

Dual reference signal post-silicon

reconfigurable clock distribution networks

Atanu Chattopadhyay

Department of Electrical and Computer Engineering

McGill University, Montreal

February 2009

A thesis submitted to McGill University in partial fulfillment of the requirements of

the degree of Doctor of Philosophy.

Copyright © Atanu Chattopadhyay, 2009

 - i -

Abstract

This thesis investigates the use of averaging techniques in the development of

clock distribution networks and an on-chip clock skew measurement circuit. Our flexible

clock distribution network can be used in both single clock and multiple clock integrated

circuit applications. The design moves away from clock trees, using a pair of reference

clocks traveling in opposite directions to perform clock synchronization on a daisy-

chained (serial) clock distribution line. By synchronizing each local clock edge to a

position directly in between the forward and reverse reference clock edges, we

demonstrate that sub-10 ps variance in clock arrival times can be achieved between

local clocks. The design provides a scalable and simple-to-layout solution with multi-

point skew compensation useful for large designs. The system provides the benefits of a

closed-loop clock de-skewing solution by compensating for process, temperature and

power supply variations, with the power savings of an open-loop solution at run-time.

Our technique allows routing switches to be included in the clock path, permitting

the post-silicon re-sizing and re-shaping of clock domains. Localized clock switches or a

complete chip-wide switch mesh can be used to re-route clock signals – a capability that

is impossible without our daisy-chained clock network. We investigate a clock network

that emphasizes flexibility and reconfigurability without sacrificing tolerance to clock

skew. We show that this approach is realizable with transistor-level schematic and

extracted circuit structures in TSMC's 180 nm standard process. We also develop a

modeling infrastructure from which we can create a variety of clock network

configurations and synthesizable clock network controllers for arbitrary applications

using ModelSim and Quartus II.

An on-chip clock skew management system to detect and potentially correct

clock skew between selected points on an IC is also investigated. Our system, BICSS,

aids in the debugging of timing errors that may be discovered during testing due to the

added visibility of the on-chip clock signals and can repair otherwise defective dies using

high-resolution delay lines in the clock path. BICSS is unique in its ability to detect,

measure and compensate for clock skew using a single all-in-one solution.

 - ii -

Abrégé

Cette thèse étudie une technique de moyennes pour créer un système de

distribution d'horloge et un circuit pour mesurer le désalignement de phase d'horloge sur

circuit intégré. Notre circuit de distribution d'horloge est polyvalent et peut être employé

pour les systèmes avec une horloge simple ou des horloges multiples. La conception

s'éloigne des circuits de distribution par arbres, utilisant une paire de signaux de

référence voyageant en directions opposées pour corriger le déphasage de chaque

horloge répartie linéairement sur la puce. En synchronisant chaque front ascendant

d'horloge locale directement entre ceux des signaux de référence, on démontre que le

déphasage peut-être réduit en dessous de 10 picosecondes. La conception permet une

distribution d'horloges qui est simple à appliquer et extensible. Cette démarche corrige

les variations de processus, d'alimentation et de température, fournissant la correction

du désalignement de phase systématique de chaque tranche de la distribution d'horloge.

Notre technique permet l'introduction des commutateurs de cheminement pour

commuter les trajets d'horloge et changer la grandeur et forme des domaines d'horloge

après la fabrication d'un circuit intégré. Des commutateurs localisés ou un réseau de

commutateur en maille qui couvre le circuit au complet peuvent être utilisés – deux

possibilités qui sont impossibles sans notre réseau connecté en série. Notre recherche

souligne la flexibilité et la reconfiguration dynamique d'un réseau d'horloge sans sacrifier

l’alignement de phase des signaux d'horloges locaux. Nous prouvons que cette

 - iii -

approche est réalisable avec des conceptions niveau schémas et niveau circuits-

extraites utilisant le processus de fabrication de 180 nanomètre de TSMC. Nous avons

également conçu avec ModelSim et Quartus II un modèle pour étudier des diverses

configurations de réseaux d'horloges et pour créer des contrôleurs réalisables.

Un système sur circuit intégré qui peut détecter, mesurer et corriger la différence

de phase entre les horloges d'endroits présélectionnés dans le circuit est aussi conçu.

Notre système, BICSS, peut réparer les puces autrement défectueuses utilisant des

lignes à retard à haute résolution. BICSS peut aider à éliminer des erreurs de

synchronisation qui peuvent être difficilement découvertes pendant l'essai grâce à la

visibilité supplémentaire que le système permet.

 - iv -

Acknowledgements

I would first like to thank my parents for helping me, supporting me and being

there for me. I would also like to thank my sister and her kids for providing me with an

easy and enjoyable excuse to get away from things in California.

I would next like to thank my supervisor Dr. Zeljko Zilic. He provided me insight

and direction while giving me all the freedom I needed to explore my ideas as far as I

could take them. I would also like to thank Dr. Frank Ferrie for teaching me the ins and

outs of running a class.

Next, I would like to acknowledge the financial and material support of Altera

Corporation, the Fonds québécois de la recherche sur la nature et les technologies

(FQRNT), CMC Microsystems and McGill University.

I also appreciate the advice and comradery of all of the graduate students, past

and present, in the department. Particularly, Marc Boulé, Henry Chan, Jean-Samuel

Chenard, Nathaniel Azuelos, Bojan Mihajlovic and Mona Safi-Harb. I can't imagine how

quiet things would have been without you guys around to talk to and brainstorm with.

Finally, I would like to thank all my friends: Mario, Peter, Nadia, Catherine,

Vishal, all the Marks, Andras, Jordanna, Eric, Geoff and Neil. Time flies by so quickly, it

is hard to fathom how long we have all been friends.

I feel lucky that I have had whatever I needed, whenever I needed it. I don’t think

I could have come this far without a little something that each of you has provided.

 - v -

 - vi -

Table of contents

Abstract .. i

Abrégé...iii

Acknowledgements ... v

Table of figures .. xi

Table of tables..xvii

Chapter 1: Introduction .. 1

1.1. Problem description ... 3
1.2. Thesis objectives.. 5
1.3. Statement of original contributions... 7

1.3.1. Single clock averaging network.. 7
1.3.2. Multiple clock reconfigurable clock network ... 8
1.3.3. On-chip clock skew detection circuitry ... 9
1.3.4. Custom circuitry .. 9

1.4. Thesis organization.. 10

Chapter 2: Background .. 11

2.1. Introduction .. 11
2.2. Clock characteristics .. 12
2.3. Clock uncertainty.. 15
2.4. Clock networks... 20

2.4.1. Symmetric clock tree .. 21
2.4.2. Asymmetric buffered clock trees .. 23
2.4.3. Clock mesh... 24
2.4.4. Resonant clocking .. 25
2.4.5. Standing and traveling wave network... 26
2.4.6. Hybrid structures .. 27

 - vii -

2.4.7. Serial clock distributions ... 28
2.4.8. Reconfigurable clocks networks ... 30

2.5. Skew compensation... 31
2.6. Clock power ... 35

Chapter 3: A dual reference signal averaging single .. 39
 clock distribution network ... 39

3.1. Introduction .. 39
3.2. Implementation approach .. 42

3.2.1. Synchronization .. 44
3.2.2. Calibration... 45
3.2.3. Operation .. 45

3.3. Wire length savings.. 46
3.4. Architecture variants .. 49

3.4.1. Architecture with 2n delay lines .. 50
3.4.2. Architecture with n+1 delay lines.. 51
3.4.3. Architecture with n delay lines .. 53
3.4.4. Hotspot tolerant architecture .. 55

3.5 Clock jitter and skew. .. 56
3.5.1. Jitter sources .. 57
3.5.2. Skew ... 58
3.5.3. Temperature variation .. 62
3.5.4. Dynamic operation.. 64

3.6. Controller requirements.. 65
3.6.1 Synchronization time ... 66

3.7. Simulation results... 70
3.8. Conclusion ... 74

Chapter 4: Skew-tolerant reconfigurable clock networks .. 77
 based on averaging ... 77

4.1. Introduction .. 77
4.2. Multiple clock architectures.. 79

4.2.1 Static clock network with multiple clocks... 79
4.2.2 Locally-reconfigurable clock network... 81

 - viii -

4.2.3. Globally-reconfigurable clock network.. 82
4.3. Versatility of a programmable multiple clock mesh network...................................... 83
4.4. Controller requirements ... 86
4.5. Single clock fixed methodology.. 90
4.6. Reconfigurable methodology ... 92
4.7. Simulation results... 94
4.8. Conclusion ... 100

Chapter 5: A built-in system for online clock skew... 101
 debug and correction .. 101

5.1. Introduction .. 101
5.2. Background .. 102
5.3. System architecture ... 107
5.4. Operating characteristics ... 112
5.5. Conclusion ... 117

Chapter 6: System-level modelling ... 121

6.1. Introduction .. 121
6.2. Implementation approach .. 122
6.3. Configuration memory requirements.. 124
6.4 Synchronization controllers... 127

6.4.1 Single clock domain controller... 128
6.4.2 Reconfigurable clock domain controller .. 132
6.4.3 Built-in clock skew system controller... 134

6.5 System models.. 137
6.5.1. Single clock model.. 138
6.5.2. Reconfigurable clock network model.. 139
6.5.3. BICSS model .. 142

6.6 Operating behaviour of the systems ... 143
6.6.1 Single clock domain system .. 144
6.6.2. Reconfigurable clock domain system... 147
6.6.3. Built-in clock skew system.. 149

6.6 Conclusion .. 151

 - ix -

Chapter 7: Core circuit components... 153

7.1. Introduction .. 153
7.2. Delay lines.. 155

7.2.1 Coarse grain delay lines .. 156
7.2.2 Fine grain delay lines... 158
7.2.3 Performance .. 163

7.3. Clock switches ... 167
7.4. Phase detectors ... 170

7.4.1 Fixed tolerance phase detector ... 171
7.4.2 Variable-tolerance phase detector... 174
7.4.3 Modified phase detector for shared delay line implementations 176

Chapter 8: Conclusions and future work.. 179

8.1. Summary.. 179

8.1.1. Single clock averaging network .. 181
8.1.2. Reconfigurable multiple clock averaging network .. 182
8.1.3. Built-in clock skew system.. 183
8.1.4. Circuit implementations .. 184

8.2. Future work .. 185
8.2.1. On-chip clock networks .. 185
8.2.2. Automate system implementation .. 186
8.2.3. Alternative applications... 187

Appendix A: System-wide simulations... 189

Appendix B: Selected circuit drawings with transistor sizes................................... 211

List of references .. 219

 - x -

Table of figures

Figure 2.1: Summary of relevant measurements………………………………………… 13

Figure 2.2: 3-register clock routing………………………………………………………… 16

Figure 2.3: 2-level symmetric clock trees…………………………………………………. 22

Figure 2.4: Asymmetric buffered clock tree………………………………………………. 24

Figure 2.5: Grover's linear clock distribution……………………………………………… 28

Figure 2.6: Banu and Prodanov's bufferless approach…………..……………………… 30

Figure 2.7: Kapoor's skew-tolerant clock tree….………………………...………………. 34

Figure 2.8: Lee's skew compensation scheme..…………………………………………. 35

Figure 3.1: Underlying concept of averaging.………………….…………………………. 40

Figure 3.2: Reference-based clocking for a single clock domain………………………. 43

Figure 3.3: A 64-tap H-tree…………………………………………………………………. 47

Figure 3.4: A 64-tap reference based clock distribution…...……………………………. 48

Figure 3.5: Architecture using 2n delay lines…….………………………………………. 50

Figure 3.6: Architecture using n+1 delay lines…...………………………………………. 51

Figure 3.7: Circuit layout of n+1 delay line tap...…………………………………………. 52

Figure 3.8: Circuit layout of n+1 delay line clock selector………………………………. 52

Figure 3.9: Architecture using n delay lines………………………………………………. 54

Figure 3.10: Circuit layout of n delay line tap………………………………………………. 55

Figure 3.11: Dual reference line hot-spot tolerant configuration…………………………. 56

Figure 3.12: First 3 synchronization steps for an 8-tap CDN…………………………….. 72

Figure 3.13: Calibration phase to align polarity of resulting clocks……………………… 72

Figure 3.14: Resulting low-skew output clocks for an 8-tap system…………………….. 73

Figure 3.15: Using pulses to align clocks in n delay line architecture…………………… 74

 - xi -

Figure 4.1: A 3-clock domain static clocking solution……………………………………. 79

Figure 4.2: Sharing a resource with reference-based clocking……………………….... 81

Figure 4.3: A potential fully programmable clocking architecture………………………. 82

Figure 4.4: 3 potential 15-tap clock distributions…………………………………………. 83

Figure 4.5: The mesh mapping problem…………….……………………………………. 87

Figure 4.6: Mesh architecture incorporating express paths…………………………….. 89

Figure 4.7: Potential fully programmable clocking architectures……………………….. 95

Figure 4.8: Simulation of a 3-clock domain reconfigurable clock network…………….. 96

Figure 5.1: Modular design of ICs with regions A-E in a given clock domain………… 106

Figure 5.2: Close up of two regions A and B in a clock domain………………………... 106

Figure 5.3: The Built-in Clock Skew System (BICSS)…………………………………… 107

Figure 5.4: Central BICSS circuitry………………………………………………………... 108

Figure 5.5: Datapath used for normalization stages and synchronization…………….. 111

Figure 5.6: The layout of a 2-clock region BICSS implementation.……………….…… 113

Figure 5.7: Waveforms showing operation of the BICSS circuitry……………………... 116

Figure 6.1: The single clock domain, n-tap controller and model………………………. 129

Figure 6.2: Controller used for single clock domain model……………………………... 129

Figure 6.3: Controller component used to select and update taps in
clock distributions…….…………………………………………………………

130

Figure 6.4: Controller unit structure used to choose delay settings……………………. 131

Figure 6.5: The multi-clock, n-tap clock distribution controller and model…………….. 133

Figure 6.6: Controller used for the multi-clock, n-tap reconfigurable clock distribution. 133

Figure 6.7: The built-in clock skew system model and controller………………………. 134

Figure 6.8: The controller used for the Built-in clock skew system…………………….. 135

Figure 6.9: Controller component tap_select used in the Built-in clock skew system.. 136

Figure 6.10: Delay setting range for a single fine grain delay block…………...………... 137

 - xii -

Figure 6.11: The n-tap clock distribution model………………………………………...…. 138

Figure 6.12: An enlarged section of a multi-clock mesh………………………………...... 141

Figure 6.13: The built-in clock skew system model……………………………………….. 142

Figure 6.14: The multi-clock domain, 15-tap reconfigurable clock network model…….. 147

Figure 7.1: Coarse grain delay line……………………………………………………...… 157

Figure 7.2: Fine grain variable delay inverter…………………………………………….. 158

Figure 7.3: 1-1-2-2-fine delay configuration………………………………………………. 161

Figure 7.4: 1-2-1-2-fine delay configuration………………………………………………. 161

Figure 7.5: 1-2-2-1-fine delay configuration………………………………………………. 161

Figure 7.6: Grouped fine delay configuration…………………………………………… 162

Figure 7.7: Layout of complete delay line……………………………………...…………. 164

Figure 7.8: Delay range of extracted grouped and shared delay lines………………… 166

Figure 7.9: Simplified delay line used in BICSS system………………………………… 166

Figure 7.10: Tap bypass switch………………………………………………...…………… 168

Figure 7.11: Layout of tap bypass switch………………………………………………...... 168

Figure 7.12: 4-port clock routing switch…………………………………………………….. 169

Figure 7.13: Layout of 4-port clock routing switch….…………………………………....... 170

Figure 7.14: Layout of unidirectional 4-port clock routing switch………………………… 171

Figure 7.15: Fixed tolerance phase detector………………………………………………. 172

Figure 7.16: Layout of fixed tolerance phase detector……………………………………. 173

Figure 7.17: Variable tolerance phase detector…………………………………...………. 174

Figure 7.18: Layout of variable tolerance phase detector………………………………… 175

Figure 7.19: Modified phase detector for shared delay line systems……………………. 176

Figure 7.20: Layout modified phase detector for shared delay line system………..…... 177

Figure A.1: Complete simulation of a 4-tap distribution at 1 GHz………………………. 190

Figure A.2: Result of clock thread initialization of 4-tap clock distribution at 1 GHz….. 191

 - xiii -

Figure A.3: Simulation result of first tap synchronization of 4-tap clock distribution at
1 GHz…………………………………………………………………………….

192

Figure A.4: Comparison of initial and final tap clocks of 4-tap clock distribution at
1 GHz…………………………………………………………………………….

193

Figure A.5: Complete simulation of a 4-tap distribution at 1.5 GHz..………………….. 194

Figure A.6: Simulation result of first tap synchronization of 4-tap clock distribution at
1.5 GHz………………………………………………………………………….

195

Figure A.7: Comparison of initial and final tap clocks of 4-tap clock distribution at
1.5 GHz………………………………………………………………………….

196

Figure A.8: Complete simulation of a 15-tap, 3 clock domain reconfigurable
clock distribution…………………………………………….………………….

197

Figure A.9: Final stage of clock domain synchronization of clock thread A
(clock period of 900 ps)……………………………………………………..…

198

Figure A.10: Final stage of clock domain synchronization of clock thread B
(clock period of 750 ps)……………………………………………………..…

199

Figure A.11: Final stage of clock domain synchronization of clock thread C
(clock period of 600 ps)…………………………………………………..……

200

Figure A.12: Final synchronized end result of 15-tap reconfigurable clock
distribution operating with three clock domains……………………..……...

201

Figure A.13: Complete calibration and synchronization of two clock taps
using BICSS…………………………………………………………..………..

202

Figure A.14: Calibration of BICSS for transport delay from tap A to
central BICSS circuitry……………………………………………..………….

203

Figure A.15: Enlarged final stage of calibration of BICSS for transport delay
from tap A to central BICSS circuitry……………………………...………….

204

Figure A.16: Calibration of BICSS for transport delay from tap B to
central BICSS circuitry……………….…………………...……………………

205

Figure A.17: Final end stage of calibration of BICSS for transport delay from
tap B to central BICSS circuitry……………………………………………….

206

Figure A.18: Synchronization of tap clocks A and B using BICSS………………………. 207

 - xiv -

Figure A.19: Enlarged final stage of synchronization of tap clocks A and B
using BICSS…………………………………………………………………….

208

Figure A.20: Write-back and end stages of clock synchronization of tap clocks
A and B using BICSS…………………………………………………………..

209

Figure B.1: Transistor sizes for fine grain delay cell (non-inverting) from Figure 7.2
for delay range 1………………………………………………………………..

212

Figure B.2: Transistor sizes for fine grain delay cell (non-inverting) from Figure 7.2
for delay range 2………………………………………………………………..

213

Figure B.3: Transistor sizes for tap bypass switch from Figure 7.10…………………... 214

Figure B.4: Transistor sizes for input section of the fixed tolerance phase detector
from Figure 7.15………………………………………………………………...

215

Figure B.5: Transistor sizes for memory section of the fixed tolerance phase
detector from Figure 7.15……………………………………………………...

216

Figure B.6: Transistor sizes for modified phase detector for shared delay line system
from Figure 7.19………………………………………………………………...

217

 - xv -

 - xvi -

Table of tables

Table 3.1: Wire length comparison……………………………………………………….. 49

Table 3.2: Sum of squares distance component of variance relation…….………….. 61

Table 4.1: Temperature effect on synchronized network……………………………… 99

Table 4.2: Effect of voltage variance on taps…………………………………………… 99

Table 4.3: Effect of voltage variance on synchronized network………………………. 99

Table 4.4: Effect of voltage supply noise on jitter………………………………………. 99

Table 6.1: Number of possible clock domain configurations………………………….. 148

 - xvii -

 Introduction

 - 1 -

Chapter 1:

Introduction

“Much may be done in those little shreds and patches of time which

every day produces, and which most men throw away.”

- Charles Caleb Colton [1]

Coordinating activity in a digital integrated circuit is a fundamental problem in

circuit design. Modern integrated circuits (ICs) use a clock as a common synchronization

signal to coordinate events within the device’s datapath. Among their many uses, clocks

can be used by functional blocks to indicate when the data it requires is ready to be

processed, to divide a task into smaller ones requiring more processing cycles but

Chapter 1

permitting faster execution of each individual step, or to avoid signal races by preventing

data from being used before it is stable. Traditionally, high performance circuits are

designed to have the highest clock frequency possible, but with newer technologies,

more emphasis has been placed on the amount of work or operations that can be done in

a given amount of time. However, as clock frequencies continue to increase due to newer

integrated circuit process technologies, the percentage of unused time in each clock

period continues to increase largely due to timing uncertainty in the circuitry designed to

transport clock signals to each circuit block. Any uncertainty in clock arrival times must be

reserved within a clock period to ensure the correct operation of the device. Since no

computation can take place during this reserved time, it is important to minimize the

amount of unused computation time, making the clock distribution network (CDN) in an IC

among the most important components in any synchronous digital system due to its direct

effect on circuit performance and functionality.

Clock networks must broadcast a clock signal throughout an IC minimizing clock

uncertainty, consuming as little power as possible and providing consistent signal

characteristics such as rise time and duty cycle. Further, the system must be robust and

easy to implement. Currently, the most common design approach for clock networks

relies on automated clock tree synthesis methods that are tailored to a fixed silicon

implementation with a rigid clock network using user-specified parameterization. The

outcome is a fixed layout clock tree that is difficult to modify once created, often requiring

complete re-implementation of the network for every iteration of the design. Once

fabricated, absence of flexibility in the clock distribution poses a problem on two major

 - 2 -

 Introduction

fronts: first, errors or process variation in the silicon cannot be corrected; second,

adapting a design to a variety of configurations and applications become limited by the

lack of flexibility in the clock network. This is especially true with the ever-increasing shift

to flexible design methodologies that use programmable devices for reconfigurable

computing applications.

1.1. Problem description

With the decreased cost and increased availability of silicon area, ICs have

become significantly more complex in recent years. With the increase in popularity of

“system-on-chip” designs, a single modern IC is capable of doing the job of many of its

predecessors and the potential versatility of a system today is unparalleled. However, it is

difficult for today’s clock distribution networks to cope with flexible, reconfigurable and

multi-application integrated circuits due primarily to the fixed tree-based methodologies

used to minimize clock arrival time variation, or clock skew. With modular design

strategies, circuit components may derive from many distinct sources such as intellectual

property (IP) blocks [2] with little knowledge concerning the internal circuit characteristics

available to IC architects. Field-programmable gate arrays (FPGAs) allow flexible logic

and clock domains and avoid the upfront design costs of application specific designs, but

when compared to the application specific integrated circuits (ASICs), they require larger

devices, consume more power and cannot achieve the same performance. In addition, to

create flexibility in their clock networks, FPGAs must allow for more significant variation in

 - 3 -

Chapter 1

clock signal arrival times, which is unexploited computation time. Balancing flexibility and

low skew can pose a significant challenge to clock networks and has not been

extensively explored in existing designs.

Today, an ever increasing amount of the ASIC design flow is spent on testing and

verification challenges due to the complexity of the problem: every 10% increase in

design complexity increases the test problem 100% [3]. This figure becomes even more

significant when one considers that a typical design flow places 70% of the effort on

verification, compared to 30% for design [4]. According to Collett International Research,

the first iteration success rate for ICs had decreased from 48% to 34% between 2000 and

2003 due to the added complexity of designs [5]. Approximately 45% of devices fail

based on logic errors, 33% of devices fail due to fast or slow signal paths and 10% of

devices fail due to errors in the clock network. It then makes sense to take advantage of

the low cost of silicon area to consolidate multiple designs into one, validate them

together, effectively distributing development costs over multiple product lines. This

silicon reuse application is similar to platform-based design methodologies and allows

personalization of a single device for a number of possibly unrelated applications. ICs

with defective sections can be binned to applications that do not require the defective

component. Some small changes can be performed after silicon implementation to

existing clock networks with simple “pruning” or removing of clock branches, but the

modifications required will usually alter the loading of the clock or the frequency required,

which necessitates the creation of a new CDN. Instead, when a single silicon design is

 - 4 -

 Introduction

used for multiple applications through the use reprogrammable components and

processors, the availability of flexible clock distribution networks is useful.

1.2. Thesis objectives

The goal of this doctoral project was to create a flexible clock distribution network

that could be used in ASICs, FPGAs or other applications without sacrificing the low clock

skew performance achievable with today’s clock networks. The desired result is a clock

network where every region can be connected to and disconnected from one-of-many

clock regions post-silicon, introducing significant flexibility to the clock distribution

network. In FPGAs, the benefit of flexibility in the clock network could add additional

functionality to current designs. In ASIC applications, the goal is to create a single design

that can be reconfigured dynamically for different tasks or programmed at the factory for

different applications. Consider the implementation of a single processor design with

multiple components such as Bluetooth, USB, Firewire, JTAG, floating point arithmetic

units and video encoders. The idea was to not only create blocks which could be included

and discarded, but potentially shared between multiple clock domains, all while

maintaining adequate skew compensation for all the leaves in a clock domain. Such a

configuration would also allow micro-clock regions, where every component could

operate at or near their minimum frequency considering its operating requirements

resulting in a decreased average clock frequency for the design - a helpful trait in

minimizing overall energy consumption [6].

