skew between the global root and the 

clock leaves of the different modules, even if the clock inputs to each module have been 

perfectly synchronized. As such, it is well suited to detect and correct for clock skew in 

modular designs such as SoCs [113]. BICSS also exhibits many of the advantages of 

other post-silicon tunability approaches [114],[115] to overcome process variation in 

clock distribution networks. 
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Figure 5.1: Modular design of ICs with regions A-E in a given clock domain. 
 

 

Figure 5.2: Close up of two regions A and B in a clock domain. 
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Figure 5.3: The Built-in Clock Skew System (BICSS). 

 

5.3. System architecture 

Our Built-In Clock Skew System (BICSS) consists of a central skew management 

core and an array of distributed evaluation nodes consisting of a delay line and 2 

multiplexers placed at each tap under test (TUT). The system operates in 2 stages: a 

normalization stage and a measurement stage. Normalization determines the one way 

propagation delay between a TUT and the central debug hardware. Clocks are 

compared pair-wise during measurement, with each clock signal delayed by the one way 

transport delay of the opposing clock. An example 2-TUT design is shown in Figure 5.3. 

The additional circuitry required at each clock region is only 2 multiplexers and a 1 delay 

line. The input multiplexer (SRC) selects either the source clock or the test clock used to 
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normalize the measurement path length. The output multiplexer (FB) chooses between 

the test clock during normalization and the leaf clock for clock skew detection and 

measurement Together, the SRC (source) and FB (feedback) multiplexers are used to 

shift between normalization and evaluation modes. The phase detector sees the 

outbound clock and the return clock for normalization and the operational clocks from 

the two TUTs for measurement. Delay lines are used to compensate for path length 

variances and measured skew. Figure 5.4 shows the centralized circuitry required to first 

perform the normalization and then the skew detection and measurement. A phase 

detector with an adjustable locked region permits users to configure the amount of skew 

that will be tolerated based on the application.  

The central circuitry consists of 4 delay lines, 2 multiplexers (mux), a phase 

detector (PD) and a synchronization controller. The delay lines should be located close 

together to limit process variance and should be laid out to provide good matching. The 

 

Figure 5.4: Central BICSS circuitry. 
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controller design can be adjusted to accommodate different applications. It can be 

implemented as a finite state machine, in software or hardware without restriction, either 

off-chip or on. Since all the multiplexer delays are accounted for during the calibration, 

there are many configurations possible when using BICSS to detect and measure skew 

for many regional clock pairs. For simplicity, a fixed delay equal to the minimum latency 

through the delay line path is added to the two undelayed multiplexer inputs. If each 

delay line has a maximum delay (δ), the maximum round trip from the centralized BICSS 

circuitry to any clock region is 2.δ. In this case, the maximum skew that can be handled 

by the system is +/- δ, independent of the clock frequency. 

The skew detection circuitry uses the same averaging principle used to create 

skew-tolerant clock networks in previous sections. The central BICSS circuitry sends a 

signal (Out Clock) to the clock region and uses two delay lines to align this clock source 

with the return clock (In Clock) using the phase detector as a guide. Removing one of 

the delay lines from the signal path leaves the average clock since both the delay lines 

use identical delay settings. The tap to average clock delay includes both the transport 

delay to the local clock region and half of the circuit delay in the round-trip path. Since 

every return path contains exactly one delay line and two multiplexers, they should all 

ideally have the same circuit delay.  

Process variation could result in skew from mismatches in the clock routing 

circuitry and from duty cycle variations in the delay line, but the maximum skew injected 

during calibration is halved due to the averaging technique used. The forward and return 
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paths should be co-located to match propagation delays in both directions. For clock 

skew detection, the A clock input (CLKa) is delayed by the path delay to region B (DELb) 

and the B clock input (CLKb) is delayed by the path delay to region A (DELa). The phase 

detector then determines the relation between the two clock inputs, CLKa+DELb and 

CLKb+DELa: either up, down or locked. The development of a phase detector with an 

adjustable width locked region adds functionality to the system since it allows the 

amount of skew that can be tolerated to be configured depending on the specific 

application. Should the skew between CLKa and CLKb ever exceed the programmed 

tolerance during run-time, this fault can be flagged and compensated for – a feature 

particularly useful for digital clock skew compensation systems. Figure 5.5A and 5.5B 

show the normalization stages and Figure 5.5C shows the datapath used for 

synchronization.  

BICSS can also be used to infer the amount of skew that is present between 

CLKa and CLKb with delay lines 1 and 3 used to retain the normalization delay settings, 

clock delay lines 2 and 4 are available for determining the actual skew. Delay line 2 is 

incremented when clock A lags clock B, and delay line 4 is incremented when the 

opposite is true. Once aligned, the delay settings can then be externally read to 

determine the inferred (measured) skew. The precision of each synchronization is one 

half the maximum of either the maximum delay increment or the locked range setting of 

the phase detector. To achieve more accurate skew measurements in the presence of 

clock jitter, a clock skew measurement can be performed numerous times, taking the 

average to represent a more precise skew, similar to taking the center of an eye-diagram 
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Figure 5.5: Datapath used for normalization stages (A and B) and synchronization (C). 
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with an off-chip oscilloscope. Copying the delay line settings of the central unit to the 

local clock regions will effectively minimize the clock skew between the two points. 

Resetting delay lines 2 and 4 will allow BICSS to enter skew detection mode for the 

skew calibrated system. The same principle can be applied to comparing any pair of 

clocks (I, J) on the device using CLKI+DELJ and CLKJ+DELI.  

BICSS is designed as a regional solution to characterize a representative subset 

of a clock domain or a few skew critical clock leaves. A typical application could involve 

placing an evaluation node at specific levels of a clock tree, such as the design in Figure 

5.3. The system can be used to correct for operating temperature and process drift in 

each region. Routing two co-located signals between every evaluation node and the 

central hardware is not a prohibitive penalty given this approach. There is no constraint 

on how the signal pairs are routed to different taps since path length variances are 

compensated. BICSS can also provide a measure for the quality of the device by 

determining how far the measurement points are out of alignment. 

 

5.4. Operating characteristics 

The circuits and system discussed here have been designed and laid out in 

TSMC's standard 180 nm process using the Cadence Virtuoso design environment and 

simulated with SpectreS using the Analog Artist tool. The layout of the design is shown 

in Figure 5.6. The distributed nodes require 1200 μm2 and the central skew detection 

block requires 8100 μm2. The extracted simulations show that the coarse grain 
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(a) (b) 

Figure 5.6: The layout of a 2-clock region BICSS implementation. 
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component is adjustable in 93.5 ps increments. The fine grain delay line is capable of 

relatively linear delays up to a maximum of 99.3 ps. 196 delay settings are retained 

between 0 and 99.3 ps for an average delay increment of 0.50 ps and a maximum 

increment between adjacent settings of 2.93 ps. The total delay of the delay line, δ, fixes 

the maximum round-trip delay from the central BICSS circuitry to the furthest clock 

region at 2*δ = 385.6 ps for this implementation. The maximum delay that can be 

compensated for between clock regions is +/- 192.8 ps. The coarse grain component of 

the delay line can be increased to allow for larger skews and longer round trip delays.  

The fixed phase detector is tuned to allow a +/- 2 ps tolerance, a 4 ps locked 

region. The variable phase detector can be set to have a 3, 6, 8, 10, 28, 29, 35, 37, 51, 

52, 55, 59, 67, 106 or 253 ps locked region. The extracted simulations show that the 

system is capable of operating up to 2.30 GHz, however the widest locked regions 

cannot be used with the highest frequencies because of slew rate limitations. The 

accuracy of each synchronization is half the maximum between the delay line resolution 

(3 ps) and the locked width of the phase detector (0 ps for the variable tolerance 

detector, 4 ps for the fixed tolerance detector). Since three synchronizations are required 

for clock skew measurement and compensation, the intrinsic overall precision of the 

system is 4.5 ps for a system using the variable detector and 6 ps for one using the fixed 

detector.  

The power consumption is 11.9 mW for a fixed tolerance phase detector system 

monitoring two taps at 2 GHz. This is comparable to other skew compensation solutions. 
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Other centralized in-die clock skew measurement tools will have error many times 

greater than ours since they do not compensate for transport delays. As such, it is 

difficult to compare BICSS to other low cost solutions. There are other clock skew 

measurement techniques such as the time interval analyzer (TIA) method or picosecond 

imaging circuit analysis (PICA) that may have similar or better performance, but they 

come with much higher cost and complexity. A full description of other clock skew 

measurement techniques can be found in [116]. 

The operation of the system is shown in Figure 5.7 using 1 GHz clocks skewed 

by 150 ps between two clock regions. The top waveform shows the initial skew between 

the two clocks at their respective regions between 0-10 ns. Next, the system calibrates 

the line lengths between the centralized BICSS circuitry and clock regions A and B. The 

second waveform shows the inputs to the phase detector, and the third and fourth 

waveforms show the down and up signals. Times 10-15 and 20-25 ns show the initial 

state and times 15-20 and 25-30 ns show the aligned final result of the line 

measurement process for clock regions A and B, respectively. Recall that 

simultaneously asserted up and down signals indicates a locked state. Time 30-40 ns 

represents the result of the measured clock skew after using delay lines 2 and 4 to 

perform the alignment and measurement, representing the skew scope functionality of 

the circuitry. Finally, the appropriate delay line settings are copied back to the local 

regions resulting in synchronized local clocks, shown in the first waveform between 40-

50 ns. The circuitry can either be disabled during run-time, or remain in place to detect 

excess phase drift. The system can be used for multiple taps by inserting additional 
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Figure 5.7: Waveforms showing operation of the BICSS circuitry. 