 - 5 -

Chapter 1

One challenge in creating such a system is moving away from clock trees and

finding other approaches to distributing a clock signal on an IC: one that allows routing

switches to be included in the clock path to connect clock subregions together easily and

arbitrarily. A switch mesh can be used to re-route clock signals, but this method requires

a daisy-chained approach that will create skew between every clock region and will call

for a complete change in the approach used to minimize skew in clock networks. No

longer would balancing global clock trees be sufficient. We want to first develop a

methodology to make serially-distributed clock domains possible, and next want to show

that this approach was realizable with transistor-level circuit structures and we finally want

to create a modelling infrastructure from which we could create a variety of clock network

configurations for arbitrary applications. We explore both single clock and multiple clock

reconfigurable systems. This is the first investigation of a clock network that emphasizes

flexibility and reconfigurability without sacrificing tolerance to clock skew. Finally, given

that process variance can occur between ICs (inter-die) and across a single IC (intra-die)

for any clock distribution network, we want to look at a low-cost method to determine the

quality of a clock network using an on-chip skew measurement approach known as

BICSS. BICSS provides post-silicon debug capability of clock distribution networks that

can aid in diagnosing timing errors that may be discovered during testing. Both BICSS

and our serial dual reference signal clock distribution networks can improve yield by

providing post-silicon repair capability to the clock networks of integrated circuits suffering

from certain timing errors.

 - 6 -

 Introduction

1.3. Statement of original contributions

1.3.1. Single clock averaging network

We present a single clock distribution scheme using a dual reference signal

approach and a single bi-directional conductor between clock taps. We use an averaging

technique to allow serialization of clock networks. Daisy-chaining the clock decreases the

clock interconnect load by eliminating the redundant paths used to equalize delays in

traditional H-tree distributions. Clock skew is accounted for by actively synchronizing

each local clock to a position directly between forward and reverse-moving reference

clocks. The design provides simple-to-layout and scalable multi-point skew compensation

useful for large designs. Our design is unique in its use of a truly bi-directional line and

buffering in an averaging distribution. This approach compensates for process,

temperature and power supply variations, eliminating systematic skew in the clock

distribution network. In addition, a dual reference line averaging approach is explored to

maximize the system’s tolerance to device mismatch. Device mismatch is a key

contributor to clock skew in traditional clock distribution networks due to the large

distances between ideally-matched devices. We show that our serial clock distribution is

much better able to cope with mismatch since the distances between ideally-matched

devices in greatly minimized in our system. Tree-based clock distribution networks are

also susceptible to skew from cross-chip temperature variation due to the distributed

buffers that they employ. We also explore a serial clock distribution that is highly tolerant

 - 7 -

Chapter 1

to intra-die temperature changes. This work was initially disclosed in 2006 [7]. Additional

configurations for performing the averaging of the forward and reverse reference signals

were first disclosed in 2007 [8]1.

1.3.2. Multiple clock reconfigurable clock network

We present a multiple clock distribution scheme by expanding our single clock

design, adding clock routing structures into an averaging clock network to enable re-

shaping clock domains, post-silicon. These reconfigurable, reprogrammable clock

networks can be used in ASICs, SoCs and FPGAs. The technique is useful for

reconfigurable computing applications to connect the programmable logic to the clock

domains of the surrounding logic. The proposed design allows for more flexibility in clock

networks than current designs such as those used in Altera and Xilinx FPGAs. It

simplifies layout for irregularly-shaped clock domains and provides flexibility to designers

by enabling post-fabrication changes to the clock distribution network. This work was

initially disclosed in 2007 [9].

1 While the other listed disclosures were in peer-reviewed publications, the TEXPO poster and extended

abstract submission were by open invitation.

 - 8 -

 Introduction

1.3.3. On-chip clock skew detection circuitry

To verify the characteristics of arbitrary clock networks, we present a Built-In

Clock Skew System (BICSS) that uses a centralized approach to identify, quantify and

correct skew using a two-step method. The first step is to assess the time-of-flight

between the central debug circuitry and each region, or tap under test to account for the

measurement error due to differences in path length. This measurement error is common

in existing techniques. Typically, timing errors due to faulty clock networks can be very

difficult to diagnose due to the intermittent nature of the errors that they may cause. The

result is a scalable solution that provides silicon debug and repair capability of on-chip

clock skews. This work was disclosed at the 2008 Design, Automation and Test in

Europe conference [10].

1.3.4. Custom circuitry

We present the schematic and extracted designs of the required custom circuit

components in a 180 nm standard process. Of particular interest are the phase detectors

and delay lines that we explored. The phase detectors are unique due to their use in an

all-digital application with finite skew bound. This application allows the phase detector to

create and to use a dead-zone period to speed up resolution time. For the delay lines,

different configurations are explored to emphasize delay matching through multiple delay

line pairs, signal characteristics and duty cycle retention. A current-starved all-digital

approach with good linearity between settings and zero static current consumption is

 - 9 -

Chapter 1

 - 10 -

chosen. The circuits involved in creating our clock distribution networks were primarily

disclosed in 2007 [11], and partially disclosed in [7]-[10].

1.4. Thesis organization

Chapter 2 describes background on clock networks and some de-skew

approaches, Chapter 3 describes implementation of a single clock domain network using

our method, Chapter 4 describes a reconfigurable multiple clock network using a clock

mesh and our averaging approach, Chapter 5 describes an on-chip approach to

detecting, measuring and compensating for clock skew in an integrated circuit

environment, Chapter 6 describes a system-level overview of these components

including HDL models and the required synchronization controllers, and Chapter 7

highlights some of the circuitry required to implement these systems in a TSMC 180 nm

technology.

Background

Chapter 2:

Background

2.1. Introduction

This chapter outlines the conventions and definitions that we have adopted. It

also describes some of the existing work and techniques in the area of clock distribution

and highlights some of the benefits and drawback of each. The information is compiled

from sources that include [12]-[16]. Other sources are used as indicated.

 - 11 -

Chapter 2

2.2. Clock characteristics

The clock is a periodic signal, usually viewed as having the shape of a sine or

square wave used to synchronize two or more events at different locations using a single

signal in a synchronous circuit. While clocks are used in other applications such as in

printed circuit board designs, we limit our discussion here to clocks used on integrated

circuits such as microprocessors, field-programmable gate arrays and application

specific integrated circuits. Typical high performance analog circuits use sinusoidal

clocks due to the large number of high frequency harmonics present the near infinite

slope of a square wave's edge. Some circuits trigger only on the rising or the falling edge

of the clock (single clock edged devices) and some trigger events on both rising and

falling edges (dual clock edged devices). We will use the term multiple clock circuit to

describe a circuit which has a plurality of clock domains, whether these domains be for

rising, falling or dual edged circuitry.

Definition 2.1: Clock period: the time, T, between rising or falling edges of a clock

signal, usually measured as the signal crosses its 50% voltage level. The inverse

of the clock period is the clock frequency, f, with units Hertz (Hz), or 1/seconds.

Definition 2.2: Slew rate: The slew rate is the rate of change of a signal’s output

voltage level at any given point.

In digital circuits, sinusoidal clocks have low slew rates and these sloped edges create

delay uncertainty in most logic families including complementary metal-oxide

 - 12 -

Background

semiconductor (CMOS) devices, which is the most widely used digital logic family. In

practice, the clock for digital devices is usually shaped as a non-ideal square wave with

finite sloped edges, Figure 2.1.

Definition 2.3: Duty cycle: for a periodic signal, the duty cycle D represents the

percentage of time τ that the signal spends in a certain state. For digital circuits,

this state usually refers to the logical ”1” state.

T
D

τ⋅= 100 (2.1)

We utilize the logical “1” convention for our duty cycle purposes, and further specify that

Figure 2.1: Summary of relevant measurements.

 - 13 -

Chapter 2

the logical “1” state includes all of the time that the signal spends above the 50% voltage

level. Clocks are usually assumed to have 50% duty cycles, spending half the time

above the 50% voltage level and half the time below. Ideal square waves are impossible

to achieve on a physical device due to the non-zero resistance and capacitance in any

and every portion of the clock network. Ideal square waves would have zero rise and fall

times.

Definition 2.4: Rise time: the rise time trise_X of a signal is the time interval between

a signal at location X transitioning from 10% to 90% of the high voltage level.

Definition 2.5: Fall time: the fall time tfall_X of a signal is the time interval between a

signal at location X transitioning from 90% to 10% of the high voltage level.

Transition times are affected by a device’s inherent drive strength, the load being

switched and external factors such as coupling noise. Higher temperatures and lower

power voltage will slow down delay through a device.

Definition 2.6: Propagation delay: If X and Y are two logically connected points on

a circuit, and sX and sY are signals at locations X and Y, respectively, then the

signal propagation delay tpXY is the time (either positive or negative) between the

50% signal transition at X and the 50% signal transition at Y.

While signal propagation delay can sometimes refer to the time between the

input of a gate reaching its switching point to the time that the output of the gate reaches

its switching point, the more generic definition of Definition 2.6 is used exclusively. For a

 - 14 -

Background

clocked element, the signal propagation refers to its clock-to-output delay (tCQ) since it

represents the delay between the clock input passing 50% of its assertion value and the

data reaching the 50% signal transition at the output. For both clocked and unclocked

elements, the signal propagation can be taken separately for a high-to-low transition

(tpHL) and for a low-to-high transition (tpLH). Unless otherwise stated, the propagation

delay is the arithmetic average between tpHL and tpLH. This elaboration is necessary due

to the asymmetry between pull-up and pull-down transistor blocks in complementary

logic design, and the inherent physical differences between the devices used in the

circuitry, PFET (p-type metal–oxide–semiconductor field-effect transistor) for pull-up and

NFET (n-type metal–oxide–semiconductor field-effect transistor) for pull-down. For

signals which are required to have 50% duty cycle, tpHL and tpLH must be equal. If they

are not, the duty cycle will get shorter if tpHL < tpLH or it will get longer if tpHL > tpLH. These

measures are summarized in Figure 2.1.

2.3. Clock uncertainty

Since the clock is used to synchronize events across a circuit, their arrival times

at all event points ti need to be well-controlled. Preventing uncertainty in clock arrival

times can add significant complexity to designing robust circuitry since errors could

render a circuit unusable. Any signal traveling through a given circuit will have a finite

propagation delay. As a clock is broadcast through the IC, each path from clock source

 - 15 -

Chapter 2

Figure 2.2: 3-register clock routing.

to ti will be slightly different due to manufacturing and environmental differences. Figure

2.2 shows how a clock signal can be routed to three clocked devices (R1, R2 and R3)

within a clock domain. The arrival times of clock and data at a register must be properly

coordinated for a system to function correctly, since setup or hold time violations can

occur if the arrival time of either varies from the expected time.

Definition 2.7: Sequentially adjacent registers: A pair of arbitrary registers

connected by a signal path consisting exclusively of unclocked components

without any other registers directly in the path. [12]

Definition 2.8: Setup time: The setup time (tSU) is the minimum time that data must

be stable before a clock signal is asserted.

Definition 2.9: Hold time: The hold time (tH) is the minimum time that data must be

kept stable after a clock signal is asserted.

Often, hold time is satisfied as the input data propagates from the previous

register to the one in question. The time between active clock edges must be long

enough for data to propagate between sequential registers while satisfying the setup and

 - 16 -

Background

hold times. The minimum clock period will be the longest such time between any pair of

sequentially adjacent registers in the system. Due to fan-out and fan-in, there are usually

many sequentially adjacent registers to any given register in the datapath and every pair

must be considered. If the propagation delay of a given combinatorial block is tCLi and

the propagation delay of a given register is tCQi, the clock period required between

register Ri and Rj is:

SUjHjCLiCQipij ttttt ++=),max((2.2)

For the circuit in Figure 2.2, the minimum clock period will be the maximum

between tp(1,2), tp(2,3) and tp(3,1). In a typical synchronous system, there will be many

sequentially adjacent paths and they must all be considered when choosing a clock

frequency, f, for a specific clock domain.

Definition 2.10: Clock domain: a collection of all sequentially-adjacent registers

connected to a single clock source. We will consider mutually exclusive sets of

sequentially-adjacent registers (with no logical connections between them) to be in

different clock domains even if they connected to the same source clock.

Definition 2.11: Clock skew: The clock skew between two clock registers Ri and Rj

is the difference between the clock arrival times ti and tj, respectively. The times ti

and tj are taken with respect to an arbitrary, but identical reference point.

Generically, skew is the variation in arrival times for two signals that are supposed

to arrive simultaneously.

 - 17 -

Chapter 2

jiijskew ttt −=_ (2.3)

Clock skew is especially important between sequentially adjacent registers since

it can affect the clock time required between registers.

ijskewSUjHjCLiCQipij tttttt _),max(+++= (2.4)

When the skew is negative (tskew < 0), the data can arrive at register Rj (the destination

register) early, potentially violating the hold time constraint or causing a race condition

where incorrect data is latched. This phenomenon can be useful in certain datapaths

since it increases the time available between clock assertions for tCQ, tCL and tSU,

permitting longer datapaths between registers with negative skew. This is sometimes

called beneficial skew. The opposite is true when tskew > 0; this decreases the time

available between registers. If not taken into account, this can lead to setup time

violations and potential loss of data. Clock skew can occur due to different line lengths,

buffer delays, device parameters, noise or environmental variation. Passive parameter

variations can include changes in resistivity, fringing capacitance and line dimensions.

Active parameter variation can include changes in transistor threshold voltages (when a

device switches) and electron and hole mobility of devices (how quickly a device

changes).

For Figure 2.2, the clock is traveling in a left to right direction. It will arrive at R2

after R1 and R3 after R2. This creates beneficial skew for these paths. However,

between R3 and R1, there will be positive skew. Beneficial clock skew can be designed

 - 18 -

Background

into a system and used to increase a system’s clock frequency, but only when clock and

data are moving in the same direction. In a modern synchronous circuit, there are many

complex inter-dependent register-to-register paths, where it is difficult to provide

beneficial skew in one area of the circuit without creating harmful skew in another.

Definition 2.12: Clock jitter: Clock jitter is the deviation of a clock’s output from its

ideal position. Deterministic jitter is bounded in amplitude and originates from non-

random specific sources such as device imperfections, cross-talk or power-supply

or grounding problems. Random jitter originates from Gaussian noise components

in a system such as from substrate or power noise. [17]

The term jitter applies to a change in amplitude, phase or frequency in a clock

that occurs from cycle-to-cycle or over longer periods of time. Under the broadest

definition of jitter, early or late clock arrival times can be considered a form of jitter, but

the jitter is usually viewed as a temporary phenomenon. This deviation can be periodic in

nature as long as the behaviour varies from cycle-to-cycle for a given operating

condition. This interpretation creates a non-overlapping distinction between clock skew

and jitter. We will apply the term clock skew to a fixed deviation in a clock arrival time,

caused by process variation, defects, a change in operating temperature or other such

occurrence. This skew can affect rising edges and falling edges asymmetrically. We will

apply the term clock jitter to a temporary phenomenon that causes a non-static variation

in clock arrival time caused by random or predictable phenomena such as a momentary

drop in the voltage of the power line. It is important to have well-controlled clock arrival

 - 19 -

Chapter 2

times throughout an integrated circuit to ensure correct behaviour. The primary sources

of jitter are the clock generator (usually a phase-locked loop, PLL) and the effect of

power supply and coupling noise on the clock buffers [18].

2.4. Clock networks

Definition 2.13: Clock distribution network: A circuit pathway that delivers a clock

signal to every segment of a synchronous circuit that requires it to ensure the

correct operation of the system.

In modern integrated circuits, the clock distribution problem is becoming

increasingly difficult since device behaviour is becoming increasingly variable, both from

chip-to-chip (inter-device) and from device-to-device (intra-device) within an IC. In deep-

submicron technologies, wire delays do not shrink as quickly as device delays due to

their thin and tall wires having higher resistance and higher capacitance. Consequently,

wire delay consumes a greater portion of the clock period and the transportation of any

signal across a typical die requires longer than one clock period [19]. This fact and the

ever-increasing fan-out of the clock make distributing clock signals even more

challenging. Clock power can range from 30-50% [20],[21] in standard high-performance

integrated circuits, and up to 70% [22] in some specialized devices like FPGAs. The

most common approach is for synchronous systems to have zero skew between all

clock arrival points to simplify the timing specification required for the datapath. Even

 - 20 -

Background

with systems designed for zero skew, it is necessary to design in a safety margin to

maintain correct circuit behaviour in the presence of clock and data uncertainty, a 10%

of the clock period rule of thumb is common here [23],[24]. Timing violations that occur

at the edge of this range are difficult to detect, as they may be device-dependent and

intermittent, only occurring under certain conditions. Many circuits have had to increase

tolerances to assure proper operation, which has a negative effect on the performance

of the system. Modern devices contain many clock domains, which all must be routed

properly, which adds further complexity to the problem.

2.4.1. Symmetric clock tree

Symmetric clock trees are the most commonly studied approach to distribute a

clock signal to a large number of clocked elements in a synchronous circuit. This

structure takes a source clock and fans it out into n points using a constant wire length to

every point. From each of these points, the signal branches out again into n wires

resulting in n2 intermediate end points. This structure continues recursively until all clock

destinations are reached. The number of branches required along a single path

represents the number of levels in the clock tree. In a binary or Y-tree, each branch point

splits into 2 branches with the same size and shape, but possibly different orientation.

Every branch at a given level should be the same size with similar geometry. In an H-

tree, the source clock is split into two, twice per level. At every split, the outgoing wire is

placed at a right angle to the incident wire, creating an “H”-like structure. The length of

 - 21 -

Chapter 2

Figure 2.3: 2-level symmetric clock trees.

wire is constant for every segment at a level and is halved for each subsequent level.

Each H-structure fans out to 4 branches and uses Manhattan routing since every wire is

either vertical or horizontal. In an X-tree structure [25], the horizontal and vertical wires

are replaced by diagonal wires saving interconnect length, provided diagonal wires are

possible in the technology.

Examples of these three symmetric tree structures are shown in Figure 2.3.

Within a clock tree, the clock source is known as the root, the single path that transports

the signal to the first branching point is known as the trunk, the distribution paths are

known as branches and the individual clock destinations (usually registers) are known as

leaves. These trees may be completely passive with no buffering in the signal path but in

practice, the fan-out is too large to do so effectively. Clock buffers are almost always

required on the path and they are placed symmetrically across the clock network. They

may be placed at every level or at arbitrary (symmetric) intervals in the tree. This creates

 - 22 -

Background

an active tree with inline buffers or repeaters to regenerate weak signals along the clock

path. To maximize signal integrity, impedances need to be matched at every branching

point to minimize reflections. Each branch at level i in the tree must fan-out into n

branches at level i+1 each with n times the impedance of the line entering the branch

point [22]. This configuration is known as a tapered tree. The clock signal travels from

root-to-leaf in this network following congruent paths both in wire geometry (width and

length of all wire segments) and the clock buffer configuration (size, number and

location) so barring any manufacturing and environmental variation in the paths, the total

clock delay for each path will be constant, resulting in zero skew between any two paths.

2.4.2. Asymmetric buffered clock trees

An asymmetric buffered clock tree is the most commonly used form of clock

distribution for ASICs. The majority of modern clock networks are designed with this

approach using specialized CAD tools. These tools start with the location of each of the

clocked elements and generate a suitable tree structure by varying the wire length, the

buffer sizing and the fan-out at each branch point to achieve near-zero clock skew

between all of the sequentially adjacent registers. Figure 2.4 shows a typical asymmetric

clock tree. It is also possible for an automated clock tool to use the design specification

for each of the clocked elements, specifically the acceptable range of clock arrival times

considering its dependencies on a device’s sequentially adjacent components. The clock

layout tool will take this information, also known as a skew schedule, and create a

 - 23 -

Chapter 2

Figure 2.4: Asymmetric buffered clock tree.

suitable clock tree. While this approach can make use of beneficial skew to increase

performance, it also creates dependencies on the clock arrival time of many registers so

that changing one portion of the design could require complete regeneration of the clock

network.

2.4.3. Clock mesh

Since devices and interconnect across an IC will exhibit variances in

characteristics due to manufacturing discrepancies, clock skew might occur due to the

mismatched clock delays from clock root-to-leaves. The primary sources of the

mismatch are the clock buffers, specifically the mismatch between buffers that cause

devices at a given level of the network to switch at different times [26]. One approach to

counteract this is to shunt all of the buffer outputs at a given level, creating a clock mesh.

These shunts delay the switching of buffers that are too fast, and speed up the switching

 - 24 -

Background

of buffers that are too slow. The primary drawback of this approach is the increased

power consumption caused by the short circuit currents that will exist in the presence of

device variation. An additional drawback is the large interconnect cost of connecting

points that get progressively further from one another for every additional tree level. Due

to the transport delay of the shunt signals, this methodology cannot completely eliminate

clock uncertainty. However, due to its ability to compensate for some variation in the

clock network, this is the most commonly applied clock architecture in high performance

microprocessors despite its cost. This approach usually requires a global clock tree to

feed the different portions of the mesh with quasi-simultaneous clocks [27].

2.4.4. Resonant clocking

Resonant clocking is a newer approach to clock networks that requires removing

all the clock buffers and creating an LC-tank to allow a natural oscillation in the clock

signal that requires less energy to maintain than a traditional network [28],[29],[30]. In an

ideal configuration, the energy consumption would be zero, but due to the resistance of

the metal lines in the network, the configuration is lossy. The LC-tank is formed by

adding an inductor and using the capacitance of the clock leaves. Resonant clock

networks have demonstrated power savings of over 50% and IC core power savings of

between 20-35% when compared to conventional networks [31],[32]. One of the

drawbacks of the system is its use of sinusoidal clock signals, which can create short

circuit currents because their long rise and fall times, and are much more susceptible to

 - 25 -

Chapter 2

clock jitter when compared to clocks with sharper edges. Resonant clocking requires

modified registers and latches that are compatible with sinusoidal clocks [33],[34].

Current research in resonant clocking deals with approaches and techniques to minimize

jitter and noise [30],[35].

2.4.5. Standing and traveling wave network

A standing wave clock network presents another approach to distribute clock

signals [36]. A standing wave is formed by superimposing a forward clock produced by

an AC voltage source with a return clock, produced by reflecting the forward clock back

from a ground termination at the opposite end of the conductor. This approach ideally

creates a zero skew set of clocks along the length of the line with amplitudes that vary

between 0 and the initial amplitude of the AC source depending of the position of

sampling [37]. The resulting clocks then need to be regenerated and possibly converted

to a square wave for use. Certain portions of the clock line’s output will be unusable

since the low amplitude signal in that area will render it unrecoverable.

Travelling waves are used in clock networks to create clocks that allow full

voltage swing at all sampling points. These networks usually use a rotary clock ring

[38],[39],[40] to create the traveling wave along a pair of conductors separated by a

series of cross-coupled inverters to regenerate the signals and maintain the oscillations.

The frequency of each of these rings will vary depending on the line length, so a number

 - 26 -

Background

of these rings are usually interconnected to create a mesh with greater tolerance to

variability [41]. The primary drawback of this approach is that unlike with standing wave

clock networks, the phase of the clock signal will vary depending on the location of the

sampling and every point in a ring will only be in phase with its corresponding point in

every other ring. This leads to significant difficulty in designing synchronous circuitry

using this technology.

2.4.6. Hybrid structures

Modern clock networks usually use a mixed clocking strategy, pairing one global

clock routing technique to another local routing technique [42]. A common pairing would

be a global H-tree followed by a local mesh [43], minimizing the power consumption of

the mesh while maintaining low local variability. Link insertion [44]-[47] is another

approach used to shunt selected portions of the clock networks that should have zero

skew, thereby realizing many of the benefits of clock meshes. Transport delay through

the shunt wires will prevent this method from eliminating all skew. Typically, the global

distribution can be constructed using a mesh or tree, and the local network can use a

tree, mesh or fishbone structure [16]. A fishbone structure has a clock trunk with leaves

arbitrarily attached orthogonally to the trunk wherever the clock is needed. We will

denote any connection point between a global and local clock domain as a clock tap.

 - 27 -

Chapter 2

Figure 2.5: Grover's serial clock distribution [48].

2.4.7. Serial clock distributions

Serial clock distributions are a less common form of clocking that aligns each tap

clock to a position directly in between two reference clocks traveling in opposite

directions (with respect to their phase). This averaging technique was first proposed by

Grover et al. [48], Figure 2.5. Their scheme uses a 3-wire method with separate raw

clock, forward reference line and reverse reference line, with the reference lines tied at

the far end of the clock distribution. However this technique requires two distinct clock

alignments to synchronize each local tap. First, the pulse interval between the forward

and reverse signal is found by delaying the forward (UP) signal to align with the reverse

(DOWN) signal. This interval is halved to create a local half pulse reference signal Phalf.

The Phalf signals in every clock region will be ideally synchronized due to averaging.

 - 28 -

Background

Next, the raw clock is aligned to the region’s Phalf signal to generate the local clock. The

delay is created using a 128-element non-inverting buffer chain. A 128:1 multiplexer is

used to choose the appropriate tap, setting the accuracy of each alignment to the

propagation delay through the non-inverting buffer. Another drawback is that reference

clock lines may exhibit different propagation delay than the raw clock line due to

differences in geometry and signal frequency. As such, [48] is susceptible to skew from

wire mismatches between the reference and the raw clock lines. The system’s lack of

buffering in the clock path also limits the total load, the distance between taps and the

number of taps that the reference line can spawn.

Work in [49] uses an averaging approach for synchronizing digital signals using a

two-wire method. This technique has recently been employed by Banu and Prodanov

[50] in another configuration that uses a serially distributed layout that is similar to our

own2, but the averaging technique they use is distinct, using analog multipliers at each

tap to create the required averaging, Figure 2.6. Their technique provides low skew, but

creates a set of sinusoidal clocks that are not of full swing and require level shifting

blocks at each tap to be useful in most designs, similar to standing wave systems.

Because of the transmission line nature of their clock network, their method does not

permit the use of buffers or logic within the clock network, making the system very rigid.

The analog components can consume more power than the digital components

2 Banu and Prodanov’s work [50] was published September 10, 2006, shortly after our initial publication [7]

on August 6, 2006.

 - 29 -

Chapter 2

Figure 2.6: Banu and Prodanov's bufferless approach [50].

employed by our system due to non-zero static bias currents. They describe their system

as one that uses bi-directional signalling, which differs from our use of the term. The

authors of [50] use the term to describe the transport of signals propagating in opposite

directions along two wires, where we will use the same conductor (time-multiplexed).

2.4.8. Reconfigurable clocks networks

All of the previously described networks must be created following the design of

the logic, and once established cannot be modified since changing the clock delay to

one register will affect the clock skew between it and every one of its sequentially-

adjacent registers. Present day designs incorporate many clock domains on the same

die and special consideration is needed when communicating between them. Many

integrated circuits are designed by combining a number of different blocks from different

 - 30 -

Background

sources and require that these components work flawlessly with one another for an array

of different applications [51]. Connecting these components together in different

configurations based on the specific application is not an easy task for standard IC clock

networks. Field programmable gate arrays (FPGAs) are generalized devices that may be

used for a variety of applications, so their clock domains must be flexible to work for a

variety of applications. For example, the Altera Stratix IV series of FPGAs can support

up to 16 global clocks that can be routed anywhere on the device and up to 88 regional

clocks [52]. For the most part, FPGAs use a spine-and-ribs (fishbone) structure to

connect regional and local registers, so the flexibility created by this approach comes at

the expense of skew tolerance.

2.5. Skew compensation

Deep submicron technologies exhibit an ever-increasing susceptibility to process

variation [53]. When comparing the effect that process variance has on a clock network,

the variation between individual devices must be examined. While a certain amount of

die-to-die variation is always present, this does not create skew since every device on a

die will be equally affected. There is also a discrete component that will exist between

every distinct device on a die that is roughly proportional to the effective size of the

transistors [54]. Discrete mismatch will always be present no matter how closely located

two devices are. With smaller transistor sizes, there is a discretization of the dopant

 - 31 -

Chapter 2

levels in each device leading to greater fluctuations in threshold voltage and

subsequently in delay through a device. Current mobility and mismatch between devices

are also phenomena, which can be deemed statistically independent for different

devices [55]. Finally there is a distance-related component for variation that will increase

depending on how far devices are from one another. This usually occurs gradually, with

the possible difference between the behaviour of two devices increasing the further apart

they are. Two devices located very close to one another will not be greatly affected by

proximity dependent mismatch. While a 10% of clock period rule of thumb has

traditionally been assumed for clock skew, this number is easy to surpass with process

variance in today’s newest technologies [56].

Programmable clock buffers and interconnect which require post-silicon tuning

have been introduced to compensate for process variation for selected regions of a clock

network [57]. Die temperature can also cause significant variation in the behaviour of

buffers in a clock distribution network. Worse, the die temperature will vary depending on

local switching activity leading to temperature gradients across the die that will change

over time. Increased power density in ICs amplifies this problem by making modern ICs

run hotter than before. Localized temperature spikes, or hotspots can severely impact

the skew in a clock network [58]. Temperature and process variance can result in delay

changes of over 50% for sub-65 nm devices [59]. The authors of [60] have developed a

clock network with self-adjusting delay buffers to cope with temperature variation, but

their methodology is designed to only cope with intra-die temperature fluctuations and

 - 32 -

Background

not localized temperature gradients. Traditional dynamic temperature management

techniques are limited by the accuracy of their temperature sensors [61].

Traditionally, clock network generation tools distribute clock buffers according to

user-defined specifications using a combination of matching wire length and adjusting the

placement and sizing of clock buffers to achieve the desired delay, but variability is

making this passive skew reduction technique less effective. Some clock networks use

active clock skew reduction techniques to reduce the effect of process variation. Active

clock skew reduction techniques use controllers and feedback structures to modify the

local clocks and provide de-skewing capability, usually using delay lines to perform the

adjustment. This technique can use significant system resources during operation due to

the large number of local clocks that must be synchronized in a clock distribution network.

Some active techniques do not therefore operate on all of the clock taps, limiting their use

to de-skew only two clocks with respect to one another [62], such as with two halves of a

clock tree. Multi-point skew reduction techniques have become more popular since they

are better able to cope with the large die and high-speed clocking environments that are

common [63], but any controllers required must typically be either re-used or replicated

for each tap. The overhead of active skew reduction techniques translates to higher

power consumption than their passive counterparts.

Some schemes simply employ skew reduction techniques on existing tree

distributions [64],[65], but can require extra wiring or a power overhead due to their heavy

resource usage. The configuration of Kapoor's approach [66] uses a distribution tree and

 - 33 -

Chapter 2

a co-located feedback tree and employs skew compensation at every leaf as shown in

Figure 2.7. Some schemes perform root-to-leaf skew compensation at the root or leaf for

Figure 2.7: Kapoor's skew-tolerant clock tree [66].

 - 34 -

Background

 - 35 -

Figure 2.8: Lee's skew compensation scheme [67].

 each local area on the IC [67],[68]. This configuration creates a need for a feedback line

from every synchronization point to the source. These feedback lines are subject to the

same trace matching discrepancies present with H-trees, introducing error to the skew

compensation technique [64]. The star configuration of Lee's system [67] employing skew

compensation at the root for every leaf is shown in Figure 2.8.

2.6. Clock power

Increased die size and device density of integrated circuits has led to a marked

increased in the power consumption of deep submicron designs. The clock can consume

the largest portion of on-chip power, often over 25% of the total power [69]. There are

three broad sources of power consumption in a device: short-circuit power Psc, leakage

Chapter 2

power Pleak and dynamic switching power Pdyn. All three of these also contribute to clock

power Pclk. Short-circuit power results from crow-bar currents that occur when both pull-

up and pull-down portions of a gate simultaneously conduct while the input voltage is

transitioning.

Short circuit power is proportional to Vdd-|Vtn|-|Vtp|, the clock frequency, and the

rise and fall times of the input signals. Vdd is the supply voltage, and Vtn and Vtp are the

threshold voltages of the pull-down and pull-up devices, respectively. There is no short-

circuit current when either pull-up or pull-down blocks are not conducting and it is

impossible for both of these to conduct when the sum of their threshold voltages exceeds

the supply voltage. Since current technologies rely on decreased supply voltage, short

circuit power is decreasing as Vdd approaches |Vtn|+|Vtp|. Another useful design approach

is to use signals with high slew rates, ensuring that input signal transition times are not

much longer than the output signal transition time.

Leakage power creates non-zero static current in an IC. There are three major

contributors to leakage power: gate oxide leakage which allows current to flow through

the gate of devices, sub-threshold threshold which allows current between transistor drain

and source when devices are supposed to be in a non-conducting state and junction

leakage across the reverse-biased diodes in the diffusion area of the transistors

[13],[70],[71]. Generally speaking, leakage power is increasing in newer technologies due

to a decrease in threshold voltage and an increase in operating temperature. However,

the total power consumption decreases overall due to lower supply voltages. Clock

 - 36 -

Background

networks are less affected by leakage power than logic circuits since clock power is

dominated by the dynamic power of the clock buffers due to the large capacitances

involved. As a result, clock networks are better able to take advantage of decreased

supply voltages and the proportion of device power consumed by clock networks will

decrease in future process generations [69].

Dynamic power consumption is the dominant factor in overall power consumption

in an integrated circuit, decreasing relative to the total power consumed, typically around

80%, but increasing absolutely due to the greater number of devices on an IC and the

increase in the operating frequency of newer devices. The dynamic power in an

integrated circuit is:

fVCKP ddLdyn ⋅⋅⋅= 2 (2.5)

where K is a configuration constant between 0 and 1, CL is the total capacitance being

switched, Vdd is the supply voltage and f is the operating frequency. The CL term includes

clock driver input capacitance, clock interconnect capacitance and the capacitance of the

clock loads [72]. Sometimes K and CL are combined into a signal term describing the

average capacitance being switched from 0 to 1 during each clock cycle. Charge is

sourced when the output capacitance toggles from 0 to 1 and sunk when it is transitions

from 1 to 0, so power is only consumed once every two transitions. For logic, this means

that each output charge/discharge cycle will take at least two clock cycles since the

output value is only expected to change once per clock cycle. Glitching in the logic

circuitry can create spurious transitions resulting in additional power consumption.

 - 37 -

Chapter 2

Typically then, K in Equation 2.5 will be 0.5*q, where q is the probability of the output

toggling during a clock cycle, or switching activity. For a clock network, the devices in the

clock path will toggle twice every clock cycle. As such, the switching activity is of the clock

network logic is 2 and K is 1! This results in significant dynamic power consumption for

clock networks since the switching activity and the total capacitive load in a clock network

is large. Clock power due to interconnect wiring will increase for newer technologies as

inter-wire capacitance increases due to closer wire spacing and taller wires [69]. While

dynamic power can be reduced by shrinking the clock buffers, this has a negative effect

on short circuit power since each clock buffer will be forced to switch larger capacitances

and the signal transition times will fall as a result. Power can also be decreased by

operating at lower voltages, but then leakage power will increase. Currently, most of the

power consumed by an IC is dynamic with approximately 10% going to short circuit

consumption [73]. Leakage accounts for approximately 30% of dynamic power [74].

 - 38 -

A dual reference signal averaging single clock distribution network

 - 39 -

Chapter 3:

A dual reference signal averaging single

clock distribution network

3.1. Introduction

The clock distribution problem represents an increasingly difficult challenge due to

progressively more complex systems, decreased power supply voltages, larger die sizes

and higher clock frequencies [66],[75]. Traditionally, passive forms of clock skew

reduction were used to balance all the leaves in a clock distribution network by a

combination of matching wire length and adjusting clock buffer delays [67],[76]. While the

performance of automated clock layout tools has improved significantly, the problem has

Chapter 3

Figure 3.1: Underlying concept of averaging.

been complicated by the move to a component-based design approach using pre-

designed blocks and IP cores from several pre-existing sources. Clock buffer mismatches

and in-die process variations have become a limiting factor in maintaining tight skew

tolerance [14],[68],[77]. Buffer mismatch due threshold voltage (Vt) and the short-cicuit

drain current (Idss) increase with newer silicon generations and the mismatch accumulates

as clock signals propagate through the distributed buffers in a design [78]. The

considerations for appropriate clock distribution networks include clock signal

characteristics such as fast transition times, a balanced duty cycle and low clock skew

[79]. Floorplanning requirements add additional complication to the clock distribution,

since matching clock trace lengths over irregularly shaped domains is difficult.

We discuss here an alternative to traditional H-trees, incorporating a dual

reference signal based clocking strategy to distribute clocks serially, using averaging to

eliminate systematic skew, post-silicon. Figure 3.1 shows the concept behind averaging.

The reference clocks are treated as pulses for presentation purposes, but they are, in

 - 40 -

A dual reference signal averaging single clock distribution network

fact, periodic with equal duty cycles. The technique that we employ facilitates the

construction of multi-tiered clock distribution networks, such as those in ICs using multiple

IP blocks. We use one bi-directional line to connect every tap, so any local process

variation present in the line affects all taps equally, and is thus not a source for additional

skew. Portions of the clock domain can be pruned easily by pausing the clock at the

appropriate taps without disturbing the rest of the clock domain. While [66] and [67] are

based on a similar idea, their use of different forward and reverse clock lines between

taps can lead to trace length discrepancies that can hurt the effectiveness of the skew

compensation circuitry.

This approach compensates for fixed global and local process variation,

temperature and power supply variations of the distributed buffers in clock networks,

which can create significant skew [80]. Our clock distribution has all the benefits of active

skew compensation techniques, using a closed loop synchronization approach to align

the clocks for each domain. During operation, the circuitry operates in an open loop with

the synchronization hardware disabled, providing significant power savings – a typical

benefit of passive clock networks. We are able to easily incorporate clock gating at each

tap into our design, without disrupting the loading of the clock drivers or increasing wiring

cost [81]. Our system can also provide many of the benefits of clock root gating since

large portions of the serial clock line can be paused [82]. The system can also be used

to provide beneficial skew between taps or to balance different local clock distribution

components for different tree depths or latencies, such as those found when

incorporating multiple IP blocks [63]. In this chapter, we examine the design

 - 41 -

Chapter 3

requirements and operating characteristics of reference-based clocking: our dual

reference signal averaging clock distribution network.

3.2. Implementation approach

To implement a single clock design using our dual reference signal averaging

clock network, the clock domain is divided into n smaller subsections, each of which is

connected to a tap. Each of these subsections should be roughly equal in size to help

match the tap-to-leaf delays for every tap, but this can also be achieved through buffer

placement and sizing for arbitrarily sized local regions. The clock taps do not need to be

distributed in close proximity, nor do they need to be regularly spaced. The smaller the

area of these subregions, the more taps are required, but there is less variability within

each subregion.

The underlying concept of our clock network is shown in Figure 3.2 for four taps.

Each tap contains the necessary hardware to delay the local clock and to route the

reference clocks between subregions. All the taps are connected together as a “thread”

using a single wire to create a clock domain with the required shape and size. Both the

region 1 input node (forward clock) and the region n input node (reverse clock) are tied

to the global clock. Since the clock distribution line has a constant delay (K+δs) over its

entire length (where δs is the delay through a switch), if the delay of the forward clock at

a tap is δ+, the delay of the reverse clock will be δ−=K-δ+. For every tap, the local clock is

 - 42 -

A dual reference signal averaging single clock distribution network

Figure 3.2: Reference-based clocking for a single clock domain.

aligned to the midpoint between the forward and reverse reference clocks, resulting in

an averaging of the temporal positioning of the clock edges. For every tap, the resulting

rising edges all occur at a fixed time:

()
222
KK

=
+−

=
+ +++− δδδδ (3.1).

Since the reference clocks are distributed along a single signal path, the delay

between two adjacent taps can be very closely matched for signals traveling in either

direction. The bi-directional clock line can be routed around obstacles easily without

compromising skew tolerance since the clock taps are daisy-chained. The clock threads

can cross other clock domains easily and are simple to lay out. The clock distribution

network requires three distinct phases to work properly: synchronization, calibration and

operation. These are discussed in the following sections.

 - 43 -

Chapter 3

3.2.1. Synchronization

During the synchronization phase, each clock tap is sequentially calibrated,

starting with the region 1 tap and ending with the region n tap. The forward and reverse

delays are all taken modulo the clock period to account for the periodic nature of the

signals. Synchronization for each clock thread can be achieved by predicting what each

source-to-tap delay might be and hard-coding the required delay line setting into the

system. This method has a number of benefits including zero synchronization time and

reduced circuitry overhead by eliminating the reverse path of the clock thread, the phase

detector and the control circuitry. However, it does not compensate for any variation-

induced skew, but it would still be useful for distributing irregularly shaped clock domains

where clock skew is not a great concern.

To take full advantage of reference-based clocking, online skew calibration should

be included. To produce a fully dynamic system, each tap requires a clock routing switch

which can be set to FORWARD, REVERSE (bypass) or SYNCHRONIZE, a delay line, a

phase detector and control circuitry. When set to FORWARD, the forward reference

signal is routed from the current tap (tap i) to the next tap (i+1). When set to REVERSE,

the reverse reference signal is sent from the current tap to the previous tap (i-1). When

sent to synchronize, both the forward and reverse reference signals are routed to the

current tap. This configuration allows the forward clock to be averaged using delay lines.

 - 44 -

A dual reference signal averaging single clock distribution network

3.2.2. Calibration

With all the taps synchronized, the forward clock is routed through the entire clock

thread for the calibration and operation phases. The reverse clock is disabled. Because

of the nature of the synchronization method, the resulting synchronized tap clocks can

either have positive or negative polarity with respect to one another, depending on the

relative phase of the reference clocks at each individual tap. This result could be sufficient

for a dual clock edged device, but for a single clock edged device, a calibration phase

may be required.

To perform the polarity adjustment, the system could examine each pair of

adjacent clocks individually and perform an inversion for the higher order (number) clock,

starting with the output of taps 1 and 2 and ending with the clocks in taps n-1 and n. The

relative phase is known a priori for most configurations, so the simplest method would be

to determine the required polarity in advance and program the system accordingly.

3.2.3. Operation

Following calibration, the components of the clock distribution that are unused

during operation such as the synchronization controller, phase detector and calibration

circuitry are disabled to save power. The taps in the clock domain are not affected by a

fixed phase shift in the global source clock, since this simply delays or advances all the

clocks in a domain by a constant amount. The resulting phase shift in the clock domain

 - 45 -

Chapter 3

will equal the shift in the global clock. All of the clock domains derived from this global

clock will shift accordingly, maintaining a fixed phase relation between the clock domains.

For clocks derived from an unrelated global clock, the phase relation will change with

respect to the clocks in our serial clock domain. However, as with most other such

instances, synchronizers would typically be employed between these clock domains to

enable inter-clock domain communication [83] since it is difficult to maintain a constant

phase difference between two unrelated clocks. Centroid layouts and properly sized

devices can greatly minimize local intra-die process variation, assuring constant forward

path and reverse path delays through the clock routing switches. Inter-die variations can

be compensated for using dynamic tap synchronization. The primary source of skew for

our method is the in-die process variation that can occur between the delay line pair used

for averaging. Variation can alter the drive strength, loading or delay of devices, so it is

critical to minimize its impact.

3.3. Wire length savings

Our method goes beyond just eliminating systematic (structural) offsets, as is the

case with most active de-skewing circuits [84], by compensating for any line or non-local

transistor imbalances that may exist on the global clock routing path better than any

other active skew reduction technique. Because the reference-based distribution can

simply route a clock in the shortest possible path to each tap, there are significant wire

savings with respect to a traditional H-tree that requires redundant wires to match the

 - 46 -

A dual reference signal averaging single clock distribution network

Figure 3.3: A 64-tap H-tree.

path length from source to every tap. It is important to consider wire length since

decreasing wire length will also decrease the amount of capacitive loading in the clock

network. In deep submicron devices, interconnect and device delays are roughly equal

contributors to total device delay [85]. An averaging clock distribution can contain an

arbitrary number of nodes and can be laid out manually or using standard cells, whereas

H- or other tree solutions require special balancing tools to generate synchronized

clocks. Figures 3.3 and 3.4 show how a 64-tap H-tree distribution compares with our

reference-based one. A decrease in wire length will reduce clock load. Replacing an H-

tree with 5 levels or more with a reference-based design can save over 30% of the clock

wire length. Table 3.1 shows a summary of the wire lengths (in units) that can be

 - 47 -

Chapter 3

Figure 3.4: A 64-tap reference based clock distribution.

achieved between different depths or levels (n) of square H-trees and comparably-sized

referenced-based clocking solutions assuming unit length spacing between each of the

clock taps. The wire length numbers assume 2n-1 length wires for each level of the tree

[86]. These numbers ignore the tap-to-leaf distributions, which will be identical for both

implementations. The wire length is governed by Equation 3.2 for serial clocks and

Equation 3.3 for H-tree clocks.

2nLength linear = (3.2).

)12(23 1 −⋅⋅= − nn
HLength (3.3).

 - 48 -

A dual reference signal averaging single clock distribution network

The wire length has a direct influence on the power consumption of the clock distribution

network, since a longer wire length has a larger capacitance that must be switched twice

per clock cycle. The variable wire length is reflected in the CL term in Equation 2.5.

H-tree depth Number of taps Wire length
(H-tree)

Wire length
(serial) Savings (%)

1 4 3 4 -33.33
2 16 18 16 11.11
3 64 84 64 23.81
4 256 360 256 28.89
5 1024 1488 1024 31.18
6 4096 6048 4096 32.28
7 16384 24384 16384 32.81
8 65536 97920 65536 33.07
9 262144 392488 262144 33.21
10 1048576 1571328 1048576 33.27

Table 3.1: Wire length comparison

3.4. Architecture variants

The average of the reference clocks at each tap is taken by delaying the forward

clock to align with the reverse clock through two delay lines. The placement and

architecture of these delay lines affect the area required, the matching between delay

lines, the susceptibility to process variation and the usability of the system. Four such

variants were explored for an n tap single clock structure: one using 2n delay lines, one

with n+1 delay lines, one with n delay lines and one with 2n delay lines using

unidirectional conductors for the forward and reverse reference signals.

 - 49 -

Chapter 3

Figure 3.5: Architecture using 2n delay lines.

3.4.1. Architecture with 2n delay lines

The most intuitive approach for averaging is to include a pair of delay lines at

each tap and use identical settings on both to perform the required clock alignment, as

shown in Figure 3.5. Each tap consists of two delay lines, one clock thread switch (2:2

Switch) and one phase detector (PD). CLKA represents the forward clock path within the

tap and CLKB represents the reverse clock path. Once aligned, either the clock path can

be modified to bypass one of the two delay lines, or the delay setting on one of the two

delay lines can be set to an arbitrary constant delay for every tap. Modifying the clock

path requires the addition of clock routing, which could potentially add skew due to tap-

to-tap variances. An arbitrary constant delay will induce unnecessary signal transitions

that will add to the power consumption of the device. During operation, half of the delay

 - 50 -

A dual reference signal averaging single clock distribution network

Figure 3.6: Architecture using n+1 delay lines.

lines are not required, meaning there is wasted circuit area using this configuration. Our

180 nm layout of this configuration requires an area of 6000 μm2 per tap. This method

achieves tolerance to process variability since it only requires good matching between

the two adjacent delay lines at each tap, which is expected considering their proximity to

one another. The averaging method compensates for tap-to-tap variances since the

delay line pairs since the accuracy of the average is solely dependent on the matching

between the two in-tap delay lines.

3.4.2. Architecture with n+1 delay lines

One drawback of the previous configuration is its inefficient use of area. Since

one of the two delay lines are only used for synchronization, it is possible to share a

single delay line for synchronization for all taps at the clock source, requiring only one

dedicated delay line at each tap. The source delay line could be kept in the signal path

 - 51 -

Chapter 3

or bypassed at a designer’s discretion during operation. This architecture is shown in

Figure 3.6, and the circuit layouts for each tap and a clock selector to bypass the source

delay line are shown in Figures 3.7 and 3.8, respectively. The area required for each

2n+1 tap is 3750 μm2 and the 3400 μm2 for the clock source. Any constant delay

injected at the clock source affects all taps equally, so it does not alter clock skew

between taps. In this manner, the source and the tap delay lines must each be

programmed separately which complicates the controller design slightly. This

configuration also delays the time required to synchronize the clock domain since any

Figure 3.8: Circuit layout of n+1 delay line clock selector.

Figure 3.7: Circuit layout of n+1 delay line tap.

 - 52 -

A dual reference signal averaging single clock distribution network

change to the source clock must be allowed to propagate to the tap being synchronized

between every test. The source clock for the first 2n method does not change, so the

controller needs only to wait for the forward clock to propagate to the next tap between

tap synchronizations. For the n+1 configuration, the matching between delay lines can

be affected by intra-die process variation. However, because the source delay line is

shared amongst all taps, the amount of skew generated between taps will be

proportional to the variance between all of the dedicated delay lines. This is a single

instance of variation, which is acceptable when one considers that a conventional tree-

distribution has buffers scattered throughout the IC and skew will accumulate as the

clock propagates through the IC.

3.4.3. Architecture with n delay lines

The third configuration eliminates all the delay lines not required during operation

and eliminates the need to match delay lines by using a single delay line at each tap to

perform the required averaging. Since the same delay line is re-used twice to perform

the averaging step, there is no device mismatch error between the delay lines creating

each half delay, making this architecture tolerant to process variation. The delay line is

modified to prevent signal races by converting the 50% duty cycle reference clock to a

pulse for the clock synchronization phase and a multiplexer is added to choose between

the forward reference clock and the feedback clock at the delay line input. The delay line

requires additional circuitry to control the input multiplexer and the pulse generator. The

 - 53 -

Chapter 3

Figure 3.9: Architecture using n delay lines.

circuitry is designed to operate autonomously and asynchronously using signal

transitions as cues. Since the rising edges are synchronized, the system modifies only

the falling edge so the rising edge follows an identical signal path for synchronization

and operation. These changes simplify the design of the phase detector, since the reset

condition of the detector where both inputs are zero is longer than the previous cases,

simplifying the detection when the reference clocks are out of phase by 180o. This

architecture, shown in Figure 3.9, contains the best features of the first two variants. It

will synchronize as quickly as the first method with less area overhead. Including the

clock to pulse conversion circuitry and controller, each shared delay line tap requires

5100 μm2 of area. The layout is shown in Figure 3.10. One other important benefit is that

both delay lines are identically loaded.

 - 54 -

A dual reference signal averaging single clock distribution network

Figure 3.10: Circuit layout of n delay line tap.

3.4.4. Hotspot tolerant architecture

Once synchronized, temperature hot-spots can shift, arise or disappear in

different areas of the IC. Device delay is significantly affected by temperature so it is

important to synchronize the system at the correct operating conditions. If operating

conditions shift during operation, the system will need to re-synchronize the clock taps at

run-time. If pausing the complete system is not possible, the architecture will require a

shift from a bi-directional clock line to a dual reference line based clock network to

perform the averaging.

The system can re-synchronize without pausing by controlling changes to the

delay setting to prevent glitches in the local clock, or shortened clock pulses [83] and

preserving sufficient high and low times. On-line skew corrections are effective when all

taps were previously synchronized and require fine adjustment around their initial

synchronization point. Two reference signal lines are needed since every tap needs to

 - 55 -

Chapter 3

Figure 3.11: Dual reference line hot-spot tolerant configuration.

simultaneously have access to both the forward and reverse reference signals. This

configuration is shown in Figure 3.11.

3.5 Clock jitter and skew.

Clock distribution networks must overcome two significant issues that can

undermine their effectiveness if ignored. The first is the issue of jitter and the second is

the issue of clock skew. Jitter behaviour can change quickly from cycle-to-cycle or slowly

over many thousand clock cycles.