 

 multiplexers at the central block. A plurality of taps can either all be verified with respect 

to a single reference region, or pair-wise. In either case, it is easier to initially normalize 

every tap and store the required delay settings in memory before measuring skew. 

Incorporating our clock skew management system on a design does not require a 

prohibitive amount of area or design effort. This approach also allows the central BICSS 
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block to poll any pair of taps for clock skew during operation without affecting the circuit's 

behaviour. The simulations shown are restricted to one pair of clocks for simplicity, 

without loss of generality. 

To compare all the clocks taps (i) in a given clock domain for skew, the quickest 

approach would involve at most log2N comparisons where N is the smallest power of 2 

greater than i. CLK1 is compared to CLK2, CLK3 is compared to CLK4 and so on until all 

or all but one of the local clocks have been compared exactly once. Next, CLK1 is 

compared to CLK3, CLK5 is compared to CLK7, and so on until all of the odd numbered 

clocks have been compared. At this point, every grouping of four clocks will be 

synchronized. The process continues with every fourth clock (CLK1 compared to CLK5, 

CLK9 compared to CLK13, etc), eighth clock, sixteenth clock and so on until there are no 

clocks to verify. The concept is applicable for any number of clock regions (i) without 

modification to the hardware besides the inclusion of additional multiplexers to route the 

appropriate clock signals to the central BICSS circuitry. One appropriate approach for 

handling multiple clock pairs during operation could involve storing the calibration 

settings and polling each pair sequentially to periodically check whether clock skew is 

still within allowable bounds.  

 

5.5. Conclusion 

Clock synchronization is important to ensure the fault-free high performance 

operation on an integrated circuit. Process variation can affect both transistor delay and 
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interconnect behaviour. While study in [103] compares the expected delay of an 

interconnect with an inverter chain delay, our method averages the round trip path of an 

interconnect creating a more accurate measurement. Variances can create problems for 

clock distributions, even some of those using active or passive skew reduction 

techniques. Traditional techniques largely ignore time of flight differences between 

evaluation points. Once normalized, skew can be quantified using high-resolution delay 

lines and the measurement read off-chip. The system is scalable and can be used to 

assess skew at a number of different locations on an IC. Using the skew measures 

allows the quality of the clock distribution on the fabricated die to be assessed. Using 

delay lines at each tap, our skew management system can minimize the skew between 

points to repair otherwise defective dies. BICSS also aids in the debugging of timing 

errors that may be discovered during testing due to the added visibility of on-chip clock 

signals.  

Our BICSS system is unique in its ability to detect, measure and compensate for 

clock skew using a single all-in-one solution. The development of a variable tolerance 

phase detector makes this the first system to allow online detection of a programmable 

skew bound. The complete solution can provide additional visibility to silicon devices for 

any existing clock distribution and the ability to repair otherwise defective devices. 

BICSS enables designers to modify their design flow to include post-fabrication 

adjustment to the clock distribution network to correct for timing faults or to minimize 

clock skew for higher frequency operation. It simplifies the design of modular and 
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system-on-chip architectures since it can detect and compensate for clock skew through 

unmatched local clock trees and repeater stages.  

We use an averaging technique to compensate for different propagation delays 

between measurement points, which allows a single BICSS unit to be used for multiple 

test points providing an efficient system through component reuse. Our entirely digital 

solution requires little additional circuitry and adds visibility to on-chip clocks aiding in the 

on-line debug and repair of integrated circuits and is a low cost alternative to other, 

traditionally costly skew measurement techniques. 
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System-level modelling 

 

 

 

 

6.1. Introduction 

The individual components required to create the built-in clock skew system 

(BICSS) and to distribute clocks both in single and multiple clock reconfigurable forms 

have been designed and tested using extracted level simulation in TSMC's 180 nm 

technology. The systems can be implemented using a standard cell approach, but are 

shown using a specific set of components to demonstrate the effectiveness of the 

system. These circuit blocks can be interchanged with any other available blocks 

provided they possess similar signal characteristics: equal tpLH and tpHL, sufficient slew 
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rate, and closely matched delays for the reference line components. Interchanging 

components will not have an effect on the correct operation of the complete system 

since proper functionality is based upon component and interconnect matching not 

specific circuit implementations. In this chapter, we generalize our approach to apply our 

system to a wide array of clock network architectures for use with common components.  

The design of the HDL models and controllers required to synchronize the clock 

networks and the BICSS unit are outlined and their complexity found for a baseline set of 

applications. The HDL models discussed in this chapter are generic enough to replicate 

the behaviour of a wide set of digitally-controlled components. The models can modify 

the propagation delay of devices and interconnect, they can operate with a variety of 

delay lines with different delay maps and they can modify the sensitivity of the phase 

detector to reflect different designs.  

 

6.2. Implementation approach 

Coordinating the synchronization and the reconfiguration of BICSS and our 

averaging clock networks requires controllers to monitor the system, configure the 

datapath and adjust the delay line settings to synchronize the clock signals. When 

coupled with the system models and loaded with the performance data of the target 

technology, it is possible to replicate the operation of a BICSS system and complete 

clock networks to predict the synchronization delay and the expected delay settings. The 

HDL code used to create the controller can be synthesized into any given technology 
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using a suitable library mapping. The controller can be made to handle a wide range of 

target clock networks, but each degree of freedom in terms of number of taps, number of 

clock domains and mesh network structures available will add to its complexity so it is 

important to restrict the flexibility of the controller to the desired silicon implementation.  

For modelling clock networks in HDL, our approach is to design a control module 

for synchronizing an arbitrary tap in the network, making the design modular enough to 

be applied to a dynamic program that can be applied to a number of different clock 

network configurations. The number of clock domains, the number of taps per domain, 

the size of the configuration memory, the location and type of clock switches and the 

location of the control lines in memory should each be parameterized for and entered 

into a dynamic program generator to create paired controller and clock network models. 

The generated clock network model would be fixed in terms of the structure of the clock 

mesh network and in the number and position of the clock taps in the switch mesh, as 

would be the case in an integrated circuit implementation. Once the clock network 

controller HDL code is created, the mesh network configuration used to create the 

reconfigurable clock domains, the delay setting map of the delay line, the programmable 

delays for the devices and interconnect, and the target clock period can be modified in 

the code to synchronize any realizable configuration of the clock network model.  

While the clock distribution and skew management systems are designed for an 

integrated circuit, the controller can be implemented in hardware on the IC, or externally, 

either in hardware or software. VHDL was chosen for the controllers because of its 
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flexibility: synthesizable VHDL code can be used externally in an FPGA or can be 

synthesized into an integrated circuit using an appropriate library and translator. Also, 

the code is generic enough to easily be translated into a language like C/C++ or 

subsequently to an assembly language for microprocessor target technologies. The 

controller programs were written for Altera devices using Quartus II to ensure that they 

were synthesizable. The models were then created using ModelSim and paired with the 

controllers for simulation. This is a convenient approach for this application since the 

simulations assume zero delay between events and all the signal delays can be explicitly 

coded into the program using VHDL's transport commands to replicate specific 

conditions that would be found on-chip. Controller clock frequencies and clock network 

frequencies can also be set arbitrarily to reflect different target technologies. 

 

6.3. Configuration memory requirements 

To create a single clock controller, the number of clock taps m is the first thing 

that needs to be set. Each tap will require 2 bits to control the direction of the reference 

clocks and 1 bit to control the polarity of the delay line's output clock. Assuming each 

delay line requires n memory bits and that this memory can be shared between the pair 

of delay lines located at the tap, the number of memory bits required per tap is: 

)1()3(_ +⋅+= mnbitsmemory fixed   (6.1) 
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with one location reserved as a dummy location for power-up. The idea is to minimize 

the number of address and data lines, to minimize the number of writes required for 

updating each delay setting and to minimize the number of wasted bits. The minimum 

number of bits will be located where the number of data lines is equal to the number of 

address lines, so we need to solve: 

x
fixed xbitsmemory 2_ ⋅=   (6.2) 

for x. However, we also need to consider the constraint to minimize the number of 

wasted memory bits and to minimize the number of memory writes required per delay 

setting. To allow some control over this, the word size should be an input parameter to 

the dynamic program generator. The number of words per delay setting modification is: 

1
_
3 ++=
sizeword

n
words   (6.3) 

rounded up to the nearest integer. There is trade-off required between the number of 

writes and the number of memory lines (address plus data lines) required. These 

memory lines need to be routed to every tap in the system and the time required for 

each synchronization depends on the number of memory locations per tap. 

For a reconfigurable distribution, the memory requirements are divided into two 

sections. The first is the delay settings required for each tap that is: 

)1()4(_ +⋅+= mnbitsmemory ablereconfigur   (6.4). 

The additional bit is required to choose which incoming clock is the forward clock. The 

second is the switch mesh configuration which depends on the size and type of switches 
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used in the mesh. Assuming b ports in a switch supporting b/2 clocks, there are two 

possibilities for the number of memory bits required a mixed switch mesh with varying 

switch sizes: 

[ ])!1(2log_ 2
0

_ −⋅=
∞

=

iabitsmemory
i

iencodedmem   (6.5) 

iiabitsmemory
i

idecodedmem 2
0

_ log_ ⋅=
∞

=
  (6.6) 

where ai represents the number of switches in the mesh of a given port size i and each 

log is rounded to the next largest integer. It is assumed that the memory is local to each 

tap/switch and that memory cannot be shared between different switch instances. The 

figure in Equation 6.5 represents encoded switch data that needs additional hardware to 

generate the required control line data. There are (b-1)! connections possible between 

ports and the times two factor is included to represent the direction of the connection. 