 - 56 -

A dual reference signal averaging single clock distribution network

3.5.1. Jitter sources

Traditionally, cycle-to-cycle jitter is the most dangerous since it is the most

difficult to predict. A late clock edge followed by an early clock edge can reduce the

effective clock period significantly enough to cause errors. The primary source of clock

jitter is power supply noise cause by switching activity [87],[88]. When a large number of

transistors switch simultaneously, noise is generated on the power and ground signals

and this noise can alter the delay of the devices near the perturbation. By their

architecture, clock trees are a source for clock jitter since large capacitances are

simultaneously switched at every buffering instance.

Jitter can accumulate through each buffering level. Since the noise level will vary

depending on the switching activity within a particular region, the jitter across the IC will

also vary. While the components along the clock distribution path are susceptible to

power supply fluctuations, the analog circuits traditionally used to generate the global

clocks in a system are significantly more sensitive to noise [89]. These circuits must be

designed carefully to reduce jitter levels through techniques such as having dedicated

power signals and carefully placed guardbands. These techniques will also be beneficial

for generating global clocks for our dual reference signal design. However, our serial

distribution will have less impact on the power distribution system, similar to using a

spread spectrum approach to the global distribution. Since clock signals toggle at twice

the frequency as normal signals, they both generate and are susceptible to significant

noise, so similar to currently employed methods, adding a dedicated clock power line

 - 57 -

Chapter 3

and guarding clock lines against coupling capacitance effects can only positively affect

clock jitter. As jitter accumulates through a number of different stages, the total jitter will

decrease and be bounded by the random nature of the jitter sources [90].

3.5.2. Skew

Clock jitter has traditionally been a concern with clocks on an IC because of the

analog PLL and DLL components that are traditionally used to generate the global

clocks. However in deep sub-micron technologies, device and interconnect variance is

leading to an ever-increasing amount of fixed uncertainty that must be addressed [91].

Inter-die mismatch and intra-die mismatch are two general kinds of mismatch that will

prevent no two dies from being identical [55]. The first variety affects all devices on a die

equally, and does not pose significant issues when dealing with clock distribution. The

effects of intra-die mismatch can be mitigated somewhat by using larger devices and

placing them as close together as possible. These observations have been summarized

by Pelgrom et al.’s relation for variance due to parameter (P) deviation [54]:

22
2

2)(DS
WL

A
P p

p +=Δσ (3.4).

Here, the discrete variances are grouped together with the AP2 term whose influence

decreases as the transistor sizes involved increase. The proximity variances are

modeled by the SP2 term whose influence increases as the distance between the devices

increase. AP2 and SP2 wind up being technology dependent constants [54],[92],[93]. This

 - 58 -

A dual reference signal averaging single clock distribution network

relation is a first order model for process variance reflecting trends in the behaviour of

devices and interconnects. With deep submicron technologies, these grouped terms

have been elaborated to better reflect the sources of variance. In addition, the transistor

sizes W and L have been updated to reflect the effective size of the transistors (Leff and

Weff) [94]. Higher order models will lead to more accurate results, but further study would

improve them further still.

3.5.2.1. Effect of skew on an H-tree

Mismatch is an important factor in clock distribution networks since clock buffers

are scattered throughout a device and each may exhibit different operating

characteristics [56]. The potential skew will increase as leaves become further apart and

centroid configurations are not possible with distributed clock buffers. As such, the worst

case skew will be present between the two leaf nodes that are furthest from one another.

If 4N represents the number of leaves in the system and the smallest distance between

clock leaves in an H-tree clock network is x, the distance between the first pair of

diagonal clock drivers in the clock tree is:

()212 22 xD N−= (3.5).

Assuming that every clock buffer will drive four identical loads, N-1 sets of different clock

buffers will be traversed while distributing a clock from source to leaf. The total variance

will accumulate as the clock signals propagate through each level of buffering. The

 - 59 -

Chapter 3

worst-case distance between diagonally opposite clock drivers at any given level will

continue to increase causing greater mismatch through every subsequent tree level. The

total variance through a 4N clock tree will be:

()
2

2 2

12
2

2 22
)1(

)( 
= =

−








+

⋅−
=Δ

N

j

j

i

i
p

p
tree xS

WL

AN
Pσ (3.6).

The discrete variance is identical for every level of buffering and the proximity variance

increases as the devices get further from the clock source.

3.5.2.2. Effect of skew on a serial architecture

Our serial architecture will have many more stages, but each stage is separated

by a much smaller, fixed distance. Along the distribution path, the only mismatch that

does not get eliminated is the one between the clock drivers which drive the forward and

reverse reference signals on a single bi-directional line between adjacent taps.

Assuming the same distance x between taps, and an identical 4N taps (4N-1 connection

segments) to the previous equation, the total variance for a serial clock network is:

22
2

2)14(
)14(

)(xS
WL

A
P p

Np
N

linear ⋅⋅−+
⋅−

=Δσ (3.7).

Assuming that the discrete component’s effect can be mitigated by using sufficiently

large transistors, let us examine the effect of the proximity dependent component. The

value of the summed D2 component of Equation 3.4 is displayed in Table 3.2 for various

 - 60 -

A dual reference signal averaging single clock distribution network

values of N. This result shows that the serial clock distribution network has better

proximity variance levels due to quadratic dependence on distance.

Number of 4N tree levels H-tree distribution Serial Distribution

1 0 3x2

2 8x2 15x2

3 104x2 63x2

4 808x2 255x2

5 5032x2 1023x2

6 27816x2 4095x2

7 143016x2 16383x2

8 701096x2 65535x2

9 3324584x2 262143x2

10 15387304x2 1048575x2

Table 3.2: Sum of squares distance component of variance relation.

3.5.2.3. Centroid layout

Eliminating the directional circuitry at each tap for the serial configuration in

Figure 3.11 allows a clock buffer to propagate a clock to m sequential taps before

requiring regeneration. By placing clock buffers and switches next to each other between

clock taps and using common centroid layout techniques, it is possible to practically

eliminate all proximity induced variation. Common centroid layout is a typical approach

for minimizing mismatch for constant process variance gradients by decreasing proximity

mismatch by a significant factor. Equation 3.8 extends Pelgrom’s relation for common

centroid configurations.

2

2222
2

12
)(

w

yxpp
centroid

D

DDS

WL

A
P +=Δσ (3.8)

 - 61 -

Chapter 3

where Dx and Dy are the horizontal and vertical distances between devices and Dw is the

wafer diameter [95]. In practice, however, process gradients are not perfect planes

meaning that there will always be a small mismatch component present. Centroid layout

are not possible for broadcasted clocks so this is not a technique which can work for

eliminating mismatch in the vast majority of clock distribution networks. The proximity of

matched components will also lessen the negative effect of hot-spots on the system [58].

The total mismatch of a dual reference line system with centroid layout is shown in

Equation 3.9:

mWL

A
P

N
p

centroidlinear
4

)(
2

2 ⋅
≅Δ−σ (3.9).

3.5.3. Temperature variation

These results reflect fixed manufacturing variation, but there are other transient

sources of skew such as temperature and power supply defects. In particular, increased

power density in integrated circuit have caused cross-die temperature gradients, or so

called “hot spots” to have a significant effect on transistor behaviour, both with respect to

interconnect delays which can change about 20% with a 75oC variation from ambient

and for device delays that can increase by 50% with a temperature shift of 75oC in a

modern IC [87]. Our serial distribution will compensate for intra-die temperature

gradients present during synchronization. In our serial network, there can be a difference

in temperature for the clock drivers located at adjacent taps, but the change will be small

 - 62 -

A dual reference signal averaging single clock distribution network

when compared to that present between distributed drivers in a tree network. Our

averaging system is unique when compared to similar systems since it uses a pair of

delay lines or a single delay line twice to establish the midpoint between reference

clocks. The clock buffers in these configurations are located in relatively close proximity

to each other, thereby exhibiting similar temperature and power supply characteristics.

Even if the operating characteristics of the delay lines change, as long as the two delays

are well matched, the average will still be accurate. Using the n delay line architecture

aids in guaranteeing this.

3.5.3.1. Effect of temperature-induced variation on dual reference line system

The configuration shown in Figure 3.11 achieves a much greater tolerance to

hot-spots and mismatch variation in devices due to the proximity of devices that require

matching. It will also permit higher clock frequencies due to a potential decrease in the

loading each segment of the serial network. This dual line configuration eliminates the

buffer spacing component between taps from the variance calculation by switching from

a single bi-directional clock line to a dual reference line approach. As will be shown, this

move will result in a significant decrease in device mismatch, but could result in a

greater wire mismatch so co-locating the forward and reverse reference clock wires and

ensuring complementary behaviour between taps is essential in maintaining good clock

characteristics. This is a cost-effective approach to skew compensation when compared

 - 63 -

Chapter 3

with the tree-based techniques such as [66] due to the inherent wire-savings achieved

by a serial clock distribution

3.5.4. Dynamic operation

Once synchronized, a reference-based clock network may undergo

environmental changes that require resynchronization. We suggest here three

possibilities for resynchronization: periodic, on-demand or polled. A periodic

resynchronization can be triggered after a user-set period of time. The system can

resynchronize each tap sequentially like the initial pre-operation synchronization,

however the period synchronization will be significantly quicker since it only requires

small adjustments to the previous delay setting. Resynchronization here would only

require a delay in the tens of clock cycles per tap. The second is an on-demand

approach that requires the inclusion of a dummy tap at the end of the serial distribution.

This tap will always have access to both forward and reverse clocks so it can use its

phase detector, likely a variable tolerance phase detector (Figure 7.17), to monitor

alignment. The forward clock passes through every tap in the clock domain and is

affected by all the environmental fluctuations along the clock thread, but the reverse

clock will not deviate significantly from its initial position since it follows a different and

much shorter path from the clock root in the design. If either the forward or reverse clock

shifts, an indication of environmental changes, the phase detector could trigger a thread-

wide resynchronization. An n delay line architecture can be used if the clock network is

 - 64 -

A dual reference signal averaging single clock distribution network

paused while resynchronizing. A third approach would be to poll each tap continuously

and sequentially, and resynchronize them during operation. This method requires the

use of the dual reference line architecture, Figure 3.11. This method would not require

any additional hardware at the taps, but would need the synchronization controller to be

on-chip. With the availability of both the forward and reverse reference signals at all

times for every tap using this configuration, the controller can adjust each tap delay as

necessary to compensate for (long-term) temperature and voltage related changes in the

delay behaviour of the system. Each synchronization here would not require a significant

amount of time since the system would only require small changes in the delay line

setting. A tap can be re-synchronized on the fly without pausing using a 2n delay line

architecture. The dual reference line strategy, combined to our averaging approach

makes this system highly tolerant to process variance, device mismatch and cross-die

temperature variations including hot-spots.

3.6. Controller requirements

There are many approaches to designing a control system for our reference-

based clocking system. A controller needs to read the phase detector output and modify

the delay settings for each delay line and the 2-bit direction control of each clock routing

switch. These control lines will change in a regular pattern, with a REVERSE direction

initially, a SYNCHRONIZATION state next, and a FORWARD direction finally. By

propagating the control signals produced by the phase detector and not the reference

 - 65 -

Chapter 3

clocks themselves, our solution eliminates another source of skew when compared to

other solutions like [66]. The controller can be constructed in the hardware itself, or

externally on an FPGA, microprocessor or other controller. The phase detector is

designed to indicate when the delay line setting is correct, too slow or too fast.

3.6.1 Synchronization time

The time required for synchronization will depend on the architecture being used.

The n+1 method is the most complicated configuration and will be examined first. The

lock time for each clock tap is a function of its proximity to the clock source. The time for

each test can include up to 4 extra clock periods: two for the worst-case delay before

both forward and reverse rising edges arrive, one for the additional delay that can be

injected into the path from the source and local delay lines and one more for the

resolution time of the phase detector. The worst-case time for each test is:


=

+⋅=
j

i
izTTime

1
4 (3.10)

where j is the tap number, z1 is the time-of-flight from the source to tap 1, zi is the

forward path delay from the input of tap i-1 to the input of tap i and T is the longest

possible clock period. The reverse reference signal root-to-tap delay does not affect the

lock time since it is not modified during synchronization.

The synchronization delay is implementation-dependent since it is related to the

structure of the variable delay line. The following discussion reflects our delay line, but a

 - 66 -

A dual reference signal averaging single clock distribution network

similar discussion can be made for any implementation. Our delay line contains fine and

coarse components. One possible run-time synchronization approach would be to begin

with the closest tap to the clock source, verify each coarse grain setting from fastest to

slowest, using the longest fine grain setting for each test. If C represents the number of

unique coarse delay settings, the proper coarse setting can be found in a maximum of

c=C-1 tests. To synchronize the fine delay, an appropriate strategy is to use a binary

search to traverse the fine delay settings. If F represents the number of fine settings, a

maximum of f=a fine tests are needed, where 2a+1 represents the first integer greater

than or equal to F. The worst-case synchronization time will occur at the minimum clock

frequency that can be found by:

 
= =









+⋅⋅=

n

j

j

i
izTxTime

1 1
4 (3.11)

where n is the number of taps, x=c+f is the maximum number of tests per tap and the

other variables are defined for Equation 3.10.

To find the average synchronization delay for the mid-point frequency, we

assume that each test requires an average of c coarse and f fine tests. There are 2a-F-1

fine settings in all, a tests unused and the shortest tests are preferred for the remaining

settings. The average number of tests needed per tap is:

F

Fak

C

CC
fcx

a
a

k

k)12mod()1(2

2
2

1
3

0
2 ++







 +
+−+=+=

−
−

=


 (3.12).

The average case delay assuming that each tap reaches a locked state is thus:

 - 67 -

Chapter 3

 
= =








 +⋅⋅=
n

j

j

i
izTxTime

1 1

5.2 (3.13)

using x from Equation 3.12. The 2.5 extra clock periods (instead of 4) are divided as

follows: one-half to account for the average delay due to the source and local delay

lines, one for the average delay for both forward and reverse edges to arrive at the

phase detector and one more to account for the resolution time at the phase detector.

For the n and 2n cases, the synchronization time need not take into account the

source-to-tap delays for every test. As such, the worst case for each test is simply:

TTime ⋅= 4 (3.14)

where T is the longest possible clock period. The worst-case synchronization time will

occur at the minimum clock frequency and can be found by:


=

⋅⋅=
n

i

TxTime
1

4 (3.15).

The average number of tests is the same as Equation 3.12. The average case delay

assuming that each tap reaches a “locked” state is thus:


=

⋅⋅+=
n

j
j TxzTime

1
5.2 (3.16)

where the forward path delay between taps is zj.

Using the same synchronization approach as discussed above, another

alternative would be to do a linear search for the fine grain setting, starting with the

slowest (longest) setting and trying each faster setting in turn until the correct one is

 - 68 -

A dual reference signal averaging single clock distribution network

found. In this case, the worst case synchronization times would be the same as above,

except the worst case number of fine grain tests would be F and the average number of

fine grain tests would be F/2. The equations would need to be modified for a different

delay line, but the underlying analysis approach would remain valid. The initial

synchronization could also be sped up by programming the system with cached

expected delay data

A post-synchronization calibration phase is needed to obtain the correct polarity

of each local clock. This step can be performed using a multiplexer to select between an

inverted and a non-inverted signal at each tap without modifying the overall delay of

each clock path. This step is quick because the source delay line is no longer used at

this point – modifying the polarity simply involves changing a multiplexer setting at the

clock tap. This step can be done in four clock cycles per tap: one to measure, one to

toggle and two to propagate the current tap’s polarity to the next tap. Our method can

only be used at the frequency it was calibrated with so in dynamic frequency scaling

applications, the system must be recalibrated each time the frequency is changed.

However, each desired operating frequency could be synchronized in advance with the

required delay settings stored in memory. Thus, the delay settings could be changed

quickly to align the tap clocks.

 - 69 -

Chapter 3

3.7. Simulation results

This single clock averaging clock distribution discussed here has been designed

for TSMC’s 0.18 µm P-well process using the Cadence Virtuoso design environment and

simulated with SpectreS and the Analog Artist simulation tool. Using an n+1 architecture,

the schematic circuit simulated as follows. For each delay line, five alternate coarse

grain paths provides a 93.5 ps delay increment over the base setting and the fine grain

delay provides and additional 93.5 ps delay, resulting in a total delay of 1122 ps

considering the positive and negative polarity signals available at the output. The

minimum clock frequency that can be used is 445 MHz, equal to twice the maximum

delay through the delay line. The extracted simulations show that the coarse grain delay

increment is 80 ps, resulting a total net delay of 960 ps and a minimum clock frequency

of 521 MHz. The resolution of the phase detector is +/- 1.5 ps. The error between any

two taps can be up to the sum of twice the phase detector error and twice the maximum

delay increment. Since one of the variable delay elements are removed during run-time,

the net skew will be half this amount. Thus, the expected skew of the system is 6.25 ps.

In practice, the expected skew is actually approximately 10 ps using this delay line

because of the duty cycle changes that occur through the fine delay line.

The clock distribution circuitry for the extracted system is capable of routing

frequencies up to 1.90 GHz, corresponding to periods of 525 ps and higher. The limiting

factor is the clock routing switch that drives the large capacitive load bi-directional clock.

Should higher performance be required, these nodes can be designed with larger

 - 70 -

A dual reference signal averaging single clock distribution network

devices to provide faster transition times. The remaining circuitry is capable of operating

at up to 2.12 GHz (470 ps periods). For an n+1 system, the worst-case synchronization

delay is 1587.9 ns, or 708 clock cycles from Equation 3.15. The average synchronization

delay is 347.9 ns, or 408 clock cycles from Equation 3.16.

Figure 3.12 shows a simulation at 1.90 GHz of how each forward clock needs to

be synchronized with the reverse reference clock. The forward clock in Tap 0 (CLA_0) is

aligned to the reverse clock (CLB_0) between 10 and 20 ns, the forward clock in Tap 1

(CLA_1) is aligned to the reverse clock (CLB_1) between 20 and 30 and so on. Once the

correct delay line setting for every tap is determined, the forward clock can be set to

bypass the delay line at clock source to save power in the n+1 configuration clock

network. A maximum skew of under 10 ps was achieved in this case. For clarity, only the

final synchronized delay setting is shown. Given that CLK 0 to CLK 8 represent each

tap's local clock, Figure 3.13 shows that clocks 0, 4, 5, 6 and 7 all have positive polarity,

while clocks 1, 2 and 3 have negative polarity at the end of the synchronization stage (at

90 ns). Polarity, in this case, is always taken with respect to clock 0. Figure 3.13 also

shows the calibration process for the 8-tap design with CLK 1 being inverted at 98 ns,

CLK 2 being inverted at 101 ns and CLK 3 being inverted at 104 ns. Figure 3.14 shows

the resulting polarity-adjusted clocks for the 8-tap distribution network. Figures 3.13 and

3.14 use an 891 MHz reference clock. Comparable solutions offer similar or worse levels

of skew reduction, sub-10 ps for [96], 28 ps for [76], 70 ps for [67] and 15 ps for [62]. [97]

demonstrates a skew reduction scheme capable of reducing skew to within 10% of the

clock period, versus under 4% here. Work in [66] ideally achieves 3 ps skew resolution,

 - 71 -

Chapter 3

Figure 3.13: Calibration phase to align polarity of resulting clocks.

\

Figure 3.12: First 3 synchronization steps for an 8-tap CDN.

but is susceptible to intra-die variation, modifying a traditional H-tree distribution and

requiring a duplicate co-located return path for all the leaves in the network also entails

an area overhead.

 - 72 -

A dual reference signal averaging single clock distribution network

Figure 3.14: Resulting low-skew output clocks for an 8-tap system.

Once the polarity detection is complete, the calibration and phase detection

circuitry is turned off, resulting in significant power savings at runtime. Simulations show

that for a typical forward and reverse clock skew setting, power consumption for an 8-tap

clock distribution circuit at the maximum frequency is 33.2 milliwatts (mW) during the

phase alignment cycle and 18.0 mW during run time. At 891 MHz (the minimum

frequency of operation without considering the inversion capability of the delay line), the

power consumption during phase alignment is 18.6 mW and 9.97 mW during run time.

While one would expect quadrupled power consumption for doubling the frequency, the

energy consumption is somewhat smaller than expected at higher frequencies because

shorter paths are taken through the coarse grain delay line. These power consumption

numbers are much better than PLL based solutions that typically consume hundreds of

 - 73 -

Chapter 3

Figure 3.15: Using pulses to align clocks in n delay line architecture.

mW [65]. In comparison, [98] demonstrates 0.21 mW power consumption per de-skew

tap for a 56 ps skew bound.

Tests on a laid out and extracted 4-tap single clock domain n delay line

architecture were performed using a 1 GHz sample clock. Figure 3.15 shows how the

pulses are used to align the clock region output and the reverse clock rising edges. The

performance of this system mirrored that of the other architectures, with an overall skew

bound of 12 ps and power consumption of 2.5 mW per tap at 1 GHz.

3.8. Conclusion

Traditionally, most integrated circuits operated using a single global clock. Great

care was needed to ensure that the clock had good characteristics and low skew.

Today, most clock networks are designed using CAD tools which require precise

 - 74 -

A dual reference signal averaging single clock distribution network

information on the exact clock load for each branch, the placement of each tap on the

die and the location of the clock root. Once generated to satisfy the required skew and

latency metrics using wire and driver re-sizing and placement, the clock network cannot

be altered without affecting clock skew. Our dual reference signal clock network allows

designers to delay some of the critical clock tuning requirements to facilitate the design

flow. It allows circuit blocks to be moved around conveniently and re-sized easily with a

simple change in the number or location of the taps. Our cell based approach to clock

distribution allows components to be designed independently, connecting components

as is convenient and even replacing blocks if needed. The presence of the digitally

programmable delay lines allows the system to accommodate blocks with different tree

depths and latencies.

We have designed a clock network with multi-point active skew compensation. By

using delay lines instead of PLLs and with a single reference and distribution line, our

method is small enough to be useful for many clock applications. Using a single common

forward and reverse clock reference line to cut down on in-die process variation skew is

unique. Using a dual reference signal approach places all critical devices in close

proximity, minimizes process variation and permits online clock resynchronization which

can help eliminate intra-die temperature deviation. Using a daisy-chained approach

minimizes the total clock line length and thus the required clock load and the power

consumption can be reduced. The system can also be used to provide beneficial skew

between each of the local taps in the IC [62]. Any reduction in clock skew obtained by our

clock distribution is extremely useful since this time can be added directly to the available

 - 75 -

Chapter 3

cycle time within a clock period [68]. Simulations show that the proposed CDN is

scalable, compatible with irregularly-shaped distribution areas, and combines low power

operation with tight skew bounds.

 - 76 -

Skew-tolerant reconfigurable clock networks based on averaging

 - 77 -

Chapter 4:

Skew-tolerant reconfigurable clock networks

based on averaging

4.1. Introduction

Reference-based clock distributions have a number of advantages when

compared to their tree-based counterparts. The modular nature of the system allows

components to be easily added and modified throughout the design phase without

requiring the clock distribution to be re-synthesized at every step. The ability to postpone

the fine tuning of the clock distribution until after fabrication is useful and can be used to

account for process variation and to correct for certain defects in the clock network.

Chapter 4

Traditional clock distribution networks are built to match the delays from a clock

root to every clock leaf in the system. These clock networks are rigid once generated

and it is impossible for anything other than a single clock to be broadcast to every leaf in

the domain. Some systems get around this by creating multiple clock trees and allowing

the clock fed to each individual tree to be selected at the clock root. The main drawback

of this approach often used with FPGAs is that the size of each clock domain is not very

flexible. In addition, a system requiring many small clock domains could result in a

significant waste of resources. Using our serial approach, there is no requirement for the

clocks in the global distribution to be synchronized.

To perform accurate dynamic skew compensation at each regional tap, clocks

travelling in opposite directions have corresponding delays between destinations and the

delay lines used at average the forward and reverse clocks are well matched. This

implementation allows programmable clock routing to be added into the path creating a

complete fully-programmable and reconfigurable multiple clock distribution network with

a fine level of granularity for the first time. Such functionality would not be possible if the

system was not designed from the ground up to cope with non-aligned clocks and have

a skew-tolerant approach built into the alignment system.

 - 78 -

Skew-tolerant reconfigurable clock networks based on averaging

Figure 4.1: A 3-clock domain static clocking solution.

4.2. Multiple clock architectures

4.2.1 Static clock network with multiple clocks

There are multiple methods to deploy our reference-based clock network in a

multiple clock environment. Multiple clocked designs with independent clock domains

are common for designing large modular ASIC and SoC designs [99]. One option is to

deploy multiple static clock threads, as illustrated in Figure 4.1 for an example 3-clock

domain distribution. Each component in the clock thread is replicated as needed,

including a global clock generator for each domain. The clock generators can either be

 - 79 -

Chapter 4

placed in close proximity in one area of an IC and suitably routed to and from the clock

thread, or spread out over the IC. A single clock generator can also be connected to a

series of dividers (or multipliers) to drive all the clock lines if the required frequencies are

related by division, multiplication or other realizable operation. The only constraint is that

the clock must have 50% duty cycle and be connected to both the head and the tail of

the clock thread. These threads can cross other clock domains and are easy to lay out

since the taps do not need to be placed at regular intervals. Irregularly-shaped clock

regions, like the one shown in Figure 4.1 is much easier to implement using our method,

since adjacent areas are all connected serially. Disjoint clock regions in a single domain

can also be connected using a single wire with little attention paid to the wire length. This

trait is convenient for pin-limited designs where it may not be desirable to locate a large

sub-circuit in a given area of an IC. Small blocks can be placed near the required pins

and associated to larger blocks elsewhere on the IC, while still maintaining one skew-

tolerant synchronous clock domain. Similarly, clock domains can be divided to allow

access to certain regional features that would be difficult to implement using an H-tree,

but it is performed automatically by the design of our reference-based architecture. Each

of these threads will have the same characteristics and synchronization requirements as

the single clock solution previously discussed.

 - 80 -

Skew-tolerant reconfigurable clock networks based on averaging

Figure 4.2: Sharing a resource with reference-based clocking.

4.2.2 Locally-reconfigurable clock network

It is possible to create a clock network with flexible clock domains by taking

advantage of clock routing in the serial distribution path. In this application, the clock

domains are primarily static with sub-sections that can be added or removed from a

domain, or switched between domains. This post-fabrication reconfigurability in the clock

network facilitates the re-use of common components for multiple clock domains and

can also be used to prune areas from the clock network to save power, Figure 4.2. The

 - 81 -

Chapter 4

Figure 4.3: A potential fully programmable clocking architecture.

design of the network switches are discussed in Section 7.3. To use a shared resource,

the domain must be synchronized with its clock thread extending through the shared

device. The shared resource can be attached and detached without altering the phase or

alignment of the two clock domains provided it is connected to the end of the affected

clock threads. By storing the configuration data required for each mode, the transfer of a

shared resource between clock domains can be made nearly instantaneously.

4.2.3. Globally-reconfigurable clock network

The approach can also be used to create a fully reconfigurable and

reprogrammable clock network. Figure 4.3 shows one such network with 40-taps. The

shaded squares represent switch points and the white squares represent each local

clock (tap). To re-route clocks during operation, it is necessary to synchronize and

calibrate each modified clock domain for the distribution to remain skew-tolerant.

 - 82 -

Skew-tolerant reconfigurable clock networks based on averaging

Predicted delay settings can be used to configure the clock distribution network,

resulting in little to no setup time for the distribution at the expense of greater clock

skew.

4.3. Versatility of a programmable multiple clock mesh network

Different fully programmable clock networks can be created by inter-connecting

various combinations of clock taps and clock switches. The number of taps between

switches, the number of switches present and the number of ports within each switch

can all be modified to tailor the clock network to the application. While Figure 4.3 shows

a 40-tap solution, Figure 4.4 shows three variations on a 15-tap solution. Figures 4.4A

and 4.4B both exclusively contain 8-port switches which allow up to 4 simultaneous

connections; only the orientation of the ports is different. Figure 4.4C contains a mix of

both 4-port switches which allow up to 2 simultaneous connections and 8-port switches.

The networks are shown with only one tap on a single vertical edge between each

Figure 4.4: 3 potential 15-tap clock distributions.

 - 83 -

Chapter 4

switch, but the taps can be placed anywhere. The more ports present in a clock switch

and the more clock switches present in the system, the greater the number of clock

configurations are possible, but the larger the area and power penalty of the network.

The number of unique configurations allowed through a p port crossbar switch assuming

that NULL connections (unconnected ports) are not allowed is:

)12()(
1

−∏=
=
iswitchionsconfigurat

p

i
 (4.1).

The number of switch configurations possible in an m x n switch (rows x columns)

network using a crossbar switches containing p ports is:

nmp

i
inetworkionsconfigurat

⋅

=






 −∏=)12()(

1
 (4.2).

Should the network be made up of an arbitrary assortment of switches with each switch i

containing pi ports, the number of possible switch configurations is:







 −∏=

=

⋅

=
∏)12()(

11

jnetworkionsconfigurat
ip

j

nm

i

 (4.3).

This calculation assumes that every port is connected, but NULL connections are

possible and will always occur in pairs. These NULL connections do not need to be dealt

with independently when considering the total number of switch configurations since

every unconnected state can be considered a special subset of a connected case

already in the calculation. The number of unique configurations possible for a given

switch counting NULL connections as unique is:


= =









−∏⋅








=

p

i

p

j
j

i

p
switchionsconfigurat

1 1
)12()((4.4).

 - 84 -

Skew-tolerant reconfigurable clock networks based on averaging

While the number of possible network configurations for the switches is a

relevant concern when designing a clock network using our methodology, a more

important consideration is the number of clock domain configurations which can be

generated by such structures. While clock taps can be added to any edge in the switch

mesh, taps added to the edges around the mesh perimeter cannot easily be re-routed,

so we limit the position of taps to the edges located between clock switches. For our

mesh networks like the one shown in Figure 4.4 with taps located along a vertical edges,

assuming c clock domains, the total number of configurations is:

[]cmntapsionsconfigurat)1()(−⋅= (4.5).

Similarly, if we assume that there is a single tap horizontally between each switch, the

total number of configurations is:

[]cmntapsionsconfigurat ⋅−=)1()((4.6).

If a single tap is added between every vertical and horizontal switch, the number of

configurations will be:

[cmnmntapsionsconfigurat −−= 2)(] (4.7).

Multiple taps can be added in series between a pair of switches. This approach is often

desirable for grouping taps that will always be connected to the same domain. This

group of taps represents a single local clock region and is conceptually no different than

the single tap case and does not change the analysis. Clock taps can be added to any

and all edges leaving a clock switch. However, fully populating a clock switch with taps

will limit the edges available for routing, affecting the routability within the mesh network.

 - 85 -

Chapter 4

Assuming that all the configurations are realizable, the number of clock configurations

that can be achieved using clock switches with p ports capable of p/2 connections and

with each perimeter switch connected to the clock generation ring by d ports is:

c
mndpmn

tapsionsconfigurat 



 −+⋅−⋅⋅=

2
)422()((4.8).

For an arbitrary mesh network, given pi ports per switch with each switch connected to

the clock generation ring by di ports, the number of configurations is:

c
nm

i
ii dpnetworkionsconfigurat 














 −= 
⋅

=12
1)((4.9).

4.4. Controller requirements

As with the single clock network, a multiple clock distribution network requires

three distinct phases to work properly: synchronization, calibration and operation. The

complexity of synchronizing each thread is linearly proportional to the number of taps in

each thread. Similarly, the complexity of adding another clock thread is proportional to the

total number of taps, independent of the number of threads. As such, the synchronization

delay analysis performed in the previous chapters can apply to each individual clock

thread present in the multiple clock system.

There is a network mapping problem that must be solved to route all of the clock

threads through the crossbar matrix. The crossbar matrix is an undirected graph with

 - 86 -

Skew-tolerant reconfigurable clock networks based on averaging

Figure 4.5: The mesh mapping problem.

multiple edges connecting each vertex. The number of edges can vary depending on the

network configuration. This graph, otherwise known as a multigraph, is allowed to have

loops, or feedback paths that can connect a vertex to itself. Since each clock tap is

located along a specific graph edge, connecting all the taps in a clock domain together

involves covering all of their associated edges and connecting these edges together.

Figure 4.5A shows a 2-tap graph with 8 vertexes and 14 edges. Figure 4.5B shows the

covering of the two tap edges, Figure 4.5C connects the tap edges together and Figure

4.5D shows the connection of the edges to the entry points. This problem cannot be

classified as a typical problem in graph theory as the paths that are created are complex

since vertices may not be uniquely traversed within the path, since the edges that must

 - 87 -

Chapter 4

be covered are not necessarily adjacent and since we do not need to determine an

optimal solution. All clock domains must be solved simultaneously while competing

together for the finite edges available in the switch mesh.

To solve the problem, our approach is to cover all edges corresponding to a tap

and to start assigning paths at an arbitrary (random) location for each thread. This initial

location may end up becoming a starting node, an ending node or an intermediate node

since the clock thread will grow out from this initial edge. Then, we use a greedy heuristic

algorithm with primary and secondary cost functions to help determine the next step. The

primary cost function looks at the actual number of switches that must be crossed from

the starting and terminating edge to reach every uncovered edge in the domain. At the

beginning, the first arbitrary node chosen represents both the starting edge and the

terminating edge. This is done for every domain simultaneously. For a tie, the path with

the most remaining edges is chosen first as the secondary cost function. Once a path is

established, the primary cost function is recalculated for the new state. If all connections

are not possible at this point, the algorithm will backtrack one step and try with the next

least costly choice.

To help alleviate the routing problem, it is possible to add express clock paths into

the mesh network. This will create a hierarchical mesh network with multiple possible

hops that could help transport clocks longer distances in the mesh network without

causing excessive congestion and avoid potentially crowded subregions occupied by

multiple clock threads. The number of and the spacing between the express paths as well

 - 88 -

Skew-tolerant reconfigurable clock networks based on averaging

Figure 4.6: Mesh architecture incorporating express paths.

as the distance propagated between each hop on the path is flexible. These paths come

at the expense of additional wire cost. Figure 4.6 shows four sections of one such

possible network. The unshaded boxes represent the clock taps, and the lightly shaded

boxes represent each local clock subregion. The larger of the clock switches represent

the ones used for the express paths. Horizontally, there are 2-sets of express paths

between each section: one spaced by 3 columns with a 6 column hop between switches

and one spaced by 6 columns with a 12 column hop between switches, each creating two

horizontal concurrent paths. Vertically, there is 1 extra express path per section. In total,

 - 89 -

Chapter 4

each section has 8 horizontal routing paths and 5 vertical routing paths in addition to the

6 vertical distribution paths.

4.5. Single clock fixed methodology

Let us examine how to implement a clock distribution using our averaging

technique. We will first examine a single clock system and then a reconfigurable one.

We first need to establish how many clock taps will be required by the system. Our

averaging system assumes a two tiered approach to distribution, a global one using our

technique, and a local one using a mesh (with shunts), tree or fishbone. A fishbone

approach is the simplest to implement, but also injects the largest amount of skew

between local clocks. The clock mesh benefits from near zero skew, but will also

consume the most power [46]. A local clock tree is a compromise between the two. So

assuming that there are F total registers that must be connected to the clock domain

with each regional clock network consisting of G registers, then we will need F/G taps to

distribute clocks to the entire system.

To determine an optimal number for G, we need to establish to total variance

through the system. This will be the sum of the variances between the global (serial) and

local portions of the clock distribution assuming the use of centroid components where

possible:

 - 90 -

Skew-tolerant reconfigurable clock networks based on averaging

21log

0 0

2
1

2
4

2

221log

0 0

2
1

24
2

222

4

4

2)(log

2
log

)()()(

 

 
−

= =

+

−

= =

+

−









++⋅=

⋅
+








+

⋅
=

Δ+Δ=Δ

G

j

j

i

i

p
p

p
G

j

j

i

i

p
p

centroidlineartreefull

xS
mG

F
G

WL

A

mGWL

FA
xS

WL

GA

PPP σσσ

 (4.10)

If another exponential buffer multiplier other than 4 is used, the base of the log

expression will need to be changed as will the squared distance relation. Recall that AP2

and SP2 are constants for a given technology, and F is the total number of clock loads

and x is the largest distance between two clock loads located in the same region, which

are both fixed for a given design. For a fixed W and L, there will be a maximum number

of tap input loads m that can be driven. It is always beneficial to use this maximum

number to minimize variance. Once a target variance for the clock distribution is chosen,

G can be chosen. The optimal number will depend on the discrete and proximity

variance coefficients since the serial architecture is more tolerant to proximity variance

and the tree architecture contains less buffers thereby exhibiting less discrete variance.

Whenever possible, smaller local trees should be chosen since trees are susceptible to

temperature gradients and hotspots. This approach will also minimize the maximum

distance between clock taps.

If extremely low levels of variance are required, it is possible to shift to local

mesh architectures which contain negligible amounts of variance:

mGWL

FA
PPP p

centroidlinearmeshfull
⋅

=Δ+Δ=Δ −

2
222)()()(σσσ (4.11)

 - 91 -

Chapter 4

Finally, if large amounts of skew can be tolerated, it is possible to switch to a fishbone

architecture where the fishbone skew, or the longest interconnect delay between clock

loads, can be added to any skew generated through the serial portion of the clock

network.

4.6. Reconfigurable methodology

To design a reference-based clock distribution for a reconfigurable clock

distribution like the ones found in FPGAs, we again need to begin with the total number

of clock loads, F, and the desired number of clock regions, R. Then we can calculate the

required granularity of the network, G. Let G represent the number of clock loads per

region and can be as little as one load, or alternatively, as many as required.

RFG /= (4.12)

We assume an n x m clock switch mesh for reconfiguration with each switch containing

P ports for P/2 clock signals. We also assume that clock taps are distributed

symmetrically on the mesh network with P/2 ports connected to clock taps except for the

ports along the perimeter of the switch mesh. The number of clock regions, R, for such a

configuration is:

4
)(

4
PmnnmP

R
+−= (4.13)

This allows us to figure out suitable values for n and m to create an appropriate mesh

network for this number of independent clock regions. To determine how many taps are

 - 92 -

Skew-tolerant reconfigurable clock networks based on averaging

required for a given clock region, a regional skew bound can be established and a

similar methodology to that used in Section 4.5 can be applied to determine an

appropriate number of taps per region and clock loads per tap.

Let us apply this methodology to a recent Altera FPGA. An FPGA was chosen for

the comparison due to the presence of reconfigurable clock domains and readily

available data. We take for example, the Stratix IV EP4SE680 containing roughly 680k

logic elements (LE) and assume a single clock load per LE. The device literature [52]

states that the device is capable of 104 distinct clock domains. Assuming a square clock

switch mesh (n=m) and 8 clock ports per switch (P=8). Solving for n in Equation 4.13

yields a mesh network size of 8.28, or 9 x 9 (81 total) switches with 120 regions. From

Equation 4.12, the original clock distribution contains just over 6500 clock loads per

region. We could either use this number of clock loads per region, leaving 16 regions

unused in our switch mesh, or redistribute the clock loads evenly over the 120 regions

we have. Choosing the latter results in just under 5600 clock loads per tap. Since the

technology variance constants are proprietary information for the given FPGA, we will

arbitrary assume 3 levels of clock buffering and 4 taps between buffers in a dual

reference line serial network. This leaves us with 64 clocks per tap, 22 taps per region

and 3 clock buffers (F/mG roundest to the lowest integer) per region of the local clock

network. The regional skew variance for this configuration would be:

2
2

222 1706)()()(p
p

centroidlineartreefull S
WL

A
PPP ⋅+⋅=Δ+Δ=Δ −σσσ (4.14)

 - 93 -

Chapter 4

This type of structure has many beneficial aspects for the construction of an FPGA or an

ASIC, including post-silicon correction of clock skews which could otherwise cause the

device to fail testing and it eases difficulties in layout by eliminating some difficult path

matching constraints and allowing a standard cell based approach to clock distribution.

Tests have shown that upto 88% of devices that fail could be salvaged using small

changes to the circuit’s critical paths [100]. Unlike H-tree distribution networks, our

method combines well with a mesh network based interconnect approach used in

FPGAs. [51] has shown that increasing the number of global regions in an FPGA can

result in significant power savings for the device overall. Since our technique makes

every region a global one, it could exploit this trend.

4.7. Simulation results

Figure 4.7 shows a typical application of our reconfigurable multiple clock

distribution. The design is that of a 3-clock domain 15-tap distribution with each region

numbered in column-wise fashion. Taps 1, 2, 3, 5, 6 and 10 are connected to clock

domain A with a frequency of 1.11 GHz. Taps 11, 12, 14 and 15 are connected to clock

domain B with a frequency of 1.33 GHz. Taps 4, 7, 8, 9 and 13 are connected to clock

domain C with a frequency of 1.66 GHz. Figure 4.8A shows the synchronized clocks

produced by our clock network using an extracted-level simulation for each of the

domains. Figure 4.8A shows a close up of the resulting rising clock edges. The total

skew from the first-to-last edge is 5.5 ps for domain A, 4.7 ps for domain B and 3.9 ps for

 - 94 -

Skew-tolerant reconfigurable clock networks based on averaging

Figure 4.7: Potential fully programmable clocking architectures.

domain C. Comparable solutions offer similar or worse levels of skew reduction for a

single domain as discussed in Chapter 3, without the ability to reconfigure clock post-

silicon. This method reduces skew to under 4%, versus the typical 10% metric which is

usually desired. The total power consumed is 62.82 mW, or 4.188 mW per tap. Roughly

half of the power is consumed by the routing switches of the reconfiguration circuitry due

to the capacitive load that they each must drive. According to [76], PLL-based clock

networks typically consume hundreds of milliwatts due to their analog components. This

fact will be true regardless of technology, so it is beneficial to use an all-digital approach

for skew compensation such as ours.

The synchronization process will account for loading effects and inter-die process

and fixed temperature variation to create negligible skew within a clock domain. Using

 - 95 -

Chapter 4

Figure 4.8: Simulation of a 3-clock domain reconfigurable clock network

a) Synchronized, calibrated 3-clock domain reference circuit simulation
b) Clock edges for a 3-clock domain reference circuit

(left to right: Domain A, Domain B and Domain C).

a)

b)

the circuit in Figure 4.7, we study here the durability of the synchronization to thermal

and voltage variation in these conditions over time. We define the absolute skew δ to be

the range in picoseconds of the first-to-last rising edges of all the clocks in a domain

given a temperature or voltage perturbation. The standard deviation σ of the delay

between all the rising edges for a given clock event, or sample, is also found. Table 4.1

shows the complete synchronized network’s response to changes in temperature. The

system can be synchronized at any initial temperature since we are studying the effect of

temperature changes, so the 27oC starting point is arbitrary. At 37oC, the worst-case

skew is roughly 10% of the clock period, and 20% at 47oC. It is possible to re-

 - 96 -

Skew-tolerant reconfigurable clock networks based on averaging

synchronize the clock distribution dynamically to account for the variation to obtain near

zero clock skews once again. While this test shows that the circuitry can tolerate small

changes to operating temperature, it is important to synchronize it at or near the

expected operating conditions.

Table 4.2 shows the system under the influence of a fixed voltage variance of

plus and minus 5% of the nominal supply voltage at each of the taps. Here, the worst-

case skew of 4.2% occurs at a 5% undervoltage. There is 2.4% worst-case skew at a

5% overvoltage. This is quite acceptable for any clock distribution. Table 4.3 shows the

worst-case scenario where the entire distribution experiences a 5% fluctuation in the

supply voltage. In this case, the clock fails to propagate to the taps in 3 out of 5 cases for

the undervoltage test, and 2 out of 5 cases for the overvoltage test for clock domain C.

The worst-case skew for the remaining domains is roughly 13%, occurring at the slowest

clock frequency for the 1.71V case. This shows that the circuitry can operate correctly

under these conditions, but the range of frequency that can be used is decreased. While

a fixed voltage fluctuation is unlikely to occur since such a non-transient variance such

as this will be accounted for dynamically at synchronization time. The CDN can also be

re-synchronized at any time to account for any of these fixed variations to obtain near

zero skew.

Since our clock distribution operates in an open loop after synchronization, the

average clock period for a number of consecutive samples is ideal, as long as the clock

source generates accurate clock periods. However, voltage fluctuations due to noise can

 - 97 -

Chapter 4

advance or delay an individual clock edge resulting in the injection of jitter. Noise

simulations usually are time-intensive due to the short time steps required to replicate

high frequency noise components. However, work in [80] has shown that low frequency

noise has the dominant role in clock characteristics. We use a statistical approach to

inject the supply with noise in a manner similar to [101] and [102]. Using the Verilog –

AMS tool available in Cadence to generate a 1.8V source with standard deviation of 0.3

at a 100 GHz sampling frequency, we obtain 99.73% of supply voltage samples within

+/- 5% of nominal. Since the voltage fluctuates over time, a number of consecutive

samples must be observed and analyzed. Each sample represents a subsequent rising

clock edge. In addition, the simulation is run twice to ensure that the results are well

correlated.

The result of the test is shown in Table 4.4. The jitter represents changes in the

clock period. The worst-case jitter ϕ here is the maximum amount that a clock period

differs from ideal for all samples in the complete series. The standard deviation σ of the

jitter is taken for every jitter measurement in the series. The ideal period is calculated by

calculating the average of the time difference between a clock signal’s rising edges. The

maximum skew we found for our noisy supply test is roughly 2% of the clock period in

the worst-case. The jitter of under 4 ps is predictably low due to the open loop nature of

the clock distribution. This level of jitter is negligible when compared to the jitter injected

by the clock source.

 - 98 -

Skew-tolerant reconfigurable clock networks based on averaging

27C 37C 47C Temp. (ps)
δ σ δ σ δ σ

CLKA 0.0054 0.0023 51.3100 19.4379 108.859 41.0760

CLKB 0.0047 0.0025 34.6850 15.7428 68.8730 30.7528

CLKC 0.0040 0.0017 63.0500 22.8735 124.288 44.8673

Table 4.1: Temperature effect on synchronized network.

1.8V 1.71V 1.89V Voltage I (ps)
δ σ δ σ δ σ

CLKA 0.0054 0.0023 11.3451 4.7666 16.6580 5.8075

CLKB 0.0047 0.0025 21.9480 10.3804 13.4140 5.7539

CLKC 0.0040 0.0017 25.4460 9.1542 14.8680 5.9829

Table 4.2: Effect of voltage variance on taps.

1.8V 1.71V 1.89V Voltage II (ps)
δ σ δ σ δ σ

CLKA 0.0054 0.0023 118.210 44.2412 95.8270 36.8799

CLKB 0.0047 0.0025 51.3270 23.5288 19.9130 9.9043

CLKC 0.0040 0.0017 8.2915 N/A 31.0580 N/A

Table 4.3: Effect of voltage variance on synchronized network.

Trial 1 Trial 2

Skew Jitter Skew Jitter Voltage III (ps)

δ σ δ σ δ σ δ σ

CLKA 8.382 1.005 3.028 0.642 8.508 1.001 2.330 0.529

CLKB 6.869 1.448 1.306 0.402 6.945 1.495 3.163 0.797

CLKC 11.374 2.623 3.069 0.916 9.933 2.417 3.959 0.858

Table 4.4: Effect of voltage supply noise on jitter.

 - 99 -

Chapter 4

4.8. Conclusion

We have designed a novel skew-tolerant multi-point clock distribution that is

suitable for irregularly-shaped clock domains. The programmable repeater stages allow

us to redirect clocks post-silicon at certain pre-defined switchpoints, making the

distribution reconfigurable. The use of a single conductor to provide both forward and

reverse reference signals is unique. In addition, our clock network will suppress intra-die

process variation by being tolerant to proximity-based device mismatch and variance

caused by cross-die temperature fluctuations and hot-spots.

Hot-spots and thermal management are becoming increasingly challenging

problems for designers that can also be a significant source of skew in traditional clock

networks. Clock networks can be modified to correct for some manufacturing defects,

including bypassing certain clock lines and clock buffers. The operating clock frequency

can be changed to fit an IC’s many possible target applications. This method is scalable

and simplifies the way a design can be floorplanned onto an integrated circuit and is

useful for both static and programmable designs. Our tests show that the reference-

based programmable clock distribution is resilient enough to be used in an ASIC, SoC or

FPGA environment, exhibiting good operating characteristics, once synchronized,

everywhere in the design envelope.

 - 100 -

A built in system for online clock skew debug and correction

 - 101 -

Chapter 5:

A built-in system for online clock skew

debug and correction

5.1. Introduction

We present a low-cost on-line system for clock skew management in integrated

circuits. Our Built-In Clock Skew System (BICSS) uses a centralized approach to

identify, quantify and correct skew. It is a low-cost design that can be applied using a

simple and cheap microprocessor-based tester. The circuitry employs a two-step

method to first assess the time-of-flight between the central debug circuitry and each

region, or tap under test, to account for measurement error. The system eliminates the

difference in the measurement path delay between the clock regions under test and the

Chapter 5

central measurement block using an averaging technique. The system then uses a high

resolution digitally-controlled delay line in each clock region to perform the required skew

compensation. BICSS can be used to detect skew above a user-adjustable margin using

a variable tolerance phase detector.

The technique is unique in its ability to assess the time-of-flight between the

central debug circuitry and each tap to account for the path length measurement error

common in existing techniques. The result is an all-in-one solution that provides silicon

debug and repair capability, providing added visibility to clock skew between differenct

regions of the clock distribution network, post-silicon. The system has been simulated

using an extracted-level design in TSMC's 180 nm standard process technology.

5.2. Background

Clock skew in integrated circuits is a significant problem facing designers and IC

architects. The clock periods have shrunk to the point where they are now on the same

order as intra-die propagation delays [103]. While device delays decrease with newer

process generations, the interconnect delay is increasing due to fringe capacitance and

electromigration effects on the interconnect [14]. Since clock signals on an IC are

equally susceptible to interconnect variances as data or control signals. As a result, a

growing portion of clock skew uncertainty is interconnect related and must be accounted

for in a design. This often requires newer designs to dedicate a higher proportion of a

clock’s period to clock uncertainty hurting overall performance.

 - 102 -

A built in system for online clock skew debug and correction

There exist a number of both passive and active clock distribution schemes

presented to help alleviate the problem [66],[79],[104],[105],[106]. Some clock skew

reduction methods place many PLLs on an IC [97],[107]. This circuit duplication creates

wasted silicon area and increased power consumption. Some analog solutions [79],[105]

continually adjust to changes in clock delays, but generate jitter and are slow to lock

because of the use of feedback in their approach. They also tend to hide exactly how

much clock skew is present in a system. Digital solutions [66],[106] are quick to

synchronize, but may be susceptible to environmental or operational conditions, such as

temperature and power noise. This sensitivity requires digital solutions to be monitored

to determine when the system requires resynchronization, although they also tend to

handle a variety of clock frequencies, such as those used in a dynamic frequency

scaling applicable, much better.