The figure in Equation 6.6 represents a figure that does not require decoding. Each port 

can be connected to any other port (forward connected) or no ports (unconnected or 

reverse connected).  

For a BICSS block operating on two clock taps, there are four independently 

controlled delay lines, three 2-input multiplexers and a phase detector. Since two of the 

multiplexers share select signals and assuming that each of the delay lines possess n-bit 

delay control and that the variable tolerance phase detector requires n'-bits for control, 

the total number of memory bits required is: 

2'4_ ++⋅= nnbitsmemory BICSS   (6.7) 
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To compare an arbitrary number of regional clocks z, two additional z-input multiplexers 

each requiring log2z select lines are needed. 

 

6.4 Synchronization controllers 

The only signals required by the controller are the 1-bit UP and 1-bit DOWN 

status signals from the clock network or BICSS. The controller generates the appropriate 

delay setting and updates the clock network or BICSS by writing to memory using 

address lines - addr(a..0), data lines - data(d..0), and a write enable (WE). The biggest 

obstacle in designing a controller for these devices is the periodic nature of the clocks 

that need to be aligned. Around the synchronization point, one expects a shift from UP to 

DOWN or vice versa to be an indication that the correct coarse or fine grain setting has 

been found. This scenario can also occur when the signals are 180o out of phase. It is 

also possible for the signals to enter into a delay range which cannot be synchronized 

from due to redundancy in the delay range with respect to the clock period.  

For example, if the clock period is 1000 units, and we have 8 coarse settings that 

increment by 200 units, an initial delay of 200 and a target delay of 800, the first 

command (using the minimum delay) will be a DOWN. The delay setting tried will be the 

maximum delay 7 coarse increments away, so 1600 units. This will result in an UP since 

it is closer to 2000 than 1000 units, returning the system to the previous setting, creating 

an infinite loop that will not result in synchronization. Since the error is caused by 
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redundancy in the delay line, it is necessary to limit the range of the coarse delays to a 

range between 1 and 1.5 clock periods.  

The delay line characteristics can easily be altered since arbitrary (non-

sequential) coarse and fine delay orderings are allowed and the total number of settings 

is available as a parameter to the controller. This allows delay data to be extracted from 

a sample delay line on-chip and used to characterize the IC's delay line behaviour. The 

actual delay is not necessary to build the controller since the delay settings are read out 

of memory, only the delay setting order that results in increasing delays is required. This 

will compensate for a certain degree of inter-die process variance. This approach also 

makes the controller circuitry compatible for other digitally-controlled delay lines. The 

approach assumes a 2-stage delay line with a coarse and fine grain control, but one of 

the two control subroutines can be disabled if the delay line is fine (or coarse) only, with 

no coarse (or fine) settings. 

 

6.4.1 Single clock domain controller  

Assuming a address lines and d data lines, a single clock domain system 

requires 4+a+d bits to communicate between the controller and the clock network, 

shown in Figure 6.1. To design a controller for a single clock domain with an arbitrary 

number of taps, the controller begins with the first tap closest to the forward clock source 

and sequentially synchronizes the taps until they are all synchronized. The generic 

structure of a single clock controller is shown in Figure 6.2. The tap_select block shown 
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Figure 6.2: Controller used for single clock domain model. 

Figure 6.1: The single clock domain, n-tap controller and model. 
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Figure 6.3: Controller component used to select and update taps in clock distributions. 

in Figure 6.3 coordinates the activity of the controller. The first step is to configure the 

clock thread to send both the forward and reverse clocks to the first tap to be 

synchronized. The speed of the controller clock can be less than the frequency of the 

thread clock since the UP and DOWN signals are sampled and held by the choice block 

shown in Figure 6.4. The UP and DOWN signals only return to they neutral state once 

the new delay setting is programmed into the clock network and the controller is ready 

for the next test. The initial delay line settings are the minimum fine and minimum coarse 

settings for both delay lines in the tap. First, the coarse setting is adjusted according to 

the phase detector inputs (UP or DOWN) until an UP is found following a DOWN or a 

DOWN is found after an UP. While the coarse setting is modified directly by the choice 

 - 130 - 



 System level modeling 

 

Figure 6.4: Controller unit structure used to choose delay settings. 

block, the fine grain delay is controlled as the integer index to an appropriate ROM 

location. By decrementing or incrementing the fine grain address, you can decrement or 

increment the delay. As soon as the correct coarse setting is found, the fine setting 

changed to its longest delay setting. Since we are expecting the fine grain setting to be 

slower than the initial setting, the controller waits for the first DOWN to be signalled 

before looking for an UP. This has to do more with the nature of the phase detector 

model than the physical circuitry due to the use of the mod function. Once the UP 

condition is found, the tap is fully synchronized.  

There is a two signal handshake between the tap_select and choice blocks to 

coordinate the activity: one to indicate that a new test is ready, and another to indicate 
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that the test is complete and to load a new delay setting. Once the delay values for the 

next test are loaded, the UP and DOWN signals are sampled and held once again. Once 

the tap is completely synchronized, tap_select reconfigures the circuit to bypass the 

second delay line in the current tap (halving the delay) and reconfigures the clock thread 

to feed both forward and reverse reference clocks to the next tap. This process will 

continue until all taps are synchronized.  

 

6.4.2 Reconfigurable clock domain controller  

The reconfigurable controller is constructed by expanding the design of the single 

clock controller. The primary difference is that tap_select instances are synthesized for 

each clock thread. The controller uses a DONE signal from each tap_select component 

to begin the synchronization of the next clock thread. The functionality of these 

tap_select instances could be accomplished using a single unit, but the approach makes 

the system more modular and provides added visibility of the circuit for testing purposes. 

The choice block can be reused for every clock thread since it written to work with any 

tap, using input parameters to modifying tap-specific configurations. While the controller 

is scalable, the more alternatives allowed (number of taps, number of clock domains and 

number of clock taps per domain), the more resources are required for the controller. To 

use system resources more efficiently, the controller should be designed for the 

expected clock mesh structure using the maximum number of clock domains and the 

maximum number of clock taps per domain as parameters. Similar to the single clock 
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network controller, there are 4+a+d bits required to communicate between the controller 

and clock network, Figure 6.5. The structure of the controller is shown in Figure 6.6.  

 

Figure 6.5: The multi-clock, n-tap clock distribution controller and model. 

 

Figure 6.6: Controller used for the multi-clock, n-tap reconfigurable clock distribution. 
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6.4.3 Built-in clock skew system controller 

The built-in clock skew system controller requires the same 4+a+d bits to 

communicate between the components, Figure 6.7. There are only slight changes in the 

overall architecture and the configuration data required, Figure 6.8. The overall approach 

of the BICSS controller is different than the ones used for the clock networks. Where 

previously, the delay lines are controlled as a pair, here they need to be controlled 

individually, leading to longer memory write stages between tests. In addition, there 

needs to be four distinct operating stages in the controller to complete the skew 

compensation: the first two stages normalize the delay between the taps (A and B) and 

the central circuitry, the third determines the amount of clock skew present and the 

fourth is a write-back stage where this skew information is written back to the taps under 

test to perform the skew compensation. This requires changes to the BICSS controller 

coordination component tap_select, shown in Figure 6.9.  

Figure 6.7: The built-in clock skew system model and controller. 
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Figure 6.8: The controller used for the Built-in clock skew system. 

During the two normalization stages, the delay generator choice operates like the 

choice component describes previously. However, to perform clock alignment in the 

fourth stage, there is no averaging involved, just a synchronization to align the two 

normalized tap clock signals at the BICSS block. Only one delay line is modified at any 

given time and depending on which signal leads and which signal lags, the UP and 

DOWN inputs can both equate to an increase or a decrease in the delay setting. The 

difference is an UP increases the delay setting when delay line 2 is being modified and a 

DOWN increases the delay setting when delay line 4 is being modified. This change 

requires the addition of an alternate choice block, called choice_sync, which is active for 

the clock skew compensation phase of the controller operation. A multiplexer is used to 

choose between the signals for tap_select. Choice_sync replicates choice twice, once to 
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Figure 6.9: Controller component tap_select used in the Built-in clock skew system. 

choose delay line 2 values, and once to choose delay line 4 values. The NEGATIVE 

signal from choice_sync is used to determine which delay line (2 or 4) is being updated. 

Choice_sync begins at the longest coarse delay setting of delay line 2 and decrements 

the coarse setting until an UP is found, or the shortest delay setting is reached for this 

delay line. If no UP is found, delay line 4 is sequentially incremented until an UP is 

found. Once the coarse delay is set, the fine delay is set to its maximum setting and 

sequentially reduced until an UP is found.  
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6.5 System models 

The delay lines are modelled using SpectreS data from the extracted circuit. The 

total delay through a delay line consists of a fixed latency and a variable delay 

component. The delays are normalized to eliminate the fixed component. There are 188 

fine grain delay settings spanning between 0 and 85 ps; the settings are also rounded to 

the nearest picosecond and using 8-bit control leading to redundant fine delay settings in 

the model. The possible fine delay settings for each delay line are shown in Figure 6.10; 

the horizontal portions of the curve represent repeated settings that if eliminated, could 

reduce the required synchronization time for each test. The coarse grain settings are 

also representative of the silicon circuitry and allow 6 distinct settings (including zero), 

each with an 85 ps difference with respect to its adjacent setting, encoded using 5-bits. 

The total number of control signals for each delay line is 13.  

 

Figure 6.10: Delay setting range for a single fine grain delay block. 

 - 137 - 



Chapter 6 

6.5.1. Single clock model 

The structure of an n-tap single clock domain model is shown in Figure 6.11. The 

configuration data is generic and programmable to model different variations in layout. 