The verification of clock skew reduction techniques is a difficult problem due to

the precision required and the non-negligible interconnect delays encountered between

measurement points. There is a need for two distinct types of post-silicon verification of

clock distribution networks: functional verification and run-time verification [108]. Off-chip

testing is an effective way to perform functional verification, but too often these tests are

not performed at speed, yielding a test procedure that may ignore skew-induced timing

violations. In a microelectronics world where variances are measured in picoseconds,

routing clock signals off-chip through pins or test pads can induce the skew that needs to

be measured. The cost of the equipment required to precisely measure clock skew may

also be prohibitive to their use. On-chip functional testing approaches, while cheaper,

 - 103 -

Chapter 5

still suffer from path length variances when not placed directly in between the clock

points being measured and accounted for in any skew measurements. Some solutions

ignore the transport delay from the clock tap or leaves to the location of the skew

detection component which can lead to intrinsic error in the approach [65],[97] since the

distances can vary widely across an IC. [109] creates an effective method of measuring

clock jitter at a latch with picosecond precision by clocking the latch with a reference

clock and feeding the global clock into the data input. However, their methodology will

experience error due to skew in the reference clock when used to measure skew in the

global clock.

We present here a system designed to be a built-in approach incorporating

silicon debug circuitry into integrated circuits to allow users to debug timing faults,

determine their source and potentially correct them as well. Our system can be used as

a low-cost functional verification solution that can be applied using a simple and cheap

microprocessor-based tester. This approach can limit the test time required on more

expensive alternatives to correct skew due to process variation in a CDN at the factory.

While there has been an increasing amount of design and research effort placed into

designing low skew clock distribution networks and fault testing clock distribution

networks, there has been relatively little emphasis placed on run-time verification of

skew in clock distribution networks to ensure the correct behaviour of designs over real

world operating conditions. Changes in temperature and power supply output can create

significant changes to device delay in ICs and this can adversely affect the CDN during

in-system operation. Our design can be used for run-time verification to detect skew and

 - 104 -

A built in system for online clock skew debug and correction

correct for environmental changes. No other method can compensate for line length

variances and measure, monitor and, if necessary, compensate for clock skew using a

single centralized approach.

Our approach uses a dedicated central block to first compensate for mismatches

in line length between clock measurement points and then to minimize any detected

clock skew. Other solutions place many phase detectors or PLLs on an IC equidistant

from their measuring points [107],[110]. This circuit duplication represents wasted silicon

area and increased run-time power consumption unless the additional hardware can be

disabled. A centralized approach such as ours has the advantage of component reuse

[111] when used with multiple test pairs of clocks. Our system differs from others such

as [112] by being entirely digital. By precisely accounting for differences in global and

local clock distribution, our solution is highly effective in dealing with architectures such

as those shown in Figure 5.1. The components in these designs may all have clock

distributions with different latencies, highlighted in Figure 5.2 for clock regions A and B.

These latencies can result in significant clock skew between the global root and the

clock leaves of the different modules, even if the clock inputs to each module have been

perfectly synchronized. As such, it is well suited to detect and correct for clock skew in

modular designs such as SoCs [113]. BICSS also exhibits many of the advantages of

other post-silicon tunability approaches [114],[115] to overcome process variation in

clock distribution networks.

 - 105 -

Chapter 5

Figure 5.1: Modular design of ICs with regions A-E in a given clock domain.

Figure 5.2: Close up of two regions A and B in a clock domain.

 - 106 -

A built in system for online clock skew debug and correction

Figure 5.3: The Built-in Clock Skew System (BICSS).

5.3. System architecture

Our Built-In Clock Skew System (BICSS) consists of a central skew management

core and an array of distributed evaluation nodes consisting of a delay line and 2

multiplexers placed at each tap under test (TUT). The system operates in 2 stages: a

normalization stage and a measurement stage. Normalization determines the one way

propagation delay between a TUT and the central debug hardware. Clocks are

compared pair-wise during measurement, with each clock signal delayed by the one way

transport delay of the opposing clock. An example 2-TUT design is shown in Figure 5.3.

The additional circuitry required at each clock region is only 2 multiplexers and a 1 delay

line. The input multiplexer (SRC) selects either the source clock or the test clock used to

 - 107 -

Chapter 5

normalize the measurement path length. The output multiplexer (FB) chooses between

the test clock during normalization and the leaf clock for clock skew detection and

measurement Together, the SRC (source) and FB (feedback) multiplexers are used to

shift between normalization and evaluation modes. The phase detector sees the

outbound clock and the return clock for normalization and the operational clocks from

the two TUTs for measurement. Delay lines are used to compensate for path length

variances and measured skew. Figure 5.4 shows the centralized circuitry required to first

perform the normalization and then the skew detection and measurement. A phase

detector with an adjustable locked region permits users to configure the amount of skew

that will be tolerated based on the application.

The central circuitry consists of 4 delay lines, 2 multiplexers (mux), a phase

detector (PD) and a synchronization controller. The delay lines should be located close

together to limit process variance and should be laid out to provide good matching. The

Figure 5.4: Central BICSS circuitry.

 - 108 -

A built in system for online clock skew debug and correction

controller design can be adjusted to accommodate different applications. It can be

implemented as a finite state machine, in software or hardware without restriction, either

off-chip or on. Since all the multiplexer delays are accounted for during the calibration,

there are many configurations possible when using BICSS to detect and measure skew

for many regional clock pairs. For simplicity, a fixed delay equal to the minimum latency

through the delay line path is added to the two undelayed multiplexer inputs. If each

delay line has a maximum delay (δ), the maximum round trip from the centralized BICSS

circuitry to any clock region is 2.δ. In this case, the maximum skew that can be handled

by the system is +/- δ, independent of the clock frequency.

The skew detection circuitry uses the same averaging principle used to create

skew-tolerant clock networks in previous sections. The central BICSS circuitry sends a

signal (Out Clock) to the clock region and uses two delay lines to align this clock source

with the return clock (In Clock) using the phase detector as a guide. Removing one of

the delay lines from the signal path leaves the average clock since both the delay lines

use identical delay settings. The tap to average clock delay includes both the transport

delay to the local clock region and half of the circuit delay in the round-trip path. Since

every return path contains exactly one delay line and two multiplexers, they should all

ideally have the same circuit delay.

Process variation could result in skew from mismatches in the clock routing

circuitry and from duty cycle variations in the delay line, but the maximum skew injected

during calibration is halved due to the averaging technique used. The forward and return

 - 109 -

Chapter 5

paths should be co-located to match propagation delays in both directions. For clock

skew detection, the A clock input (CLKa) is delayed by the path delay to region B (DELb)

and the B clock input (CLKb) is delayed by the path delay to region A (DELa). The phase

detector then determines the relation between the two clock inputs, CLKa+DELb and

CLKb+DELa: either up, down or locked. The development of a phase detector with an

adjustable width locked region adds functionality to the system since it allows the

amount of skew that can be tolerated to be configured depending on the specific

application. Should the skew between CLKa and CLKb ever exceed the programmed

tolerance during run-time, this fault can be flagged and compensated for – a feature

particularly useful for digital clock skew compensation systems. Figure 5.5A and 5.5B

show the normalization stages and Figure 5.5C shows the datapath used for

synchronization.

BICSS can also be used to infer the amount of skew that is present between

CLKa and CLKb with delay lines 1 and 3 used to retain the normalization delay settings,

clock delay lines 2 and 4 are available for determining the actual skew. Delay line 2 is

incremented when clock A lags clock B, and delay line 4 is incremented when the

opposite is true. Once aligned, the delay settings can then be externally read to

determine the inferred (measured) skew. The precision of each synchronization is one

half the maximum of either the maximum delay increment or the locked range setting of

the phase detector. To achieve more accurate skew measurements in the presence of

clock jitter, a clock skew measurement can be performed numerous times, taking the

average to represent a more precise skew, similar to taking the center of an eye-diagram

 - 110 -

A built in system for online clock skew debug and correction

 - 111 -

(A)

(B)

(C)

Figure 5.5: Datapath used for normalization stages (A and B) and synchronization (C).

Chapter 5

with an off-chip oscilloscope. Copying the delay line settings of the central unit to the

local clock regions will effectively minimize the clock skew between the two points.

Resetting delay lines 2 and 4 will allow BICSS to enter skew detection mode for the

skew calibrated system. The same principle can be applied to comparing any pair of

clocks (I, J) on the device using CLKI+DELJ and CLKJ+DELI.

BICSS is designed as a regional solution to characterize a representative subset

of a clock domain or a few skew critical clock leaves. A typical application could involve

placing an evaluation node at specific levels of a clock tree, such as the design in Figure

5.3. The system can be used to correct for operating temperature and process drift in

each region. Routing two co-located signals between every evaluation node and the

central hardware is not a prohibitive penalty given this approach. There is no constraint

on how the signal pairs are routed to different taps since path length variances are

compensated. BICSS can also provide a measure for the quality of the device by

determining how far the measurement points are out of alignment.

5.4. Operating characteristics

The circuits and system discussed here have been designed and laid out in

TSMC's standard 180 nm process using the Cadence Virtuoso design environment and

simulated with SpectreS using the Analog Artist tool. The layout of the design is shown

in Figure 5.6. The distributed nodes require 1200 μm2 and the central skew detection

block requires 8100 μm2. The extracted simulations show that the coarse grain

 - 112 -

A built in system for online clock skew debug and correction

 - 113 -

(a) (b)

Figure 5.6: The layout of a 2-clock region BICSS implementation.

Chapter 5

component is adjustable in 93.5 ps increments. The fine grain delay line is capable of

relatively linear delays up to a maximum of 99.3 ps. 196 delay settings are retained

between 0 and 99.3 ps for an average delay increment of 0.50 ps and a maximum

increment between adjacent settings of 2.93 ps. The total delay of the delay line, δ, fixes

the maximum round-trip delay from the central BICSS circuitry to the furthest clock

region at 2*δ = 385.6 ps for this implementation. The maximum delay that can be

compensated for between clock regions is +/- 192.8 ps. The coarse grain component of

the delay line can be increased to allow for larger skews and longer round trip delays.

The fixed phase detector is tuned to allow a +/- 2 ps tolerance, a 4 ps locked

region. The variable phase detector can be set to have a 3, 6, 8, 10, 28, 29, 35, 37, 51,

52, 55, 59, 67, 106 or 253 ps locked region. The extracted simulations show that the

system is capable of operating up to 2.30 GHz, however the widest locked regions

cannot be used with the highest frequencies because of slew rate limitations. The

accuracy of each synchronization is half the maximum between the delay line resolution

(3 ps) and the locked width of the phase detector (0 ps for the variable tolerance

detector, 4 ps for the fixed tolerance detector). Since three synchronizations are required

for clock skew measurement and compensation, the intrinsic overall precision of the

system is 4.5 ps for a system using the variable detector and 6 ps for one using the fixed

detector.

The power consumption is 11.9 mW for a fixed tolerance phase detector system

monitoring two taps at 2 GHz. This is comparable to other skew compensation solutions.

 - 114 -

A built in system for online clock skew debug and correction

Other centralized in-die clock skew measurement tools will have error many times

greater than ours since they do not compensate for transport delays. As such, it is

difficult to compare BICSS to other low cost solutions. There are other clock skew

measurement techniques such as the time interval analyzer (TIA) method or picosecond

imaging circuit analysis (PICA) that may have similar or better performance, but they

come with much higher cost and complexity. A full description of other clock skew

measurement techniques can be found in [116].

The operation of the system is shown in Figure 5.7 using 1 GHz clocks skewed

by 150 ps between two clock regions. The top waveform shows the initial skew between

the two clocks at their respective regions between 0-10 ns. Next, the system calibrates

the line lengths between the centralized BICSS circuitry and clock regions A and B. The

second waveform shows the inputs to the phase detector, and the third and fourth

waveforms show the down and up signals. Times 10-15 and 20-25 ns show the initial

state and times 15-20 and 25-30 ns show the aligned final result of the line

measurement process for clock regions A and B, respectively. Recall that

simultaneously asserted up and down signals indicates a locked state. Time 30-40 ns

represents the result of the measured clock skew after using delay lines 2 and 4 to

perform the alignment and measurement, representing the skew scope functionality of

the circuitry. Finally, the appropriate delay line settings are copied back to the local

regions resulting in synchronized local clocks, shown in the first waveform between 40-

50 ns. The circuitry can either be disabled during run-time, or remain in place to detect

excess phase drift. The system can be used for multiple taps by inserting additional

 - 115 -

Chapter 5

 - 116 -

Clock

A&B

PD

Input

A&B

DOWN

UP

 0 5 10 15 20 25 30 35 40 45 50ns

Figure 5.7: Waveforms showing operation of the BICSS circuitry.

 multiplexers at the central block. A plurality of taps can either all be verified with respect

to a single reference region, or pair-wise. In either case, it is easier to initially normalize

every tap and store the required delay settings in memory before measuring skew.

Incorporating our clock skew management system on a design does not require a

prohibitive amount of area or design effort. This approach also allows the central BICSS

A built in system for online clock skew debug and correction

block to poll any pair of taps for clock skew during operation without affecting the circuit's

behaviour. The simulations shown are restricted to one pair of clocks for simplicity,

without loss of generality.

To compare all the clocks taps (i) in a given clock domain for skew, the quickest

approach would involve at most log2N comparisons where N is the smallest power of 2

greater than i. CLK1 is compared to CLK2, CLK3 is compared to CLK4 and so on until all

or all but one of the local clocks have been compared exactly once. Next, CLK1 is

compared to CLK3, CLK5 is compared to CLK7, and so on until all of the odd numbered

clocks have been compared. At this point, every grouping of four clocks will be

synchronized. The process continues with every fourth clock (CLK1 compared to CLK5,

CLK9 compared to CLK13, etc), eighth clock, sixteenth clock and so on until there are no

clocks to verify. The concept is applicable for any number of clock regions (i) without

modification to the hardware besides the inclusion of additional multiplexers to route the

appropriate clock signals to the central BICSS circuitry. One appropriate approach for

handling multiple clock pairs during operation could involve storing the calibration

settings and polling each pair sequentially to periodically check whether clock skew is

still within allowable bounds.

5.5. Conclusion

Clock synchronization is important to ensure the fault-free high performance

operation on an integrated circuit. Process variation can affect both transistor delay and

 - 117 -

Chapter 5

interconnect behaviour. While study in [103] compares the expected delay of an

interconnect with an inverter chain delay, our method averages the round trip path of an

interconnect creating a more accurate measurement. Variances can create problems for

clock distributions, even some of those using active or passive skew reduction

techniques. Traditional techniques largely ignore time of flight differences between

evaluation points. Once normalized, skew can be quantified using high-resolution delay

lines and the measurement read off-chip. The system is scalable and can be used to

assess skew at a number of different locations on an IC. Using the skew measures

allows the quality of the clock distribution on the fabricated die to be assessed. Using

delay lines at each tap, our skew management system can minimize the skew between

points to repair otherwise defective dies. BICSS also aids in the debugging of timing

errors that may be discovered during testing due to the added visibility of on-chip clock

signals.

Our BICSS system is unique in its ability to detect, measure and compensate for

clock skew using a single all-in-one solution. The development of a variable tolerance

phase detector makes this the first system to allow online detection of a programmable

skew bound. The complete solution can provide additional visibility to silicon devices for

any existing clock distribution and the ability to repair otherwise defective devices.

BICSS enables designers to modify their design flow to include post-fabrication

adjustment to the clock distribution network to correct for timing faults or to minimize

clock skew for higher frequency operation. It simplifies the design of modular and

 - 118 -

A built in system for online clock skew debug and correction

 - 119 -

system-on-chip architectures since it can detect and compensate for clock skew through

unmatched local clock trees and repeater stages.

We use an averaging technique to compensate for different propagation delays

between measurement points, which allows a single BICSS unit to be used for multiple

test points providing an efficient system through component reuse. Our entirely digital

solution requires little additional circuitry and adds visibility to on-chip clocks aiding in the

on-line debug and repair of integrated circuits and is a low cost alternative to other,

traditionally costly skew measurement techniques.

Chapter 6

 - 120 -

 System level modeling

Chapter 6:

System-level modelling

6.1. Introduction

The individual components required to create the built-in clock skew system

(BICSS) and to distribute clocks both in single and multiple clock reconfigurable forms

have been designed and tested using extracted level simulation in TSMC's 180 nm

technology. The systems can be implemented using a standard cell approach, but are

shown using a specific set of components to demonstrate the effectiveness of the

system. These circuit blocks can be interchanged with any other available blocks

provided they possess similar signal characteristics: equal tpLH and tpHL, sufficient slew

 - 121 -

Chapter 6

rate, and closely matched delays for the reference line components. Interchanging

components will not have an effect on the correct operation of the complete system

since proper functionality is based upon component and interconnect matching not

specific circuit implementations. In this chapter, we generalize our approach to apply our

system to a wide array of clock network architectures for use with common components.

The design of the HDL models and controllers required to synchronize the clock

networks and the BICSS unit are outlined and their complexity found for a baseline set of

applications. The HDL models discussed in this chapter are generic enough to replicate

the behaviour of a wide set of digitally-controlled components. The models can modify

the propagation delay of devices and interconnect, they can operate with a variety of

delay lines with different delay maps and they can modify the sensitivity of the phase

detector to reflect different designs.

6.2. Implementation approach

Coordinating the synchronization and the reconfiguration of BICSS and our

averaging clock networks requires controllers to monitor the system, configure the

datapath and adjust the delay line settings to synchronize the clock signals. When

coupled with the system models and loaded with the performance data of the target

technology, it is possible to replicate the operation of a BICSS system and complete

clock networks to predict the synchronization delay and the expected delay settings. The

HDL code used to create the controller can be synthesized into any given technology

 - 122 -

 System level modeling

using a suitable library mapping. The controller can be made to handle a wide range of

target clock networks, but each degree of freedom in terms of number of taps, number of

clock domains and mesh network structures available will add to its complexity so it is

important to restrict the flexibility of the controller to the desired silicon implementation.

For modelling clock networks in HDL, our approach is to design a control module

for synchronizing an arbitrary tap in the network, making the design modular enough to

be applied to a dynamic program that can be applied to a number of different clock

network configurations. The number of clock domains, the number of taps per domain,

the size of the configuration memory, the location and type of clock switches and the

location of the control lines in memory should each be parameterized for and entered

into a dynamic program generator to create paired controller and clock network models.

The generated clock network model would be fixed in terms of the structure of the clock

mesh network and in the number and position of the clock taps in the switch mesh, as

would be the case in an integrated circuit implementation. Once the clock network

controller HDL code is created, the mesh network configuration used to create the

reconfigurable clock domains, the delay setting map of the delay line, the programmable

delays for the devices and interconnect, and the target clock period can be modified in

the code to synchronize any realizable configuration of the clock network model.

While the clock distribution and skew management systems are designed for an

integrated circuit, the controller can be implemented in hardware on the IC, or externally,

either in hardware or software. VHDL was chosen for the controllers because of its

 - 123 -

Chapter 6

flexibility: synthesizable VHDL code can be used externally in an FPGA or can be

synthesized into an integrated circuit using an appropriate library and translator. Also,

the code is generic enough to easily be translated into a language like C/C++ or

subsequently to an assembly language for microprocessor target technologies. The

controller programs were written for Altera devices using Quartus II to ensure that they

were synthesizable. The models were then created using ModelSim and paired with the

controllers for simulation. This is a convenient approach for this application since the

simulations assume zero delay between events and all the signal delays can be explicitly

coded into the program using VHDL's transport commands to replicate specific

conditions that would be found on-chip. Controller clock frequencies and clock network

frequencies can also be set arbitrarily to reflect different target technologies.

6.3. Configuration memory requirements

To create a single clock controller, the number of clock taps m is the first thing

that needs to be set. Each tap will require 2 bits to control the direction of the reference

clocks and 1 bit to control the polarity of the delay line's output clock. Assuming each

delay line requires n memory bits and that this memory can be shared between the pair

of delay lines located at the tap, the number of memory bits required per tap is:

)1()3(_ +⋅+= mnbitsmemory fixed (6.1)

 - 124 -

 System level modeling

with one location reserved as a dummy location for power-up. The idea is to minimize

the number of address and data lines, to minimize the number of writes required for

updating each delay setting and to minimize the number of wasted bits. The minimum

number of bits will be located where the number of data lines is equal to the number of

address lines, so we need to solve:

x
fixed xbitsmemory 2_ ⋅= (6.2)

for x. However, we also need to consider the constraint to minimize the number of

wasted memory bits and to minimize the number of memory writes required per delay

setting. To allow some control over this, the word size should be an input parameter to

the dynamic program generator. The number of words per delay setting modification is:

1
_
3 ++=
sizeword

n
words (6.3)

rounded up to the nearest integer. There is trade-off required between the number of

writes and the number of memory lines (address plus data lines) required. These

memory lines need to be routed to every tap in the system and the time required for

each synchronization depends on the number of memory locations per tap.

For a reconfigurable distribution, the memory requirements are divided into two

sections. The first is the delay settings required for each tap that is:

)1()4(_ +⋅+= mnbitsmemory ablereconfigur (6.4).

The additional bit is required to choose which incoming clock is the forward clock. The

second is the switch mesh configuration which depends on the size and type of switches

 - 125 -

Chapter 6

used in the mesh. Assuming b ports in a switch supporting b/2 clocks, there are two

possibilities for the number of memory bits required a mixed switch mesh with varying

switch sizes:

[])!1(2log_ 2
0

_ −⋅=
∞

=

iabitsmemory
i

iencodedmem (6.5)

iiabitsmemory
i

idecodedmem 2
0

_ log_ ⋅=
∞

=
 (6.6)

where ai represents the number of switches in the mesh of a given port size i and each

log is rounded to the next largest integer. It is assumed that the memory is local to each

tap/switch and that memory cannot be shared between different switch instances. The

figure in Equation 6.5 represents encoded switch data that needs additional hardware to

generate the required control line data. There are (b-1)! connections possible between

ports and the times two factor is included to represent the direction of the connection.

The figure in Equation 6.6 represents a figure that does not require decoding. Each port

can be connected to any other port (forward connected) or no ports (unconnected or

reverse connected).

For a BICSS block operating on two clock taps, there are four independently

controlled delay lines, three 2-input multiplexers and a phase detector. Since two of the

multiplexers share select signals and assuming that each of the delay lines possess n-bit

delay control and that the variable tolerance phase detector requires n'-bits for control,

the total number of memory bits required is:

2'4_ ++⋅= nnbitsmemory BICSS (6.7)

 - 126 -

 System level modeling

To compare an arbitrary number of regional clocks z, two additional z-input multiplexers

each requiring log2z select lines are needed.

6.4 Synchronization controllers

The only signals required by the controller are the 1-bit UP and 1-bit DOWN

status signals from the clock network or BICSS. The controller generates the appropriate

delay setting and updates the clock network or BICSS by writing to memory using

address lines - addr(a..0), data lines - data(d..0), and a write enable (WE). The biggest

obstacle in designing a controller for these devices is the periodic nature of the clocks

that need to be aligned. Around the synchronization point, one expects a shift from UP to

DOWN or vice versa to be an indication that the correct coarse or fine grain setting has

been found. This scenario can also occur when the signals are 180o out of phase. It is

also possible for the signals to enter into a delay range which cannot be synchronized

from due to redundancy in the delay range with respect to the clock period.

For example, if the clock period is 1000 units, and we have 8 coarse settings that

increment by 200 units, an initial delay of 200 and a target delay of 800, the first

command (using the minimum delay) will be a DOWN. The delay setting tried will be the

maximum delay 7 coarse increments away, so 1600 units. This will result in an UP since

it is closer to 2000 than 1000 units, returning the system to the previous setting, creating

an infinite loop that will not result in synchronization. Since the error is caused by

 - 127 -

Chapter 6

redundancy in the delay line, it is necessary to limit the range of the coarse delays to a

range between 1 and 1.5 clock periods.

The delay line characteristics can easily be altered since arbitrary (non-

sequential) coarse and fine delay orderings are allowed and the total number of settings

is available as a parameter to the controller. This allows delay data to be extracted from

a sample delay line on-chip and used to characterize the IC's delay line behaviour. The

actual delay is not necessary to build the controller since the delay settings are read out

of memory, only the delay setting order that results in increasing delays is required. This

will compensate for a certain degree of inter-die process variance. This approach also

makes the controller circuitry compatible for other digitally-controlled delay lines. The

approach assumes a 2-stage delay line with a coarse and fine grain control, but one of

the two control subroutines can be disabled if the delay line is fine (or coarse) only, with

no coarse (or fine) settings.

6.4.1 Single clock domain controller

Assuming a address lines and d data lines, a single clock domain system

requires 4+a+d bits to communicate between the controller and the clock network,

shown in Figure 6.1. To design a controller for a single clock domain with an arbitrary

number of taps, the controller begins with the first tap closest to the forward clock source

and sequentially synchronizes the taps until they are all synchronized. The generic

structure of a single clock controller is shown in Figure 6.2. The tap_select block shown

 - 128 -

 System level modeling

 - 129 -

Figure 6.2: Controller used for single clock domain model.

Figure 6.1: The single clock domain, n-tap controller and model.

Chapter 6

Figure 6.3: Controller component used to select and update taps in clock distributions.

in Figure 6.3 coordinates the activity of the controller. The first step is to configure the

clock thread to send both the forward and reverse clocks to the first tap to be

synchronized. The speed of the controller clock can be less than the frequency of the

thread clock since the UP and DOWN signals are sampled and held by the choice block

shown in Figure 6.4. The UP and DOWN signals only return to they neutral state once

the new delay setting is programmed into the clock network and the controller is ready

for the next test. The initial delay line settings are the minimum fine and minimum coarse

settings for both delay lines in the tap. First, the coarse setting is adjusted according to

the phase detector inputs (UP or DOWN) until an UP is found following a DOWN or a

DOWN is found after an UP. While the coarse setting is modified directly by the choice

 - 130 -

 System level modeling

Figure 6.4: Controller unit structure used to choose delay settings.

block, the fine grain delay is controlled as the integer index to an appropriate ROM

location. By decrementing or incrementing the fine grain address, you can decrement or

increment the delay. As soon as the correct coarse setting is found, the fine setting

changed to its longest delay setting. Since we are expecting the fine grain setting to be

slower than the initial setting, the controller waits for the first DOWN to be signalled

before looking for an UP. This has to do more with the nature of the phase detector

model than the physical circuitry due to the use of the mod function. Once the UP

condition is found, the tap is fully synchronized.

There is a two signal handshake between the tap_select and choice blocks to

coordinate the activity: one to indicate that a new test is ready, and another to indicate

 - 131 -

Chapter 6

that the test is complete and to load a new delay setting. Once the delay values for the

next test are loaded, the UP and DOWN signals are sampled and held once again. Once

the tap is completely synchronized, tap_select reconfigures the circuit to bypass the

second delay line in the current tap (halving the delay) and reconfigures the clock thread

to feed both forward and reverse reference clocks to the next tap. This process will

continue until all taps are synchronized.

6.4.2 Reconfigurable clock domain controller

The reconfigurable controller is constructed by expanding the design of the single

clock controller. The primary difference is that tap_select instances are synthesized for

each clock thread. The controller uses a DONE signal from each tap_select component

to begin the synchronization of the next clock thread. The functionality of these

tap_select instances could be accomplished using a single unit, but the approach makes

the system more modular and provides added visibility of the circuit for testing purposes.

The choice block can be reused for every clock thread since it written to work with any

tap, using input parameters to modifying tap-specific configurations. While the controller

is scalable, the more alternatives allowed (number of taps, number of clock domains and

number of clock taps per domain), the more resources are required for the controller. To

use system resources more efficiently, the controller should be designed for the

expected clock mesh structure using the maximum number of clock domains and the

maximum number of clock taps per domain as parameters. Similar to the single clock

 - 132 -

 System level modeling

network controller, there are 4+a+d bits required to communicate between the controller

and clock network, Figure 6.5. The structure of the controller is shown in Figure 6.6.

Figure 6.5: The multi-clock, n-tap clock distribution controller and model.

Figure 6.6: Controller used for the multi-clock, n-tap reconfigurable clock distribution.

 - 133 -

Chapter 6

6.4.3 Built-in clock skew system controller

The built-in clock skew system controller requires the same 4+a+d bits to

communicate between the components, Figure 6.7. There are only slight changes in the

overall architecture and the configuration data required, Figure 6.8. The overall approach

of the BICSS controller is different than the ones used for the clock networks. Where

previously, the delay lines are controlled as a pair, here they need to be controlled

individually, leading to longer memory write stages between tests. In addition, there

needs to be four distinct operating stages in the controller to complete the skew

compensation: the first two stages normalize the delay between the taps (A and B) and

the central circuitry, the third determines the amount of clock skew present and the

fourth is a write-back stage where this skew information is written back to the taps under

test to perform the skew compensation. This requires changes to the BICSS controller

coordination component tap_select, shown in Figure 6.9.

Figure 6.7: The built-in clock skew system model and controller.

 - 134 -

 System level modeling

Figure 6.8: The controller used for the Built-in clock skew system.

During the two normalization stages, the delay generator choice operates like the

choice component describes previously. However, to perform clock alignment in the

fourth stage, there is no averaging involved, just a synchronization to align the two

normalized tap clock signals at the BICSS block. Only one delay line is modified at any

given time and depending on which signal leads and which signal lags, the UP and

DOWN inputs can both equate to an increase or a decrease in the delay setting. The

difference is an UP increases the delay setting when delay line 2 is being modified and a

DOWN increases the delay setting when delay line 4 is being modified. This change

requires the addition of an alternate choice block, called choice_sync, which is active for

the clock skew compensation phase of the controller operation. A multiplexer is used to

choose between the signals for tap_select. Choice_sync replicates choice twice, once to

 - 135 -

Chapter 6

Figure 6.9: Controller component tap_select used in the Built-in clock skew system.

choose delay line 2 values, and once to choose delay line 4 values. The NEGATIVE

signal from choice_sync is used to determine which delay line (2 or 4) is being updated.

Choice_sync begins at the longest coarse delay setting of delay line 2 and decrements

the coarse setting until an UP is found, or the shortest delay setting is reached for this

delay line. If no UP is found, delay line 4 is sequentially incremented until an UP is

found. Once the coarse delay is set, the fine delay is set to its maximum setting and

sequentially reduced until an UP is found.

 - 136 -

 System level modeling

6.5 System models

The delay lines are modelled using SpectreS data from the extracted circuit. The

total delay through a delay line consists of a fixed latency and a variable delay

component. The delays are normalized to eliminate the fixed component. There are 188

fine grain delay settings spanning between 0 and 85 ps; the settings are also rounded to

the nearest picosecond and using 8-bit control leading to redundant fine delay settings in

the model. The possible fine delay settings for each delay line are shown in Figure 6.10;

the horizontal portions of the curve represent repeated settings that if eliminated, could

reduce the required synchronization time for each test. The coarse grain settings are

also representative of the silicon circuitry and allow 6 distinct settings (including zero),

each with an 85 ps difference with respect to its adjacent setting, encoded using 5-bits.

The total number of control signals for each delay line is 13.

Figure 6.10: Delay setting range for a single fine grain delay block.

 - 137 -

Chapter 6

6.5.1. Single clock model

The structure of an n-tap single clock domain model is shown in Figure 6.11. The

configuration data is generic and programmable to model different variations in layout.

The clock period used, the delay through the multiplexers and the interconnect delay

Figure 6.11: The n-tap clock distribution model.

 - 138 -

 System level modeling

between taps are all variables that can be controlled in the model. To simulate properly

in HDL, a clock signal is added to the clock network model although the extracted circuit

does not require such a signal. There are three significant components in a single clock

network model: The clock thread, the delay lines and the phase detector. A pair of

independent forward and reverse clock threads are used with a 2n delay configuration,

but bi-directional configurations can be modelled by appropriately setting the device and

interconnect delay parameters. The phase detector works by comparing the

parameterized interconnect and device delays to the current delay line setting for the

forward path and comparing it to the expected delay of the reverse path. The calculation

is made for every tap and only the tap currently being synchronized is forwarded to the

controller, similar to the circuit design of clock network.

6.5.2. Reconfigurable clock network model

To create a reconfigurable network, first the clock mesh network needs to be

constructed with switches of arbitrary size (bi ports) and n taps. The number of clock

frequencies and the maximum number of taps per domain also need to be set. For the

most generic solution, the maximum number of taps per domain and the number of clock

domains can both be set to the total number of taps. The clock network synchronizer can

then be generated. Figure 6.12 shows one possible section of mesh network containing

switches with 4 and 8 ports, routing 2 and 4 clocks, respectively. Each port can be

uniquely connected to any other port in the switch. The horizontal and vertical lines are

 - 139 -

Chapter 6

labelled using the row/column number and the segment number along the row/column

starting from the top most corner. The switch ports are alphabetically labelled from the

right-most port on the top edge of the switch, so from A to D for a 4-port switch, A to H

for an 8-port switch and so on. For the top and left switch ports, the inputs lines end in A

and the output lines end in B. For bottom and left ports, the opposite is true.

Once the controller and circuit model are generated, the path for each clock

thread is established by writing to switch configuration memory in the clock network. The

tap synchronization order is then followed as programmed into the system to

synchronize every tap in a thread. For the tap being synchronized, all of the switch

direction control bits are set to forward controls for the switches preceding the tap and to

reverse for the switches following the tap. Between tap synchronizations, the signal

direction for the thread must be modified from reverse to forward for every switch

between the current tap i and i+1. For the reconfigurable clock network model, the

interconnect and switch delays between consecutive taps in a domain must also be

included as parameters for every clock thread (domain). Multiplexers are added at each

clock tap to select which wire carries the forward and which wire carries the reverse

reference signals. Since the UP/DOWN comparison is done algebraically instead of on

the waves themselves, the reverse clock multiplexers can be omitted in the model.

 - 140 -

 System level modeling

Figure 6.12: An enlarged section of a multi-clock mesh.

The functionality of the phase detector model is divided into two components:

up_down and choose_vals. choose_vals calculates the forward and reverse propagation

delays using the parameterized delay variables and the up_down block determines the

current tap’s forward and reverse path delays. The required UP and DOWN signals can

be generated by comparing the two path delay values. Where up_down operates on the

actual tap in question, choose_vals operates on each thread from first tap to last based

on the programmed order of synchronization. The behaviour of the phase detector

circuitry is much simpler since it can easily compare the forward and reverse clocks

without having to infer the forward and reverse path delay from the configuration

settings.

 - 141 -

Chapter 6

6.5.3. BICSS model

BICSS requires a primary central block located where convenient on an IC and

small secondary distributed circuits located at each tap under test, consisting of a

multiplexer and a delay line. The central block, shown in Figure 6.13, consists of four

delay lines, 3 multiplexers and a phase detector. Delay lines 1 and 2 are used to

compensate for the transport delay from clock tap A to the primary block using

SRCB_FB as the source clock. Delay lines 3 and 4 are used to compensate for the

transport delay from clock tap B to the primary block using SRCA_FB as the source

clock. Once the paths are normalized, delay lines 2 and 4 are used to determine the

skew between the clocks at tap A and B. Should BICSS be used on a system with more

than two taps, the skew detection, measurement and compensation would need to be

Figure 6.13: The built-in clock skew system model.

 - 142 -

 System level modeling

performed through a multiplexer which would choose between all the clock signals

entering the BICSS block.

Since the only task for the test clock is to drive the round trip path from the block

to the tap and back, the same clock source can be used for all normalizations, provided

that the clock operates at the same frequency as the tap clocks being observed. Once

normalized, the clock taps are compared pair-by-pair. To compensate for the first

transport delay from tap A, In0 of the phase detector is the roundtrip delayed test clock

and In1 is the undelayed test clock. When compensating for the transport delay from tap

B, In1 of the phase detector becomes the roundtrip delayed clock and In0 is the test

clock. The third mode compares both tap clocks transported to the BICSS block and

delayed by the evaluated transport delay of their counterpart. The transport delay

compensation uses delay lines 1 and 3 and the skew compensation uses delay lines 2

and 4.

6.6 Operating behaviour of the systems

The models and controllers discussed in this chapter have all been simulated

using ModelSim-Altera Edition. As this is a behavioural simulator, clock-to-output delays,

propagation delays and minimum clock period are not incorporated into the simulations

by default. This allows the propagation and transport delays, and the behaviour of the

delay lines present in the models to be easily changed. As a result, the model can reflect

the behaviour of different layouts and unevenly spaced taps. It can also use different

 - 143 -

Chapter 6

components like crossbar switches and multiplexers with different operating

characteristics like signal latency and propagation delays. The simulations assume that

the root clocks are generated externally to the distribution or testing circuitry. The

simulations waveforms are shown in Appendix A.

6.6.1 Single clock domain system

A four tap clock network model and controller was designed using the approach

described in this chapter. This 4-tap system using a 13-bit delay line requires 64-bits of

memory considering the 16-bits of memory required per tap. A 15-tap system would

require 240 bits using the same 13-bit delay line. A 6-bit word was chosen for the

memory word size. Since 3 memory locations are required per tap and 12 memory

locations in total, 4 memory address bits are needed. However, for additional flexibility, 6

memory address bits are used in the simulation. With standard optimization settings for

speed and area, the controller was synthesized using 202 LUTs, 74 registers and 2048

memory bits to store the delay line characteristics in an Altera Stratix II device. The

computed maximum frequency of the controller is 314.87 MHz. The number of clock

taps is limited to 10 for this implementation. A higher number of taps would require more

registers and larger look-up-tables in the FPGA. The four tap controller and clock model

was simulated with a controller clock of 1.0 GHz and a thread clock of both 1.0 GHz and

1.5 GHz. There is no relationship needed between the two clock frequencies. In a typical

configuration, the controller will be located off-chip and operate at frequency in the

 - 144 -

 System level modeling

megahertz range, as is typical of a microprocessor or FPGA. The clock frequency of the

clock threads are limited to frequencies above 1.0 GHz due to the maximum delay of the

variable delay lines used in this proof of concept. These delay lines are scalable and

could be extended to be use with lower clock frequencies, as needed. The functionality

of the delay lines could also be improved by allowing inverted outputs, as is the case

with the silicon implementation of the design, halving the minimum required frequency.

The synchronization time required by the system is not fixed since it is dependent

on the number of tests needed to reach the appropriate setting. The complete

synchronization waveforms for the 1.0 GHz thread clock in Figure A.1 and the 1.5 GHz

thread clock in Figure A.5 show that the synchronization time for each tap can vary

greatly. Overall, the 1.0 GHz simulation with typical delay parameters requires under 9

μs (3 μs at the synthesized frequency) to complete and the 1.5 GHz simulation requires

under 7 μs (2.3 μs at the synthesized frequency). In these simulations, the TAP_NUM

signal changes from 1 to 4 as the tap being synchronized changes from D to A,

respectively. The VALUE2 signal represents the target delay (reverse path delay) for the

given tap and configuration and the VALUE1 signal represents the forward path delay

incorporating the delay line settings. The up_down component uses these values to

generate the correct UP and DOWN signals until these numbers match. For the currently

active tap X, the CG_X and FG_X signals represent the current delay setting being

evaluated.

 - 145 -

Chapter 6

The initialize phase for the 1.0 GHz system is shown in Figure A.2. Note how the

initial tap and thread settings are written into memory for the four taps using the ADDR,

DATA and active high write enable (WE). The address and data are held constant for

one clock period before and one clock period after the write assertion to prevent

erroneous memory writes. The synchronization of the first tap (tap D) is shown in Figure

A.3 for the 1.0 GHz thread clock. Notice the CG_D setting and VALUE1 delay change to

find the correct coarse setting up to 200 ns, and the FG_D setting and VALUE1 delay

change to find the correct fine setting after 200 ns. Figure A.4 represents the initial and

final picture for the synchronization of the tap clocks. OUT_XH represents the forward

clock delayed through only one delay line. The alignment in Figures A.2 and A.3 were

performed using both delay lines. This is the averaging required to achieve

synchronization. Similar to the silicon implementation, once the clock edges are aligned,

the system requires a calibration phase to invert clocks as required to achieve consistent

clock polarity. For the 1.5 GHz clock thread, Figure A.6 shows the synchronization of tap

B and Figure A.7 represents the initial and final picture for the synchronization. The

accuracy of the synchronization is the maximum increment between delay settings (3 ps

in our model) due to the digital nature of the delay line and the idealized behaviour of the

phase detector.

 - 146 -

 System level modeling

Figure 6.14: The multi-clock domain, 15-tap reconfigurable clock network model.

6.6.2. Reconfigurable clock domain system

To show the functionality of a reconfigurable clock network controller, we

simulated a 3 clock domain, 15-tap model and controller, shown in Figure 6.14. It is

constructed by elaborating upon the single clock domain model. Like the single clock

model, each clock domain is limited to 10 taps. More taps and more clock domains can

be added, but this will affect the size and speed of the controller. This limitation does not

significantly affect the reconfigurability of the clock infrastructure as shown in Table 6.1.

Two scenarios are explored for the number of possible configurations that must be

excluded due to the 10 tap per domain restriction: one where all taps are connected:

Equation 6.8, and one where taps can be left unconnected: Equation 6.9.

 - 147 -

Chapter 6

Excluded configurations (case 1) = (6.8) 







⋅⋅ = nn

n 15
23 4

0

Excluded configurations (case 2) = (6.9) 







⋅⋅ = nn

n 15
33 4

0

 Every tap occupied Unconnected tap allowed

315 415 Total Cases
14 348 907 1 073 741 824

Realizable Configurations 14 271 114 1 073 370 301

Excluded Configurations 77 793 371 523

Percent Excluded 0.54% 0.03%

Table 6.1: Number of possible clock domain configurations.

For this 15-tap configuration, 272 bits are required for the tap memory. Using 6-

bit words and 3 words per tap, 6 address lines are required. In addition to this, a mixed

switch mesh with eight 8-port switches and twelve 4-port switches requires 160 encoded

bits and 288 decoded bits of memory. Without any optimization for speed or area, the

controller for this reconfigurable network was synthesized using 447 LUTs, 127 registers

and 2048 memory bits to store the delay line characteristics in an Altera Stratix II device.

The computed maximum frequency of the controller is 243.96 MHz. The fifteen tap

reconfigurable controller and clock model were simulated using a controller clock period

of 100 ps and a sample configuration using thread clock periods: 900 ps for thread A,

750 ps for thread B and 600 ps for thread C. The fifteen taps were divided as in Figure

 - 148 -

 System level modeling

4.6, so with the taps numbered column-wise from left to right, thread A was connected to

taps 1, 2, 3, 5, 6 and 10, thread B was connected to taps 11, 12 , 14 and 15 and thread

C as connected to taps 4, 7, 8, 9 and 13. The complete synchronization for all 15 taps is

shown in Figure A.8. The TAP_COUNT signal represents the number of taps already

synchronized, the TAP_NUM signal represents the exact tap currently being

synchronized and the COUNTX signals represent the state of each TAP_SELECT

component, with 0 being the initial state and 26 being the final state. Figure A.9 shows

the synchronization of the six thread A taps. The output waveforms OUT_X are listed in

the waveform in the order in which they are synchronized. Since the model only applies

the delay setting once all the taps in the thread have been synchronized, the OUT_X

waveforms before time 1151 ns show the initial state of the tap clocks and those after

1154 ns show the synchronized end result. Figure A.10 shows the synchronization of the

four thread B taps. The OUT_X waveforms before time 2096 ns show the initial state of

the tap clocks and those after 2099 ns show the synchronized end result. Figure A.11

shows the synchronization of the five thread C taps. The OUT_X waveforms before time

2840 ns show the initial state of the tap clocks and those after 2843 ns show the

synchronized end result. The 15 synchronized tap clocks can be seen in Figure A.12.

6.6.3. Built-in clock skew system

The controller for BICSS was synthesized using 394 LUTs, 140 registers and

2048 memory bits in an Altera Stratix II device. The computed maximum frequency of

 - 149 -

Chapter 6

the controller is 269.54 MHz. The simulation uses a 100 ps controller clock period and 1

ns tap clocks with a 50 ps source-to-tap A skew, a 20 ps source-to-tap B skew, and 135

ps and 95 ps transport delays, respectively, from tap A and B to the central BICSS block.

These numbers can be changed as required to reflect any realizable circuit

configuration. The complete calibration and synchronization cycle is shown in Figure

A.13. Delay lines 1 and 2 are both updated while TAP_NUM = 0 until the transport delay

from tap A is determined. This delay is then halved by resetting delay line 2 to its initial

value. The same is true for TAP_NUM = 1 for the transport delay from tap B using delay

lines 3 and 4. For synchronization, delay line 2 or 4 is modified as needed, depending on

the configuration. VALUE1 represents the target delay for calibrating tap A and VALUE2

represents the target delay for calibrating tap B. In the case of this test case, delay line 4

needs to be modified and VALUE2 represents the target delay.

The calibration of the tap A clock path to the BICSS circuitry is shown in full in

Figure A.14 and the enlarged final stage is shown in Figure A.15. Note how the

PD_1_OUT_CALA and PD_2_OUT_CALA signal achieves alignment between times 177

and 178 ns before TAP_NUM switches to 1. The calibration of the tap B clock path to the

BICSS circuitry is shown in Figure A.16 and the enlarged final stage is shown in Figure

A.17. Note how the PD_1_OUT_CALB and PD_2_OUT_CALB signals achieve alignment

at 753 ns before TAP_NUM switches to 2. Both delay lines 2 and 4 are written to during

an update, however only one of their values is updated each time. The synchronization

is highlighted in Figure A.18 and the enlarged final stage is shown in Figure A.19.

Alignment is achieved at 1085 ns as shown by the PD_1_OUT and PD_2_OUT signals.

 - 150 -

 System level modeling

The final stage of the BICSS scheme is to write-back the delay line data to the clock taps

to compensate for the determined clock skew. Figure A.20 shows this write-back stage

and the clearing of the delay line 2 and 4 settings in the central BICSS circuitry. The

transport delay calibration setting is kept in delay lines 1 and 3. As such, the SRCA and

SRCB signals reflect the clocks at each tap and are synchronized for their respective

source-to-tap delays. The signals PD_1_OUT and PD_2_OUT reflect the transport delay

compensated tap clocks at the BICSS block and should also be aligned after

synchronization. As such, the system can monitor clock alignment for a pair of clock taps

(tap A and B in this model) using the BICSS phase detector during operation and clock

skew can be detected and potentially corrected.

6.6 Conclusion

The three system/control configurations discussed in this chapter represent two

potential clock networks: a fixed single clock variant and a fully reconfigurable three

clock variant, and the built-in clock skew system introduced in Chapter 5. Each of the

simulations includes a model created using extracted circuit information from a 180 nm

TSMC process design and a synthesizable controller in VHDL necessary to operate the

circuitry. The hardware that the models represent is designed to be versatile enough to

be controlled by an internal controller in silicon, or an external one using a

microprocessor, an FPGA, or any other hardware or software approach. The results

show that the controller/circuitry interface is simple yet versatile enough to be capable of

 - 151 -

Chapter 6

operating the circuitry easily and efficiently. The majority of the required communication

bits are dedicated to the on-chip configuration memory. The parallel nature of this

interface could be replaced by a serial one similar to JTAG, or even JTAG itself, thereby

greatly reducing the I/O requirements for synchronization. The resources required to

implement the controllers and the time required to perform the synchronization and

calibration operations are also reasonable and show that the designs can be practically

implemented in a real world system. The modelling of the clock switch meshes allows a

variety of clock configurations to be tested to determine the required synchronization

time and to predict the ideal delay setting settings. These settings can be pre-loaded into

the system speeding up synchronization time when used in silicon. This additional

predictive step could greatly simplify the complexity and the synchronization time of the

clock network controllers.

 - 152 -

 Core circuit components

 - 153 -

Chapter 7:

Core circuit components

7.1. Introduction

While the design and operational overview of the dual reference signal based

averaging clock networks and the built-in system for online debug and repair have been

discussed in previous chapters, this chapter will discuss the detail behind the circuitry

involved in creating these structures. While the systems are designed to be appropriate

for a number of on-chip applications and technologies, it is important to get an idea

about the area and performance that can be achieved in a mature technology. The idea

was not to get the highest performance possible, but to get a realistic view of an average

case implementation. Both higher and lower frequencies could easily be achieved using

Chapter 7

modified circuits and lengthened or shortened delay lines. If used in a newer technology,

both higher clock speeds and smaller circuitry could be obtained. Since mismatch is a

greater issue in these newer technologies, the performance of the circuitry could

change. The active skew compensation and skew detection circuitry is an approach that

will overcome variation much better than traditionally used passive approaches since the

system is only susceptible to mismatches between components that are closely spaced.

The net variation effect will be smaller than clock trees using a distributed approach. The

circuitry is entirely digital with digital control to create the easiest interface possible.

Digital circuits are also small in area compared to their analog counterparts and are

much easier to port to different technologies. Digital circuits are also much less sensitive

to matching than analog circuits since analog circuit techniques rely on similar closely

matched components for correct operating behaviour [117].

All of the circuits required to construct the systems were designed and laid out

using TSMC’s 180 nm standard process. Clock frequencies between 500 MHz and 2

GHz were targeted because this represents a typical frequency range in this technology

for ASICs, microprocessors and FPGAs. Since the routing circuitry and control signals

are designed to apply to the clock distribution network, novel circuit techniques are

required to perform the required task and to communicate with a synchronous controller.

The circuitry’s ability to function asynchronously an important consideration in justifying

the feasibility of the clock networks and the clock skew detection system. There are a

number of circuits that achieve better performance or have novel functionality that were

 - 154 -

 Core circuit components

developed in creating the proof of concept systems. Both the novel circuitry and the

circuitry that directly affects the performance or practicality of the systems are described

in the following sections.

7.2. Delay lines

The delay line is the component that has the single greatest effect on the

performance of the system since the attainable skew bound is directly related to the

minimal delay increment, or resolution between settings. Typical digital delay lines have

large delay increments between settings, which make it difficult to perform accurate

signal alignment. Analog delay lines have static power consumption are require relatively

large devices that could hurt the practicality of our multi-tap, multi-delay line system

[118]. A number of different configurations were investigated and a dual stage, coarse

and fine grain approach was selected to get good resolution and a wide delay range.

The result is a delay line with a fixed latency component (D) and a variable delay

component (δ). The minimum frequency that can be distributed is a function of the total

achievable variable delay:

δ⋅
==

2
11

max
min T
F (7.1)

The two times factor comes from the ability of the delay line to output both an inverted

and a true version of the input. This doubles the effective delay achievable by the delay

 - 155 -

Chapter 7

line and is only possible since the component is designed for clock signals with 50%

duty cycle. The variable delay line should have good linearity between potential delay

settings. Here, the maximum delay increment between adjacent settings establishes the

worst-case clock skew of the CDN or the resolution of the skew detection circuitry. The

delay line implementation needs to be as small as possible and should have a minimum

of control lines since it needs to be replicated for each tap in the distribution. The

resulting signal should also have full swing outputs with balanced pull-up and pull-down

behaviour.

7.2.1 Coarse grain delay lines

A number of different structures were tested before choosing the design shown in

Figure 7.1. The first one had a set of even numbered inverter chains (0, 2, 4, 8, 16) with

input and output connections that allowed the input clock signal to be routed through the

system exactly three times, choosing a different inverter chain for each pass. This

method creates a constant delay overhead due to the routing and allows a digitally-

controlled variable delay between 1 and 14 two-inverter delays. Each delay increment

resulted in an increase of roughly 80 ps. The problem with this method is the total

number of inverters required, the networking overhead and the approach’s lack of

scalability. The next coarse structure employed a ladder system using an inverter chain.