The clock period used, the delay through the multiplexers and the interconnect delay 

 

Figure 6.11: The n-tap clock distribution model. 
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between taps are all variables that can be controlled in the model. To simulate properly 

in HDL, a clock signal is added to the clock network model although the extracted circuit 

does not require such a signal. There are three significant components in a single clock 

network model: The clock thread, the delay lines and the phase detector. A pair of 

independent forward and reverse clock threads are used with a 2n delay configuration, 

but bi-directional configurations can be modelled by appropriately setting the device and 

interconnect delay parameters. The phase detector works by comparing the 

parameterized interconnect and device delays to the current delay line setting for the 

forward path and comparing it to the expected delay of the reverse path. The calculation 

is made for every tap and only the tap currently being synchronized is forwarded to the 

controller, similar to the circuit design of clock network.  

 

6.5.2. Reconfigurable clock network model 

To create a reconfigurable network, first the clock mesh network needs to be 

constructed with switches of arbitrary size (bi ports) and n taps. The number of clock 

frequencies and the maximum number of taps per domain also need to be set. For the 

most generic solution, the maximum number of taps per domain and the number of clock 

domains can both be set to the total number of taps. The clock network synchronizer can 

then be generated. Figure 6.12 shows one possible section of mesh network containing 

switches with 4 and 8 ports, routing 2 and 4 clocks, respectively. Each port can be 

uniquely connected to any other port in the switch. The horizontal and vertical lines are 
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labelled using the row/column number and the segment number along the row/column 

starting from the top most corner. The switch ports are alphabetically labelled from the 

right-most port on the top edge of the switch, so from A to D for a 4-port switch, A to H 

for an 8-port switch and so on. For the top and left switch ports, the inputs lines end in A 

and the output lines end in B. For bottom and left ports, the opposite is true.  

Once the controller and circuit model are generated, the path for each clock 

thread is established by writing to switch configuration memory in the clock network. The 

tap synchronization order is then followed as programmed into the system to 

synchronize every tap in a thread. For the tap being synchronized, all of the switch 

direction control bits are set to forward controls for the switches preceding the tap and to 

reverse for the switches following the tap. Between tap synchronizations, the signal 

direction for the thread must be modified from reverse to forward for every switch 

between the current tap i and i+1. For the reconfigurable clock network model, the 

interconnect and switch delays between consecutive taps in a domain must also be 

included as parameters for every clock thread (domain). Multiplexers are added at each 

clock tap to select which wire carries the forward and which wire carries the reverse 

reference signals. Since the UP/DOWN comparison is done algebraically instead of on 

the waves themselves, the reverse clock multiplexers can be omitted in the model.  
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Figure 6.12: An enlarged section of a multi-clock mesh. 

The functionality of the phase detector model is divided into two components: 

up_down and choose_vals. choose_vals calculates the forward and reverse propagation 

delays using the parameterized delay variables and the up_down block determines the 

current tap’s forward and reverse path delays. The required UP and DOWN signals can 

be generated by comparing the two path delay values. Where up_down operates on the 

actual tap in question, choose_vals operates on each thread from first tap to last based 

on the programmed order of synchronization. The behaviour of the phase detector 

circuitry is much simpler since it can easily compare the forward and reverse clocks 

without having to infer the forward and reverse path delay from the configuration 

settings. 
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6.5.3. BICSS model 

BICSS requires a primary central block located where convenient on an IC and 

small secondary distributed circuits located at each tap under test, consisting of a 

multiplexer and a delay line. The central block, shown in Figure 6.13, consists of four 

delay lines, 3 multiplexers and a phase detector. Delay lines 1 and 2 are used to 

compensate for the transport delay from clock tap A to the primary block using 

SRCB_FB as the source clock. Delay lines 3 and 4 are used to compensate for the 

transport delay from clock tap B to the primary block using SRCA_FB as the source 

clock. Once the paths are normalized, delay lines 2 and 4 are used to determine the 

skew between the clocks at tap A and B. Should BICSS be used on a system with more 

than two taps, the skew detection, measurement and compensation would need to be 

 

Figure 6.13: The built-in clock skew system model. 
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performed through a multiplexer which would choose between all the clock signals 

entering the BICSS block. 

Since the only task for the test clock is to drive the round trip path from the block 

to the tap and back, the same clock source can be used for all normalizations, provided 

that the clock operates at the same frequency as the tap clocks being observed. Once 

normalized, the clock taps are compared pair-by-pair. To compensate for the first 

transport delay from tap A, In0 of the phase detector is the roundtrip delayed test clock 

and In1 is the undelayed test clock. When compensating for the transport delay from tap 

B, In1 of the phase detector becomes the roundtrip delayed clock and In0 is the test 

clock. The third mode compares both tap clocks transported to the BICSS block and 

delayed by the evaluated transport delay of their counterpart. The transport delay 

compensation uses delay lines 1 and 3 and the skew compensation uses delay lines 2 

and 4.  

 

6.6 Operating behaviour of the systems 

The models and controllers discussed in this chapter have all been simulated 

using ModelSim-Altera Edition. As this is a behavioural simulator, clock-to-output delays, 

propagation delays and minimum clock period are not incorporated into the simulations 

by default. This allows the propagation and transport delays, and the behaviour of the 

delay lines present in the models to be easily changed. As a result, the model can reflect 

the behaviour of different layouts and unevenly spaced taps. It can also use different 
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components like crossbar switches and multiplexers with different operating 

characteristics like signal latency and propagation delays. The simulations assume that 

the root clocks are generated externally to the distribution or testing circuitry. The 

simulations waveforms are shown in Appendix A.  

 

6.6.1 Single clock domain system 

A four tap clock network model and controller was designed using the approach 

described in this chapter. This 4-tap system using a 13-bit delay line requires 64-bits of 

memory considering the 16-bits of memory required per tap. A 15-tap system would 

require 240 bits using the same 13-bit delay line. A 6-bit word was chosen for the 

memory word size. Since 3 memory locations are required per tap and 12 memory 

locations in total, 4 memory address bits are needed. However, for additional flexibility, 6 

memory address bits are used in the simulation. With standard optimization settings for 

speed and area, the controller was synthesized using 202 LUTs, 74 registers and 2048 

memory bits to store the delay line characteristics in an Altera Stratix II device. The 

computed maximum frequency of the controller is 314.87 MHz. The number of clock 

taps is limited to 10 for this implementation. A higher number of taps would require more 

registers and larger look-up-tables in the FPGA. The four tap controller and clock model 

was simulated with a controller clock of 1.0 GHz and a thread clock of both 1.0 GHz and 

1.5 GHz. There is no relationship needed between the two clock frequencies. In a typical 

configuration, the controller will be located off-chip and operate at frequency in the 
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megahertz range, as is typical of a microprocessor or FPGA. The clock frequency of the 

clock threads are limited to frequencies above 1.0 GHz due to the maximum delay of the 

variable delay lines used in this proof of concept. These delay lines are scalable and 

could be extended to be use with lower clock frequencies, as needed. The functionality 

of the delay lines could also be improved by allowing inverted outputs, as is the case 

with the silicon implementation of the design, halving the minimum required frequency. 

The synchronization time required by the system is not fixed since it is dependent 

on the number of tests needed to reach the appropriate setting. The complete 

synchronization waveforms for the 1.0 GHz thread clock in Figure A.1 and the 1.5 GHz 

thread clock in Figure A.5 show that the synchronization time for each tap can vary 

greatly. Overall, the 1.0 GHz simulation with typical delay parameters requires under 9 

μs (3 μs at the synthesized frequency) to complete and the 1.5 GHz simulation requires 

under 7 μs (2.3 μs at the synthesized frequency). In these simulations, the TAP_NUM 

signal changes from 1 to 4 as the tap being synchronized changes from D to A, 

respectively. The VALUE2 signal represents the target delay (reverse path delay) for the 

given tap and configuration and the VALUE1 signal represents the forward path delay 

incorporating the delay line settings. The up_down component uses these values to 

generate the correct UP and DOWN signals until these numbers match. For the currently 

active tap X, the CG_X and FG_X signals represent the current delay setting being 

evaluated. 
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The initialize phase for the 1.0 GHz system is shown in Figure A.2. Note how the 

initial tap and thread settings are written into memory for the four taps using the ADDR, 

DATA and active high write enable (WE). The address and data are held constant for 

one clock period before and one clock period after the write assertion to prevent 

erroneous memory writes. The synchronization of the first tap (tap D) is shown in Figure 

A.3 for the 1.0 GHz thread clock. Notice the CG_D setting and VALUE1 delay change to 

find the correct coarse setting up to 200 ns, and the FG_D setting and VALUE1 delay 

change to find the correct fine setting after 200 ns. Figure A.4 represents the initial and 

final picture for the synchronization of the tap clocks. OUT_XH represents the forward 

clock delayed through only one delay line. The alignment in Figures A.2 and A.3 were 

performed using both delay lines. This is the averaging required to achieve 

synchronization. Similar to the silicon implementation, once the clock edges are aligned, 

the system requires a calibration phase to invert clocks as required to achieve consistent 

clock polarity. For the 1.5 GHz clock thread, Figure A.6 shows the synchronization of tap 

B and Figure A.7 represents the initial and final picture for the synchronization. The 

accuracy of the synchronization is the maximum increment between delay settings (3 ps 

in our model) due to the digital nature of the delay line and the idealized behaviour of the 

phase detector. 
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Figure 6.14: The multi-clock domain, 15-tap reconfigurable clock network model. 

6.6.2. Reconfigurable clock domain system 

To show the functionality of a reconfigurable clock network controller, we 

simulated a 3 clock domain, 15-tap model and controller, shown in Figure 6.14. It is 

constructed by elaborating upon the single clock domain model. Like the single clock 

model, each clock domain is limited to 10 taps. More taps and more clock domains can 

be added, but this will affect the size and speed of the controller. This limitation does not 

significantly affect the reconfigurability of the clock infrastructure as shown in Table 6.1. 

Two scenarios are explored for the number of possible configurations that must be 

excluded due to the 10 tap per domain restriction: one where all taps are connected: 

Equation 6.8, and one where taps can be left unconnected: Equation 6.9.  
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Excluded configurations (case 1) =   (6.8)  







⋅⋅ = nn

n 15
23 4

0

Excluded configurations (case 2) =   (6.9)  







⋅⋅ = nn

n 15
33 4

0

 

 Every tap occupied Unconnected tap allowed 

315 415 Total Cases  
14 348 907 1 073 741 824 

Realizable Configurations 14 271 114 1 073 370 301 

Excluded Configurations 77 793 371 523 

Percent Excluded 0.54% 0.03% 

Table 6.1: Number of possible clock domain configurations. 

 

For this 15-tap configuration, 272 bits are required for the tap memory. Using 6-

bit words and 3 words per tap, 6 address lines are required. In addition to this, a mixed 

switch mesh with eight 8-port switches and twelve 4-port switches requires 160 encoded 

bits and 288 decoded bits of memory. Without any optimization for speed or area, the 

controller for this reconfigurable network was synthesized using 447 LUTs, 127 registers 

and 2048 memory bits to store the delay line characteristics in an Altera Stratix II device. 

The computed maximum frequency of the controller is 243.96 MHz. The fifteen tap 

reconfigurable controller and clock model were simulated using a controller clock period 

of 100 ps and a sample configuration using thread clock periods: 900 ps for thread A, 

750 ps for thread B and 600 ps for thread C. The fifteen taps were divided as in Figure 
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4.6, so with the taps numbered column-wise from left to right, thread A was connected to 

taps 1, 2, 3, 5, 6 and 10, thread B was connected to taps 11, 12 , 14 and 15 and thread 

C as connected to taps 4, 7, 8, 9 and 13. The complete synchronization for all 15 taps is 

shown in Figure A.8. The TAP_COUNT signal represents the number of taps already 

synchronized, the TAP_NUM signal represents the exact tap currently being 

synchronized and the COUNTX signals represent the state of each TAP_SELECT 

component, with 0 being the initial state and 26 being the final state. Figure A.9 shows 

the synchronization of the six thread A taps. The output waveforms OUT_X are listed in 

the waveform in the order in which they are synchronized. Since the model only applies 

the delay setting once all the taps in the thread have been synchronized, the OUT_X 

waveforms before time 1151 ns show the initial state of the tap clocks and those after 

1154 ns show the synchronized end result. Figure A.10 shows the synchronization of the 

four thread B taps. The OUT_X waveforms before time 2096 ns show the initial state of 

the tap clocks and those after 2099 ns show the synchronized end result. Figure A.11 

shows the synchronization of the five thread C taps. The OUT_X waveforms before time 

2840 ns show the initial state of the tap clocks and those after 2843 ns show the 

synchronized end result. The 15 synchronized tap clocks can be seen in Figure A.12. 

 

6.6.3. Built-in clock skew system 

The controller for BICSS was synthesized using 394 LUTs, 140 registers and 

2048 memory bits in an Altera Stratix II device. The computed maximum frequency of 

 - 149 - 



Chapter 6 

the controller is 269.54 MHz. The simulation uses a 100 ps controller clock period and 1 

ns tap clocks with a 50 ps source-to-tap A skew, a 20 ps source-to-tap B skew, and 135 

ps and 95 ps transport delays, respectively, from tap A and B to the central BICSS block. 

These numbers can be changed as required to reflect any realizable circuit 

configuration. The complete calibration and synchronization cycle is shown in Figure 

A.13. Delay lines 1 and 2 are both updated while TAP_NUM = 0 until the transport delay 

from tap A is determined. This delay is then halved by resetting delay line 2 to its initial 

value. The same is true for TAP_NUM = 1 for the transport delay from tap B using delay 

lines 3 and 4. For synchronization, delay line 2 or 4 is modified as needed, depending on 

the configuration. VALUE1 represents the target delay for calibrating tap A and VALUE2 

represents the target delay for calibrating tap B. In the case of this test case, delay line 4 

needs to be modified and VALUE2 represents the target delay.  

The calibration of the tap A clock path to the BICSS circuitry is shown in full in 

Figure A.14 and the enlarged final stage is shown in Figure A.15. Note how the 

PD_1_OUT_CALA and PD_2_OUT_CALA signal achieves alignment between times 177 

and 178 ns before TAP_NUM switches to 1. The calibration of the tap B clock path to the 

BICSS circuitry is shown in Figure A.16 and the enlarged final stage is shown in Figure 

A.17. Note how the PD_1_OUT_CALB and PD_2_OUT_CALB signals achieve alignment 

at 753 ns before TAP_NUM switches to 2. Both delay lines 2 and 4 are written to during 

an update, however only one of their values is updated each time. The synchronization 

is highlighted in Figure A.18 and the enlarged final stage is shown in Figure A.19. 

Alignment is achieved at 1085 ns as shown by the PD_1_OUT and PD_2_OUT signals. 
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The final stage of the BICSS scheme is to write-back the delay line data to the clock taps 

to compensate for the determined clock skew. Figure A.20 shows this write-back stage 

and the clearing of the delay line 2 and 4 settings in the central BICSS circuitry. The 

transport delay calibration setting is kept in delay lines 1 and 3. As such, the SRCA and 

SRCB signals reflect the clocks at each tap and are synchronized for their respective 

source-to-tap delays. The signals PD_1_OUT and PD_2_OUT reflect the transport delay 

compensated tap clocks at the BICSS block and should also be aligned after 

synchronization. As such, the system can monitor clock alignment for a pair of clock taps 

(tap A and B in this model) using the BICSS phase detector during operation and clock 

skew can be detected and potentially corrected.  

 

6.6 Conclusion 

The three system/control configurations discussed in this chapter represent two 

potential clock networks: a fixed single clock variant and a fully reconfigurable three 

clock variant, and the built-in clock skew system introduced in Chapter 5. Each of the 

simulations includes a model created using extracted circuit information from a 180 nm 

TSMC process design and a synthesizable controller in VHDL necessary to operate the 

circuitry. The hardware that the models represent is designed to be versatile enough to 

be controlled by an internal controller in silicon, or an external one using a 

microprocessor, an FPGA, or any other hardware or software approach. The results 

show that the controller/circuitry interface is simple yet versatile enough to be capable of 
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operating the circuitry easily and efficiently. The majority of the required communication 

bits are dedicated to the on-chip configuration memory. The parallel nature of this 

interface could be replaced by a serial one similar to JTAG, or even JTAG itself, thereby 

greatly reducing the I/O requirements for synchronization. The resources required to 

implement the controllers and the time required to perform the synchronization and 

calibration operations are also reasonable and show that the designs can be practically 

implemented in a real world system. The modelling of the clock switch meshes allows a 

variety of clock configurations to be tested to determine the required synchronization 

time and to predict the ideal delay setting settings. These settings can be pre-loaded into 

the system speeding up synchronization time when used in silicon. This additional 

predictive step could greatly simplify the complexity and the synchronization time of the 

clock network controllers. 
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7.1. Introduction 

While the design and operational overview of the dual reference signal based 

averaging clock networks and the built-in system for online debug and repair have been 

discussed in previous chapters, this chapter will discuss the detail behind the circuitry 

involved in creating these structures. While the systems are designed to be appropriate 

for a number of on-chip applications and technologies, it is important to get an idea 

about the area and performance that can be achieved in a mature technology. The idea 

was not to get the highest performance possible, but to get a realistic view of an average 

case implementation. Both higher and lower frequencies could easily be achieved using 
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modified circuits and lengthened or shortened delay lines. If used in a newer technology, 

both higher clock speeds and smaller circuitry could be obtained. Since mismatch is a 

greater issue in these newer technologies, the performance of the circuitry could 

change. The active skew compensation and skew detection circuitry is an approach that 

will overcome variation much better than traditionally used passive approaches since the 

system is only susceptible to mismatches between components that are closely spaced. 

The net variation effect will be smaller than clock trees using a distributed approach. The 

circuitry is entirely digital with digital control to create the easiest interface possible. 

Digital circuits are also small in area compared to their analog counterparts and are 

much easier to port to different technologies. Digital circuits are also much less sensitive 

to matching than analog circuits since analog circuit techniques rely on similar closely 

matched components for correct operating behaviour [117]. 

All of the circuits required to construct the systems were designed and laid out 

using TSMC’s 180 nm standard process. Clock frequencies between 500 MHz and 2 

GHz were targeted because this represents a typical frequency range in this technology 

for ASICs, microprocessors and FPGAs. Since the routing circuitry and control signals 

are designed to apply to the clock distribution network, novel circuit techniques are 

required to perform the required task and to communicate with a synchronous controller. 

The circuitry’s ability to function asynchronously an important consideration in justifying 

the feasibility of the clock networks and the clock skew detection system. There are a 

number of circuits that achieve better performance or have novel functionality that were 

 - 154 - 



 Core circuit components 

developed in creating the proof of concept systems. Both the novel circuitry and the 

circuitry that directly affects the performance or practicality of the systems are described 

in the following sections. 

 

7.2. Delay lines 

The delay line is the component that has the single greatest effect on the 

performance of the system since the attainable skew bound is directly related to the 

minimal delay increment, or resolution between settings. Typical digital delay lines have 

large delay increments between settings, which make it difficult to perform accurate 

signal alignment. Analog delay lines have static power consumption are require relatively 

large devices that could hurt the practicality of our multi-tap, multi-delay line system 

[118]. A number of different configurations were investigated and a dual stage, coarse 

and fine grain approach was selected to get good resolution and a wide delay range. 

The result is a delay line with a fixed latency component (D) and a variable delay 

component (δ). The minimum frequency that can be distributed is a function of the total 

achievable variable delay: 

δ⋅
==

2
11

max
min T
F   (7.1) 

The two times factor comes from the ability of the delay line to output both an inverted 

and a true version of the input. This doubles the effective delay achievable by the delay 
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line and is only possible since the component is designed for clock signals with 50% 

duty cycle. The variable delay line should have good linearity between potential delay 

settings. Here, the maximum delay increment between adjacent settings establishes the 

worst-case clock skew of the CDN or the resolution of the skew detection circuitry. The 

delay line implementation needs to be as small as possible and should have a minimum 

of control lines since it needs to be replicated for each tap in the distribution. The 

resulting signal should also have full swing outputs with balanced pull-up and pull-down 

behaviour. 

 

7.2.1 Coarse grain delay lines 

A number of different structures were tested before choosing the design shown in 

Figure 7.1. The first one had a set of even numbered inverter chains (0, 2, 4, 8, 16) with 

input and output connections that allowed the input clock signal to be routed through the 

system exactly three times, choosing a different inverter chain for each pass. This 

method creates a constant delay overhead due to the routing and allows a digitally-

controlled variable delay between 1 and 14 two-inverter delays. Each delay increment 

resulted in an increase of roughly 80 ps. The problem with this method is the total 

number of inverters required, the networking overhead and the approach’s lack of 

scalability. The next coarse structure employed a ladder system using an inverter chain. 

Each inverter output is connected to the next inverter in the chain and to a multiplexer 

(or other device) that selects between all of the inverter outputs, or taps. Two varieties of 
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Figure 7.1: Coarse grain delay line. 

multiplexers were tried, one using CMOS logic and one using pass transistors. This 

method was not pursued since the multiplexer prevents the system from being easily 

scaled. Additionally, the high capacitive loading on the pass transistor circuit and the 

large multiplexer fan-in of the CMOS variant slowed the signal transition limiting the 

operating frequency to below our target range. This design in Figure 7.1 was optimal for 

our application since the multiplexers are built into each coarse cell so the design scales 

better than a typical tapped inverter chain structure to allow for longer delays and lower 

frequencies where necessary. The design is easy to control and the amount of delay 

added between settings is also appropriate. The fact that signals entered and exited the 

component using the same ports was useful in maintaining consistent delay increments.  
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Figure 7.2: Fine grain variable delay inverter. 

7.2.2 Fine grain delay lines 

A fine grain delay element is needed to fill the gaps between coarse grain 

settings. To accomplish this role, we use the fine grain variable delay inverter shown in 

Figure 7.2 to achieve equal high-to-high and low-to-low delays, resulting in matching 

duty cycles for input and output clocks. A number of these fine grain delay inverters 

need to be serially connected together to bridge the delay between coarse grain 

settings. Allowing each fine delay inverter to be programmed individually creates the 

greatest number of delay settings and the potentially highest resolution, but also requires 

the most overhead. The number of groups of fine delay inverters that can be uniquely 

programmed (g) and the number of control lines per inverter (c) sets the achievable 

resolution of the delay line. The resolution of the complete delay line is: 
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gcideal

delaycoarse
resolution

)2(
_=   (7.2) 

This is the potential resolution and not the actual one since some unique delay settings 

might map to nearly identical delays and some delay settings may exceed the required 

coarse delay. In a typical application with a 100 ps coarse grain delay, an arbitrary 

number n delay lines are controlled as a single group with 4 control lines resulting in a 

maximum attainable resolution of 6.25 ps. With two uniquely controlled groups, this 

number decreases to under 0.4 ps. Since the resolution of our coarse delay is in the 

same range as this example, we choose to have two uniquely controlled groups fore the 

fine delay. Since the delay range of our variable delay inverter is approximately 25 ps, 

this would require 4 inverters to span the coarse grain delay.  

 

7.2.2.1. 1-1-1-2 foursome  

Having established a fine grain delay line using 4 variable delay inverters in two 

groups, we explore next a number of potential orderings. This first attempt had three 

delay lines controlled as a group and a fourth controlled independently. This approach 

was discarded because the delay range was not sufficiently linear and the output signal 

had too much duty cycle variation in the clock signal.  
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7.2.2.2. 1-1-2-2 foursome  

The next delay line ordering we tried uses the coarse delay line from section 2.1 

and 4 current starved inverters grouped in pairs. Buffers or inverters are required to 

regenerate the clock edges that are softened by each fine delay stage. While this 

configuration, shown in Figure 7.3, behaved as expected, there was room for 

improvement in terms of the rise time and the duty cycle of the output signal.  

 

7.2.2.3. 1-2-1-2 foursome 

The third delay line ordering alternated delay line settings since this approach 

would have better matching and would contain similar signal paths in both halves of the 

delay fine delay block. In this configuration, shown in Figure 7.4, the output load of each 

corresponding fine delay inverters is matched. This is important since different output 

loads will have a nonlinear affect on the delay through a current-starved inverter since 

the drive strength changes for each delay setting. Simulations showed that this 

configuration resulted in more consistent signal characteristics, but the duty cycle 

continued to vary between different settings. This result is not ideal for our system, since 

the duty cycle change is averaged during synchronization, skewing the resulting clocks. 

This result is further explained by the fact that the variable delay inverter may affect 

rising and falling edges differently for a constant setting. Duty cycle shifts originate from 
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unequal propagation delays through the pull-up and pull-down portions of the fine delay 

inverter. 

 

7.2.2.4. 2-1-1-2 foursome 

The fourth configuration, Figure 7.5, corrects the duty cycle drift by feeding each 

signal through two identically set fine delay inverters separated by non-inverting logic 

 

Figure 7.3: 1-1-2-2-fine delay configuration. 

 

Figure 7.4: 1-2-1-2-fine delay configuration. 

 

Figure 7.5: 1-2-2-1-fine delay configuration. 
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and delay lines, ensuring that each transition will propagate through both pull-up and 

pull-down portions of the delay line. For a pair of identically set delay lines, if the pull-up 

section delays or advances the signal by d1, and the pull-down section delays or 

advances the signal by d2, then the rising edge of the input signal will be skewed by 

d2+d1 and the falling edge will be skewed by d1+d2, resulting in a net zero change in the 

duty cycle of the signal. While the d2 and d1 delays are ideally identical, this relation 

cannot be guaranteed due to process variance. The previous configurations produced a 

d2+d2 shift in the rising edge and a d1+d1 shift in the falling edge, creating a |2*(d2-d1) | 

change in the duty cycle of the output signal.  

 

7.2.2.5. Grouped delay lines 

Since matching of the fine grain delay inverter pairs is important to achieving 

good results, the delay lines should be kept in close proximity to each other. In the 

previous delay line, the second group of delay lines was split by the first group. The next 

iteration is shown in Figure 7.6 and the pairs of delay lines are physically located next to 

 

 

Figure 7.6: Grouped fine delay configuration. 
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one another, but traversed in the order of the previous configuration. As a result, the 

delay characteristic between this delay line and the previous one is nearly identical in 

simulation. This method will be more resilient to process variation due to the smaller 

distance between the components.  

By standardizing the signal characteristics, the number of realizable delay 

settings decreases since permutations of the delay setting order no longer modifies the 

delay. In addition, the structure of the variable delay inverter requires that one delay 

setting be reserved. As a result, the potential resolution is now: 

( ) 
=









−−

=
g

i

gc

i

g
delayCoarse

idealresolution

1
12

_)(   (7.3) 

To obtain a greater number of unique settings the second pair of delay lines was simply 

resized, resulting in much better resolution:  

( )gc

delayCoarse
idealresolution

12
_)(

−
=   (7.4) 

 

7.2.3 Performance 

These delay lines provide high resolution delay increments using a current 

starved approach without requiring static power consumption as is usually the case 

when digitally controlled switches [119],[120] and have full rail-to-rail operation. Our fine 
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grain delay components use the grouped configuration and are capable of delays that 

exceed the coarse grain increment by over 20%. This overlap creates a built in 

robustness and tolerance to process variability as demonstrated in [121]. The layout of 

the Figure 7.5 delay line is shown in Figure 7.7. It achieves equal high-to-high and low-

to-low delays, resulting in matching duty cycles for input and output clocks. The layout 

area of the design is 2300 μm2. This is a single delay line instance and is usually paired 

to allow the delay to be averaged. In a paired delay line structure, the total delay through 

a pair of delay lines sets the minimum clock period that can be used. The alternative is a 

shared delay line structure where given a delay setting δ, a 2*d delay is created by 

propagating a single pulse through the same delay line twice instead of two distinct 

delay lines. This shared delay line structure will achieve ideal matching characteristics 

for averaging. Note that the matching of delay lines between taps has no effect on the 

clock skew since averaging is performed completely within each tap. Variation may 

require different delay settings to achieve the same delay in different taps, but the 

average clock at each tap will remain synchronized. 

 

Figure 7.7: Layout of complete delay line. 
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The total coarse grain delay through a datapath containing two delay lines was 

188 ps for the schematic version of the circuit and 160 ps for the extracted one for both 

paired and shared cases. Assuming a fine grain delay equal to the coarse grain 

increment, 6 coarse cells are required to handle clocks with a maximum period up to 2 

ns. The maximum clock period for the schematic implementation is 2244 ps using these 

6 coarse settings and 1920 ps for the extracted circuit. Additional coarse settings can be 

added as needed to function with arbitrarily long clock periods. The all zero setting is not 

allowed for the fine grain inverter. The achievable resolution given this configuration is 

0.84 ps. Through the paired delay line, the schematic circuit simulations show an actual 

resolution of 4.74 ps (upto 160 ps) and the extracted simulations show an actual 

resolution of 5.85 ps. The extracted version of the shared delay line achieves an actual 

resolution of 5.72 ps between delay settings (full delay prior to averaging). The average 

delay increment is approximately 1 ps. The performance of both the paired and shared 

extracted delay lines is compared in Figure 7.8. For the clock distribution network, the 

largest delay increment (resolution) of the delay line is twice the achievable skew bound 

due to the averaging involved. 

An additional, simplified delay line is used in the built-in clock skew system. It 

uses four variable inverters and two coarse grain settings to lengthen the maximum total 

delay of 192.8 ps (δ). Two variable delay inverters are paired together to create each 

variable delay block in Figure 7.9. The maximum increment between delay line settings, 

2.93 ps, will fix the resolution of the skew measurement and the skew correction that can  

 - 165 - 



Chapter 7 

 

Figure 7.8: Delay range of extracted grouped and shared delay lines. 

(a) 

 

(b) 

 

 

Figure 7.9: Simplified delay line used in BICSS system. 
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be achieved. The maximum total delay (δ) will bound the maximum round trip delay 

between the centralized BICSS hardware and the local clocks, as well as the maximum 

skew that can be tolerated between clock regions for the system to work. As such, the 

delay line is scalable and can be lengthened with additional coarse grain settings to suit 

different applications.  

 

7.3. Clock switches 

The design of the clock switches will have a significant effect on the behaviour of 

both the single clock and reconfigurable clock single conductor networks. These 

switches must be bi-directional so signals can propagate between ports in both forward 

and reverse directions using a single wire to connect clock network segments. This 

helps diminish the effect or wire mismatch and process variance. This tap switch 

operates in three modes, forward, synchronize and reverse. In forward mode, the 

forward reference clock is connected to the current tap and sent to the next tap. In 

synchronize mode, both the forward and reverse reference inputs are connected to the 

tap. In reverse mode, the reverse reference input signal is connected to the forward port. 

This allows a single bi-directional clock line to be threaded as needed throughout the 

clock domain and shared between the forward and reverse clocks during 

synchronization. The switch is shown in Figure 7.10, and its layout is shown in Figure 

7.11. The area of the switch is 172 μm2.  
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Figure 7.10: Tap bypass switch. 

 

 

 

Figure 7.11: Layout of tap bypass switch. 

To reconfigure clock domains, other routing switches are required. These have a 

more stringent design requirement as each port must be able to route an input signal to 

any other port, while matching delays in both directions between associated ports. The 2 

clock, 4-port routing switch is shown in schematic in Figure 7.12 and in layout in Figure 

7.13. It has an area of 1300 μm2 and uses pass transistors to control access to an 
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Figure 7.12: 4-port clock routing switch. 

intermediate signal, which gains access to the clock port through a Z-buffer. The Z-

buffers establish the direction of the clock signals through the crossbar and are 

controlled by four active control bits of which only two can simultaneously be asserted. 

This design is scalable to create larger routing constructs. For instance, a 4-clock switch 

containing 8 ports has been designed in a similar fashion.  
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Figure 7.13: Layout of 4-port clock routing switch. 
 

 

To be used in a dual reference line, hot spot and variation tolerant system, this 

routing switch can be modified and replaced with circuitry that has the functional of a set 

of multiplexers. This circuitry should be laid out to have equal propagation delays from 

any input port to output port and be as close to centroid as possible, Figure 7.14. The 

controller line memory is omitted for the unidirectional switch for clarity. 

 

7.4. Phase detectors 

The phase detectors that we designed are non-traditional approaches to the 

problem since the goal is not to create solution that eliminates metastable conditions. 

Instead, since the target application is one that will have a finite resolution due to the use 

of a digital delay line, the system performs two simultaneous comparisons on slightly 
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Figure 7.14: Layout of unidirectional 4-port clock routing switch. 

skewed versions of the inputs to guarantee that one of the two comparisons will resolve 

and produce a useful result.  

 

7.4.1 Fixed tolerance phase detector 

There are many phase detectors presented in literature [122],[123]. Our design is 

an original one, designed to solve the unique challenges of our system. Our phase 

detector is a sample-and-hold type, sampling the state of the system around the clock 

edge and retaining the result for roughly a third of one clock cycle, independent of the 

overlap between input clocks. The system features a nonlinear three state phase 

detection system [124]. Along with an UP or DOWN detection, it can also signal a 
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Figure 7.15: Fixed tolerance phase detector. 

LOCKED condition for a defined skew bound between clock inputs. Like most detectors, 

the design in Figure 7.15 uses a cross-coupled NAND gate latch structure to perform the 

signal comparison. Two interconnected latches are used in a method similar to [125]. In 

the first latch, when CLKA arrives before CLKB, the UP signal is asserted. Here CLKB is 

the controlling input since it prevents the CLKA from causing an assertion. Conversely, 

when CLKB arrives before CLKA, the DOWN signal is asserted by the second latch and 

CLKA is the controlling input. However, in our case, we modify the latch to be more 

sensitive to the assertion of the controlling input. In this way if the inputs arrive very 

close to one another, neither an UP nor a DOWN signal is asserted. Where other phase 

detectors use multiple latches to accelerate metastability resolution, our design moves 

the problem point away from the center of the locked region by performing two edge 

detections simultaneously. In doing so, when the input clocks CLKA and CLKB are at the 
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edge of the “nearly locked” region, the result can either be resolve to UP or DOWN 

(depending on the relative arrival time) or remain LOCKED. Since our system is digital 

and allows bounded skew, both results are acceptable. This resolves potential 

metastability while allowing for a small dead zone, differentiating our design from others 

that we have seen in the literature.  

Our phase detector only needs to be as precise as a half of the maximum 

increment between fine delay settings, emphasizing finite resolution time over absolute 

precision. The phase detector cannot detect variation with inputs that are shifted in 

phase by 180o. However, non-overlapped clocks are easy to detect with simple circuitry, 

so this trait is not a significant drawback with our system and the result, UP or DOWN, is 

equivalent for the clock synchronization. The layout of the design requires 500 μm2 and 

is shown in Figure 7.16. 

 

Figure 7.16: Layout of fixed tolerance phase detector. 
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Figure 7.17: Variable-tolerance phase detector. 

7.4.2 Variable-tolerance phase detector 

While the width of the nearly locked state is fixed electrically for the fixed phase 

detector in Figure 7.15, we have also developed a phase-detector with variable locked 

width since the amount of skew that should be allowed in a circuit is system dependent. 

The variable tolerance phase detector works by taking its two input signals and delaying 

each one using two parallel delay lines. The first delay line is variable through a digitally 

controlled delay line (DCDL) and the second one is fixed to just over the static minimum 

latency of the DCDL, Figure 7.17. This component was developed to be used with the 

BICSS system, but the system will not work with too small a fixed delay and too large a 

fixed delay will limit the round trip time that can be compensated for. Two cross-coupled 
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NAND gates are used for each latch, similar to the fixed tolerance phase detector, with 

each latch here designed with no input preference. In this case, the “sufficiently locked” 

state is found when both UP and DOWN signals are simultaneously asserted. Using the 

control lines of the delay line, this sufficiently locked state can be adjusted from a 

window of nearly zero to twice the maximum variable delay line setting. The variable 

phase detector can be set to have a 3, 6, 8, 10, 28, 29, 35, 37, 51, 52, 55, 59, 67, 106 or 

253 ps locked region. This trait is useful since most systems can always tolerate some 

skew and it may not always be desirable to detect minute levels of skew. This phase 

detector is used to detect programmable amounts of skew, specific to the needs of a 

particular system. This is a functionality that is unavailable for other nonlinear phase 

detectors and makes this design particularly suitable for skew detection applications. 

This functionality also allows for some post-silicon tunability to correct for process and 

temperature variations. The layout of the variable tolerance phase detector requires 

1300 μm2 and is shown in Figure 7.18. 

 

Figure 7.18: Layout of variable tolerance phase detector. 
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Figure 7.19: Modified phase detector for shared delay line systems. 

 

7.4.3 Modified phase detector for shared delay line implementations 

The challenge tin designing a phase detector for the shared delay line clock 

network is dealing with two signals with different duty cycles. While the reverse clock 

possesses a 50% duty cycle, the forward clock’s duty cycle is diminished to a constant 

width shorter than the loop delay. This creates an interesting scenario where there is 

guaranteed to be a time where both signals are low that will be held long enough to be 

read. This is not the case with the previous phase detectors which require special care 

to deal with reference clocks that are 180 degrees out of phase. The modified phase 

detector uses the both input zero state to arm itself and is shown in Figure 7.19. If more 

there is more than once instance where both inputs are zero per clock period, 
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Figure 7.20: Layout modified phase detector for shared delay line system. 

preference is given to the one immediately following the high-to-low transition of the 

reverse reference clock. The layout of the design, Figure 7.20, has an area of 540 μm2. 
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8.1. Summary  

The single and multiple clock reconfigurable clock networks were designed to 

suit a variety of applications, clock domain shapes and sizes using a standard cell 

approach. The clock networks are designed to be implementation-independent – 

simplifying the design of clock distribution networks. An averaging clock distribution can 

contain an arbitrary number of nodes and can be laid out manually or using standard 

cells, whereas H- or other tree solutions require special balancing tools to generate 
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synchronized clocks. Our serial clock network can have a beneficial effect on the power 

consumption of a CDN by decreasing the capacitive load that must be switched in the 

clock distribution network by decreasing the total wire length – typically requiring only 

two-thirds of the wire length of comparable clock trees. The circuits and approach to 

implementing these clock networks are outlined here-in.  

Due to the large number of potential network configurations using averaging that 

are possible, it is necessary to demonstrate the design and operation of the system for a 

given configuration. The clock networks were not only simulated in schematic and 

extracted layout form using TSMC's 180 nm standard process, but their functionality was 

also modelled with the system level controllers in hardware description language 

(VHDL). The models were paired with synchronization controllers to demonstrate the 

system-level operation of clock networks using our technique. These models and 

controllers are designed using a generic approach, but require specific configurations to 

demonstrate their operation. To maintain consistency between simulations, two specific 

configurations were examined using our techniques: a 4-tap single clock configuration 

and a 15-tap three clock domain reconfigurable configuration.  

The synchronization controllers can be realized using an internal controller in 

silicon, or an external one using a microprocessor, an FPGA, or any other hardware or 

software approach. The results show that the controller/circuitry interface is simple yet 

versatile enough to operate the circuitry easily and efficiently. The majority of the 

required communication bits are dedicated to the on-chip configuration memory. The 
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resources required to implement the controllers and the time required to perform the 

synchronization and calibration operations are also reasonable and show that the 

designs can be practically implemented in a real world system.  

 

8.1.1. Single clock averaging network 

Today, most clock networks are designed using CAD tools which require precise 

information on the exact clock load for each branch, the placement of each tap on the 

die and the location of the clock root. Once generated, the clock network cannot be 

altered without affecting clock skew. Our cell-based approach to clock distribution allows 

components to be designed independently, connecting components as is convenient 

and even replacing blocks if needed. Using a dual reference signal averaging technique 

in the clock network allows designers to delay some of the critical clock tuning 

requirements to facilitate the design flow. It allows circuit blocks to be moved around 

conveniently and re-sized easily with a simple change in the number or location of the 

taps.  

The system provides multi-point active skew compensation during the system's 

synchronization phase to compensate for device mismatch and process variance – 

enabling our design to have all the benefits of other active clock skew reduction 

methods. However, since this synchronization circuitry can be disabled at run-time, the 

system can operate in an open loop to save power – a typical benefit of traditional clock 

trees. By using delay lines instead of PLLs and with a combined reference signal and 
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clock distribution conductor, our method is small enough to be useful for many clock 

applications.  

A dual reference line averaging approach is explored to maximize the system’s 

tolerance to device mismatch. By permitting a much smaller distance between ideally-

matched devices, our system overcomes the significant effect of device mismatch on 

traditional clock trees. Tree-based clock distribution networks are also susceptible to 

skew from cross-chip temperature variation due to the distributed buffers that they 

employ. By using selective re-synchronization approaches, it is possible to also 

overcome changes to intra-die thermal gradients and hot-spots using our approach. 

Overcoming delay mismatch due to process and environment conditions is a major 

concern in modern clock distribution networks.  

 

8.1.2. Reconfigurable multiple clock averaging network 

Using programmable repeater stages allow us to redirect clocks post-silicon at 

certain pre-defined switchpoints, making the network reconfigurable. Clock networks can 

be modified to correct for some manufacturing defects, including bypassing certain clock 

lines and clock buffers. The operating clock frequency can be changed to fit an IC’s 

many possible target applications. Simulations show that the proposed CDN is scalable, 

compatible with irregularly-shaped distribution areas, and simplifies the way a design 

can be floorplanned onto an integrated circuit. The clock networks are applicable to both 

static and programmable designs and combine low power operation with tight skew 
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bounds. Our tests show that the reference-based programmable clock distribution is 

resilient enough to be used in an ASIC, SoC or FPGA environment. The possibility of 

using of a single conductor to provide both forward and reverse reference signals is 

unique. 

 

8.1.3. Built-in clock skew system 

In addition to the clock networks, we have investigated BICSS: an on-chip clock 

skew management system to detect, infer and potentially correct clock skew between 

selected points on an IC to repair otherwise defective dies using high-resolution delay 

lines. Using the skew measures allows the quality of the clock distribution on the 

fabricated die to be assessed. BICSS also aids in the debugging of timing errors that 

may be discovered during testing due to the added visibility of on-chip clock signals. Our 

BICSS system is unique in its ability to detect, measure and compensate for clock skew 

using a single all-in-one solution. The development of a variable tolerance phase 

detector makes this the first system to allow online detection of a programmable skew 

bound. BICSS enables designers to modify their design flow to include post-fabrication 

adjustment to the clock distribution network to correct for timing faults or to minimize 

clock skew for higher frequency operation.  

We use an averaging technique to compensate for different propagation delays 

between clock tap pairs which allows a single BICSS unit to be used for multiple test 

points providing an efficient system through component reuse. Our entirely digital 

 - 183 - 



Chapter 8 

solution requires little additional circuitry and is a low cost alternative to the other, 

traditionally costly skew measurement techniques. The circuitry and synchronization 

controller for BICSS was also modelled in VHDL to demonstrate the behaviour and the 

operation of the system. 

 

8.1.4. Circuit implementations 

While the circuits discussed here-in have been designed and laid out using 

specific criteria in a 180 nm standard CMOS process, there are a number of other 

potentially suitable component implementations which could work in creating our clock 

network and clock skew detection circuitry. While care has been taken to create easy to 

design digital structures that would facilitate the construction of circuitry using averaging, 

there were a number of novel circuit elements created with respect to previously 

published work. Our digitally-controlled digital delay line had good resolution with good 

signal characteristics including full swing outputs is one such design. Traditional digital 

delay lines do not need to pay as much attention to duty cycle, for example. When using 

delay lines to perform averaging, the use of a single delay line is a unique and ideal 

solution to the problem. The bi-directional components allow single wire routing 

throughout a design with built in skew compensation facilitating the implementation of 

critical clock routing circuits. Finally, the finite resolution aware fixed and variable 

tolerance phase detectors represent a novel approach to phase detection adding new 
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functionality and a response that is compatible with digital circuitry, unlike many of their 

counterparts.  

 

8.2. Future work 

 

8.2.1. On-chip clock networks 

The major benefit of using averaging techniques in the creation of clock 

distribution networks is two-fold: to eliminate skew generated by process variance and 

thermal gradients and to make the clock network easier to implement and correct. While 

these properties can be combined in many cases, they are often non-overlapping 

qualities since easy to implement implies having a robust design whose functionality is 

paramount and eliminating variance and clock skew usually implies trying to achieve the 

highest performance possible. The structures we have examined here were designed as 

a balance between these options, but the next step in exploring our averaging based 

clocking technique is to verify the performance and functionality of the system for each 

of these individual applications. To design a high-performance system, the circuitry 

should be ported to a newer technology and the design optimized for higher clock 

frequencies using larger devices and more robust circuitry. The addition of a dual edge 

synchronizer here would help considerably. Synchronizing the forward reference signal’s 

rising and falling edges independently will add the functionality of tuneable buffers for 

duty cycle and delay compensation in the circuitry and help ensure greater tolerance to 
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process variability, since pull-up and pull-down portions of the delay lines will have 

matched behaviour. For medium performance applications, our system should be 

constructed using standard cell components to verify its robustness and functionality. 

The design should be built with programmable delay lines using a memory to load 

expected values at the center of the systems operating corners to determine how much 

the clocks can skew during operation. This will help determine what skew margins must 

be incorporated into the system. Each of the high performance, balanced and medium 

performance systems should also be implemented in silicon and compared to ensure 

that the components used in their design are appropriate for the application. A variety of 

other components can also be tried, allowing designers to select between different 

families of standard cells: one allowing performance, one emphasizing ease of 

implementation and another being a balanced of the two.  

 

8.2.2. Automate system implementation 

While we have discussed how to design and implement our systems on an IC, 

the process can be automated into the design flow. The system should be designed to 

make the use of an averaging clock network as easy as possible. Circuits can be 

synthesized with the taps in place based on a preferred clock load per tap. Each 

clocking region in the design should be associated with a list of clock domains that could 

be attach to it. Considering the required reconfigurability in the system, a clock routing 

mesh can be built to satisfy the number of taps, the number of local clocking regions, the 
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number of clock domains and the required flexibility of the network. Once the silicon 

design is complete, the delay and configuration layout, the switch mesh and tap 

configuration and the device and interconnect data can be extracted out and 

incorporated into a clock synchronizer and HDL model created using a dynamic code 

generator. If needed, the clock synchronization controller can be synthesized into the 

given technology and included on the IC. In addition, the model can be used to 

determine the appropriate delay settings required by the system and pre-program them 

into the delay lines for different configurations. This step can either be used to skip the 

synchronization step or to speed up the synchronization time when switching between 

configurations.  

 

8.2.3. Alternative applications 

The averaging technique demonstrated in this thesis has a number of useful 

qualities concerning applications that require correct synchronization. As long as delays 

are matched for forward and reverse interconnect segments between clock taps, it will 

be possible to align clocks at multiple points that may be located are arbitrary distances 

from one another. As long as the averaging technique used is reliable, the clocks can be 

constructed to be well-synchronized regardless of the technology used at each of the tap 

points. The use of digital circuitry also makes the system easy to design and implement. 

This makes the system appropriate for printed circuit board applications which require 

synchronization between different device clocks or multi-processor clusters designed to 
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operate using a synchronized global clock [126]. Other distributed applications such as 

sensor networks could also benefit from an averaging approach. These applications 

would require modification to the circuitry to deal with potentially different signal voltages 

and technologies. The diversity of these applications highlights the ease of use and 

potential of our averaging technique in synchronizing events between different and 

distributed components.  
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