Each inverter output is connected to the next inverter in the chain and to a multiplexer

(or other device) that selects between all of the inverter outputs, or taps. Two varieties of

 - 156 -

 Core circuit components

Figure 7.1: Coarse grain delay line.

multiplexers were tried, one using CMOS logic and one using pass transistors. This

method was not pursued since the multiplexer prevents the system from being easily

scaled. Additionally, the high capacitive loading on the pass transistor circuit and the

large multiplexer fan-in of the CMOS variant slowed the signal transition limiting the

operating frequency to below our target range. This design in Figure 7.1 was optimal for

our application since the multiplexers are built into each coarse cell so the design scales

better than a typical tapped inverter chain structure to allow for longer delays and lower

frequencies where necessary. The design is easy to control and the amount of delay

added between settings is also appropriate. The fact that signals entered and exited the

component using the same ports was useful in maintaining consistent delay increments.

 - 157 -

Chapter 7

Figure 7.2: Fine grain variable delay inverter.

7.2.2 Fine grain delay lines

A fine grain delay element is needed to fill the gaps between coarse grain

settings. To accomplish this role, we use the fine grain variable delay inverter shown in

Figure 7.2 to achieve equal high-to-high and low-to-low delays, resulting in matching

duty cycles for input and output clocks. A number of these fine grain delay inverters

need to be serially connected together to bridge the delay between coarse grain

settings. Allowing each fine delay inverter to be programmed individually creates the

greatest number of delay settings and the potentially highest resolution, but also requires

the most overhead. The number of groups of fine delay inverters that can be uniquely

programmed (g) and the number of control lines per inverter (c) sets the achievable

resolution of the delay line. The resolution of the complete delay line is:

 - 158 -

 Core circuit components

gcideal

delaycoarse
resolution

)2(
_= (7.2)

This is the potential resolution and not the actual one since some unique delay settings

might map to nearly identical delays and some delay settings may exceed the required

coarse delay. In a typical application with a 100 ps coarse grain delay, an arbitrary

number n delay lines are controlled as a single group with 4 control lines resulting in a

maximum attainable resolution of 6.25 ps. With two uniquely controlled groups, this

number decreases to under 0.4 ps. Since the resolution of our coarse delay is in the

same range as this example, we choose to have two uniquely controlled groups fore the

fine delay. Since the delay range of our variable delay inverter is approximately 25 ps,

this would require 4 inverters to span the coarse grain delay.

7.2.2.1. 1-1-1-2 foursome

Having established a fine grain delay line using 4 variable delay inverters in two

groups, we explore next a number of potential orderings. This first attempt had three

delay lines controlled as a group and a fourth controlled independently. This approach

was discarded because the delay range was not sufficiently linear and the output signal

had too much duty cycle variation in the clock signal.

 - 159 -

Chapter 7

7.2.2.2. 1-1-2-2 foursome

The next delay line ordering we tried uses the coarse delay line from section 2.1

and 4 current starved inverters grouped in pairs. Buffers or inverters are required to

regenerate the clock edges that are softened by each fine delay stage. While this

configuration, shown in Figure 7.3, behaved as expected, there was room for

improvement in terms of the rise time and the duty cycle of the output signal.

7.2.2.3. 1-2-1-2 foursome

The third delay line ordering alternated delay line settings since this approach

would have better matching and would contain similar signal paths in both halves of the

delay fine delay block. In this configuration, shown in Figure 7.4, the output load of each

corresponding fine delay inverters is matched. This is important since different output

loads will have a nonlinear affect on the delay through a current-starved inverter since

the drive strength changes for each delay setting. Simulations showed that this

configuration resulted in more consistent signal characteristics, but the duty cycle

continued to vary between different settings. This result is not ideal for our system, since

the duty cycle change is averaged during synchronization, skewing the resulting clocks.

This result is further explained by the fact that the variable delay inverter may affect

rising and falling edges differently for a constant setting. Duty cycle shifts originate from

 - 160 -

 Core circuit components

unequal propagation delays through the pull-up and pull-down portions of the fine delay

inverter.

7.2.2.4. 2-1-1-2 foursome

The fourth configuration, Figure 7.5, corrects the duty cycle drift by feeding each

signal through two identically set fine delay inverters separated by non-inverting logic

Figure 7.3: 1-1-2-2-fine delay configuration.

Figure 7.4: 1-2-1-2-fine delay configuration.

Figure 7.5: 1-2-2-1-fine delay configuration.

 - 161 -

Chapter 7

and delay lines, ensuring that each transition will propagate through both pull-up and

pull-down portions of the delay line. For a pair of identically set delay lines, if the pull-up

section delays or advances the signal by d1, and the pull-down section delays or

advances the signal by d2, then the rising edge of the input signal will be skewed by

d2+d1 and the falling edge will be skewed by d1+d2, resulting in a net zero change in the

duty cycle of the signal. While the d2 and d1 delays are ideally identical, this relation

cannot be guaranteed due to process variance. The previous configurations produced a

d2+d2 shift in the rising edge and a d1+d1 shift in the falling edge, creating a |2*(d2-d1) |

change in the duty cycle of the output signal.

7.2.2.5. Grouped delay lines

Since matching of the fine grain delay inverter pairs is important to achieving

good results, the delay lines should be kept in close proximity to each other. In the

previous delay line, the second group of delay lines was split by the first group. The next

iteration is shown in Figure 7.6 and the pairs of delay lines are physically located next to

Figure 7.6: Grouped fine delay configuration.

 - 162 -

 Core circuit components

one another, but traversed in the order of the previous configuration. As a result, the

delay characteristic between this delay line and the previous one is nearly identical in

simulation. This method will be more resilient to process variation due to the smaller

distance between the components.

By standardizing the signal characteristics, the number of realizable delay

settings decreases since permutations of the delay setting order no longer modifies the

delay. In addition, the structure of the variable delay inverter requires that one delay

setting be reserved. As a result, the potential resolution is now:

() 
=









−−

=
g

i

gc

i

g
delayCoarse

idealresolution

1
12

_)((7.3)

To obtain a greater number of unique settings the second pair of delay lines was simply

resized, resulting in much better resolution:

()gc

delayCoarse
idealresolution

12
_)(

−
= (7.4)

7.2.3 Performance

These delay lines provide high resolution delay increments using a current

starved approach without requiring static power consumption as is usually the case

when digitally controlled switches [119],[120] and have full rail-to-rail operation. Our fine

 - 163 -

Chapter 7

grain delay components use the grouped configuration and are capable of delays that

exceed the coarse grain increment by over 20%. This overlap creates a built in

robustness and tolerance to process variability as demonstrated in [121]. The layout of

the Figure 7.5 delay line is shown in Figure 7.7. It achieves equal high-to-high and low-

to-low delays, resulting in matching duty cycles for input and output clocks. The layout

area of the design is 2300 μm2. This is a single delay line instance and is usually paired

to allow the delay to be averaged. In a paired delay line structure, the total delay through

a pair of delay lines sets the minimum clock period that can be used. The alternative is a

shared delay line structure where given a delay setting δ, a 2*d delay is created by

propagating a single pulse through the same delay line twice instead of two distinct

delay lines. This shared delay line structure will achieve ideal matching characteristics

for averaging. Note that the matching of delay lines between taps has no effect on the

clock skew since averaging is performed completely within each tap. Variation may

require different delay settings to achieve the same delay in different taps, but the

average clock at each tap will remain synchronized.

Figure 7.7: Layout of complete delay line.

 - 164 -

 Core circuit components

The total coarse grain delay through a datapath containing two delay lines was

188 ps for the schematic version of the circuit and 160 ps for the extracted one for both

paired and shared cases. Assuming a fine grain delay equal to the coarse grain

increment, 6 coarse cells are required to handle clocks with a maximum period up to 2

ns. The maximum clock period for the schematic implementation is 2244 ps using these

6 coarse settings and 1920 ps for the extracted circuit. Additional coarse settings can be

added as needed to function with arbitrarily long clock periods. The all zero setting is not

allowed for the fine grain inverter. The achievable resolution given this configuration is

0.84 ps. Through the paired delay line, the schematic circuit simulations show an actual

resolution of 4.74 ps (upto 160 ps) and the extracted simulations show an actual

resolution of 5.85 ps. The extracted version of the shared delay line achieves an actual

resolution of 5.72 ps between delay settings (full delay prior to averaging). The average

delay increment is approximately 1 ps. The performance of both the paired and shared

extracted delay lines is compared in Figure 7.8. For the clock distribution network, the

largest delay increment (resolution) of the delay line is twice the achievable skew bound

due to the averaging involved.

An additional, simplified delay line is used in the built-in clock skew system. It

uses four variable inverters and two coarse grain settings to lengthen the maximum total

delay of 192.8 ps (δ). Two variable delay inverters are paired together to create each

variable delay block in Figure 7.9. The maximum increment between delay line settings,

2.93 ps, will fix the resolution of the skew measurement and the skew correction that can

 - 165 -

Chapter 7

Figure 7.8: Delay range of extracted grouped and shared delay lines.

(a)

(b)

Figure 7.9: Simplified delay line used in BICSS system.

 - 166 -

 Core circuit components

be achieved. The maximum total delay (δ) will bound the maximum round trip delay

between the centralized BICSS hardware and the local clocks, as well as the maximum

skew that can be tolerated between clock regions for the system to work. As such, the

delay line is scalable and can be lengthened with additional coarse grain settings to suit

different applications.

7.3. Clock switches

The design of the clock switches will have a significant effect on the behaviour of

both the single clock and reconfigurable clock single conductor networks. These

switches must be bi-directional so signals can propagate between ports in both forward

and reverse directions using a single wire to connect clock network segments. This

helps diminish the effect or wire mismatch and process variance. This tap switch

operates in three modes, forward, synchronize and reverse. In forward mode, the

forward reference clock is connected to the current tap and sent to the next tap. In

synchronize mode, both the forward and reverse reference inputs are connected to the

tap. In reverse mode, the reverse reference input signal is connected to the forward port.

This allows a single bi-directional clock line to be threaded as needed throughout the

clock domain and shared between the forward and reverse clocks during

synchronization. The switch is shown in Figure 7.10, and its layout is shown in Figure

7.11. The area of the switch is 172 μm2.

 - 167 -

Chapter 7

Figure 7.10: Tap bypass switch.

Figure 7.11: Layout of tap bypass switch.

To reconfigure clock domains, other routing switches are required. These have a

more stringent design requirement as each port must be able to route an input signal to

any other port, while matching delays in both directions between associated ports. The 2

clock, 4-port routing switch is shown in schematic in Figure 7.12 and in layout in Figure

7.13. It has an area of 1300 μm2 and uses pass transistors to control access to an

 - 168 -

 Core circuit components

Figure 7.12: 4-port clock routing switch.

intermediate signal, which gains access to the clock port through a Z-buffer. The Z-

buffers establish the direction of the clock signals through the crossbar and are

controlled by four active control bits of which only two can simultaneously be asserted.

This design is scalable to create larger routing constructs. For instance, a 4-clock switch

containing 8 ports has been designed in a similar fashion.

 - 169 -

Chapter 7

Figure 7.13: Layout of 4-port clock routing switch.

To be used in a dual reference line, hot spot and variation tolerant system, this

routing switch can be modified and replaced with circuitry that has the functional of a set

of multiplexers. This circuitry should be laid out to have equal propagation delays from

any input port to output port and be as close to centroid as possible, Figure 7.14. The

controller line memory is omitted for the unidirectional switch for clarity.

7.4. Phase detectors

The phase detectors that we designed are non-traditional approaches to the

problem since the goal is not to create solution that eliminates metastable conditions.

Instead, since the target application is one that will have a finite resolution due to the use

of a digital delay line, the system performs two simultaneous comparisons on slightly

 - 170 -

 Core circuit components

Figure 7.14: Layout of unidirectional 4-port clock routing switch.

skewed versions of the inputs to guarantee that one of the two comparisons will resolve

and produce a useful result.

7.4.1 Fixed tolerance phase detector

There are many phase detectors presented in literature [122],[123]. Our design is

an original one, designed to solve the unique challenges of our system. Our phase

detector is a sample-and-hold type, sampling the state of the system around the clock

edge and retaining the result for roughly a third of one clock cycle, independent of the

overlap between input clocks. The system features a nonlinear three state phase

detection system [124]. Along with an UP or DOWN detection, it can also signal a

 - 171 -

Chapter 7

Figure 7.15: Fixed tolerance phase detector.

LOCKED condition for a defined skew bound between clock inputs. Like most detectors,

the design in Figure 7.15 uses a cross-coupled NAND gate latch structure to perform the

signal comparison. Two interconnected latches are used in a method similar to [125]. In

the first latch, when CLKA arrives before CLKB, the UP signal is asserted. Here CLKB is

the controlling input since it prevents the CLKA from causing an assertion. Conversely,

when CLKB arrives before CLKA, the DOWN signal is asserted by the second latch and

CLKA is the controlling input. However, in our case, we modify the latch to be more

sensitive to the assertion of the controlling input. In this way if the inputs arrive very

close to one another, neither an UP nor a DOWN signal is asserted. Where other phase

detectors use multiple latches to accelerate metastability resolution, our design moves

the problem point away from the center of the locked region by performing two edge

detections simultaneously. In doing so, when the input clocks CLKA and CLKB are at the

 - 172 -

 Core circuit components

edge of the “nearly locked” region, the result can either be resolve to UP or DOWN

(depending on the relative arrival time) or remain LOCKED. Since our system is digital

and allows bounded skew, both results are acceptable. This resolves potential

metastability while allowing for a small dead zone, differentiating our design from others

that we have seen in the literature.

Our phase detector only needs to be as precise as a half of the maximum

increment between fine delay settings, emphasizing finite resolution time over absolute

precision. The phase detector cannot detect variation with inputs that are shifted in

phase by 180o. However, non-overlapped clocks are easy to detect with simple circuitry,

so this trait is not a significant drawback with our system and the result, UP or DOWN, is

equivalent for the clock synchronization. The layout of the design requires 500 μm2 and

is shown in Figure 7.16.

Figure 7.16: Layout of fixed tolerance phase detector.

 - 173 -

Chapter 7

Figure 7.17: Variable-tolerance phase detector.

7.4.2 Variable-tolerance phase detector

While the width of the nearly locked state is fixed electrically for the fixed phase

detector in Figure 7.15, we have also developed a phase-detector with variable locked

width since the amount of skew that should be allowed in a circuit is system dependent.

The variable tolerance phase detector works by taking its two input signals and delaying

each one using two parallel delay lines. The first delay line is variable through a digitally

controlled delay line (DCDL) and the second one is fixed to just over the static minimum

latency of the DCDL, Figure 7.17. This component was developed to be used with the

BICSS system, but the system will not work with too small a fixed delay and too large a

fixed delay will limit the round trip time that can be compensated for. Two cross-coupled

 - 174 -

 Core circuit components

NAND gates are used for each latch, similar to the fixed tolerance phase detector, with

each latch here designed with no input preference. In this case, the “sufficiently locked”

state is found when both UP and DOWN signals are simultaneously asserted. Using the

control lines of the delay line, this sufficiently locked state can be adjusted from a

window of nearly zero to twice the maximum variable delay line setting. The variable

phase detector can be set to have a 3, 6, 8, 10, 28, 29, 35, 37, 51, 52, 55, 59, 67, 106 or

253 ps locked region. This trait is useful since most systems can always tolerate some

skew and it may not always be desirable to detect minute levels of skew. This phase

detector is used to detect programmable amounts of skew, specific to the needs of a

particular system. This is a functionality that is unavailable for other nonlinear phase

detectors and makes this design particularly suitable for skew detection applications.

This functionality also allows for some post-silicon tunability to correct for process and

temperature variations. The layout of the variable tolerance phase detector requires

1300 μm2 and is shown in Figure 7.18.

Figure 7.18: Layout of variable tolerance phase detector.

 - 175 -

Chapter 7

Figure 7.19: Modified phase detector for shared delay line systems.

7.4.3 Modified phase detector for shared delay line implementations

The challenge tin designing a phase detector for the shared delay line clock

network is dealing with two signals with different duty cycles. While the reverse clock

possesses a 50% duty cycle, the forward clock’s duty cycle is diminished to a constant

width shorter than the loop delay. This creates an interesting scenario where there is

guaranteed to be a time where both signals are low that will be held long enough to be

read. This is not the case with the previous phase detectors which require special care

to deal with reference clocks that are 180 degrees out of phase. The modified phase

detector uses the both input zero state to arm itself and is shown in Figure 7.19. If more

there is more than once instance where both inputs are zero per clock period,

 - 176 -

 Core circuit components

Figure 7.20: Layout modified phase detector for shared delay line system.

preference is given to the one immediately following the high-to-low transition of the

reverse reference clock. The layout of the design, Figure 7.20, has an area of 540 μm2.

 - 177 -

Chapter 8

 - 178 -

 Conclusion and future work

Chapter 8:

Conclusions and future work

8.1. Summary

The single and multiple clock reconfigurable clock networks were designed to

suit a variety of applications, clock domain shapes and sizes using a standard cell

approach. The clock networks are designed to be implementation-independent –

simplifying the design of clock distribution networks. An averaging clock distribution can

contain an arbitrary number of nodes and can be laid out manually or using standard

cells, whereas H- or other tree solutions require special balancing tools to generate

 - 179 -

Chapter 8

synchronized clocks. Our serial clock network can have a beneficial effect on the power

consumption of a CDN by decreasing the capacitive load that must be switched in the

clock distribution network by decreasing the total wire length – typically requiring only

two-thirds of the wire length of comparable clock trees. The circuits and approach to

implementing these clock networks are outlined here-in.

Due to the large number of potential network configurations using averaging that

are possible, it is necessary to demonstrate the design and operation of the system for a

given configuration. The clock networks were not only simulated in schematic and

extracted layout form using TSMC's 180 nm standard process, but their functionality was

also modelled with the system level controllers in hardware description language

(VHDL). The models were paired with synchronization controllers to demonstrate the

system-level operation of clock networks using our technique. These models and

controllers are designed using a generic approach, but require specific configurations to

demonstrate their operation. To maintain consistency between simulations, two specific

configurations were examined using our techniques: a 4-tap single clock configuration

and a 15-tap three clock domain reconfigurable configuration.

The synchronization controllers can be realized using an internal controller in

silicon, or an external one using a microprocessor, an FPGA, or any other hardware or

software approach. The results show that the controller/circuitry interface is simple yet

versatile enough to operate the circuitry easily and efficiently. The majority of the

required communication bits are dedicated to the on-chip configuration memory. The

 - 180 -

 Conclusion and future work

resources required to implement the controllers and the time required to perform the

synchronization and calibration operations are also reasonable and show that the

designs can be practically implemented in a real world system.

8.1.1. Single clock averaging network

Today, most clock networks are designed using CAD tools which require precise

information on the exact clock load for each branch, the placement of each tap on the

die and the location of the clock root. Once generated, the clock network cannot be

altered without affecting clock skew. Our cell-based approach to clock distribution allows

components to be designed independently, connecting components as is convenient

and even replacing blocks if needed. Using a dual reference signal averaging technique

in the clock network allows designers to delay some of the critical clock tuning

requirements to facilitate the design flow. It allows circuit blocks to be moved around

conveniently and re-sized easily with a simple change in the number or location of the

taps.

The system provides multi-point active skew compensation during the system's

synchronization phase to compensate for device mismatch and process variance –

enabling our design to have all the benefits of other active clock skew reduction

methods. However, since this synchronization circuitry can be disabled at run-time, the

system can operate in an open loop to save power – a typical benefit of traditional clock

trees. By using delay lines instead of PLLs and with a combined reference signal and

 - 181 -

Chapter 8

clock distribution conductor, our method is small enough to be useful for many clock

applications.

A dual reference line averaging approach is explored to maximize the system’s

tolerance to device mismatch. By permitting a much smaller distance between ideally-

matched devices, our system overcomes the significant effect of device mismatch on

traditional clock trees. Tree-based clock distribution networks are also susceptible to

skew from cross-chip temperature variation due to the distributed buffers that they

employ. By using selective re-synchronization approaches, it is possible to also

overcome changes to intra-die thermal gradients and hot-spots using our approach.

Overcoming delay mismatch due to process and environment conditions is a major

concern in modern clock distribution networks.

8.1.2. Reconfigurable multiple clock averaging network

Using programmable repeater stages allow us to redirect clocks post-silicon at

certain pre-defined switchpoints, making the network reconfigurable. Clock networks can

be modified to correct for some manufacturing defects, including bypassing certain clock

lines and clock buffers. The operating clock frequency can be changed to fit an IC’s

many possible target applications. Simulations show that the proposed CDN is scalable,

compatible with irregularly-shaped distribution areas, and simplifies the way a design

can be floorplanned onto an integrated circuit. The clock networks are applicable to both

static and programmable designs and combine low power operation with tight skew

 - 182 -

 Conclusion and future work

bounds. Our tests show that the reference-based programmable clock distribution is

resilient enough to be used in an ASIC, SoC or FPGA environment. The possibility of

using of a single conductor to provide both forward and reverse reference signals is

unique.

8.1.3. Built-in clock skew system

In addition to the clock networks, we have investigated BICSS: an on-chip clock

skew management system to detect, infer and potentially correct clock skew between

selected points on an IC to repair otherwise defective dies using high-resolution delay

lines. Using the skew measures allows the quality of the clock distribution on the

fabricated die to be assessed. BICSS also aids in the debugging of timing errors that

may be discovered during testing due to the added visibility of on-chip clock signals. Our

BICSS system is unique in its ability to detect, measure and compensate for clock skew

using a single all-in-one solution. The development of a variable tolerance phase

detector makes this the first system to allow online detection of a programmable skew

bound. BICSS enables designers to modify their design flow to include post-fabrication

adjustment to the clock distribution network to correct for timing faults or to minimize

clock skew for higher frequency operation.

We use an averaging technique to compensate for different propagation delays

between clock tap pairs which allows a single BICSS unit to be used for multiple test

points providing an efficient system through component reuse. Our entirely digital

 - 183 -

Chapter 8

solution requires little additional circuitry and is a low cost alternative to the other,

traditionally costly skew measurement techniques. The circuitry and synchronization

controller for BICSS was also modelled in VHDL to demonstrate the behaviour and the

operation of the system.

8.1.4. Circuit implementations

While the circuits discussed here-in have been designed and laid out using

specific criteria in a 180 nm standard CMOS process, there are a number of other

potentially suitable component implementations which could work in creating our clock

network and clock skew detection circuitry. While care has been taken to create easy to

design digital structures that would facilitate the construction of circuitry using averaging,

there were a number of novel circuit elements created with respect to previously

published work. Our digitally-controlled digital delay line had good resolution with good

signal characteristics including full swing outputs is one such design. Traditional digital

delay lines do not need to pay as much attention to duty cycle, for example. When using

delay lines to perform averaging, the use of a single delay line is a unique and ideal

solution to the problem. The bi-directional components allow single wire routing

throughout a design with built in skew compensation facilitating the implementation of

critical clock routing circuits. Finally, the finite resolution aware fixed and variable

tolerance phase detectors represent a novel approach to phase detection adding new

 - 184 -

 Conclusion and future work

functionality and a response that is compatible with digital circuitry, unlike many of their

counterparts.

8.2. Future work

8.2.1. On-chip clock networks

The major benefit of using averaging techniques in the creation of clock

distribution networks is two-fold: to eliminate skew generated by process variance and

thermal gradients and to make the clock network easier to implement and correct. While

these properties can be combined in many cases, they are often non-overlapping

qualities since easy to implement implies having a robust design whose functionality is

paramount and eliminating variance and clock skew usually implies trying to achieve the

highest performance possible. The structures we have examined here were designed as

a balance between these options, but the next step in exploring our averaging based

clocking technique is to verify the performance and functionality of the system for each

of these individual applications. To design a high-performance system, the circuitry

should be ported to a newer technology and the design optimized for higher clock

frequencies using larger devices and more robust circuitry. The addition of a dual edge

synchronizer here would help considerably. Synchronizing the forward reference signal’s

rising and falling edges independently will add the functionality of tuneable buffers for

duty cycle and delay compensation in the circuitry and help ensure greater tolerance to

 - 185 -

Chapter 8

process variability, since pull-up and pull-down portions of the delay lines will have

matched behaviour. For medium performance applications, our system should be

constructed using standard cell components to verify its robustness and functionality.

The design should be built with programmable delay lines using a memory to load

expected values at the center of the systems operating corners to determine how much

the clocks can skew during operation. This will help determine what skew margins must

be incorporated into the system. Each of the high performance, balanced and medium

performance systems should also be implemented in silicon and compared to ensure

that the components used in their design are appropriate for the application. A variety of

other components can also be tried, allowing designers to select between different

families of standard cells: one allowing performance, one emphasizing ease of

implementation and another being a balanced of the two.

8.2.2. Automate system implementation

While we have discussed how to design and implement our systems on an IC,

the process can be automated into the design flow. The system should be designed to

make the use of an averaging clock network as easy as possible. Circuits can be

synthesized with the taps in place based on a preferred clock load per tap. Each

clocking region in the design should be associated with a list of clock domains that could

be attach to it. Considering the required reconfigurability in the system, a clock routing

mesh can be built to satisfy the number of taps, the number of local clocking regions, the

 - 186 -

 Conclusion and future work

number of clock domains and the required flexibility of the network. Once the silicon

design is complete, the delay and configuration layout, the switch mesh and tap

configuration and the device and interconnect data can be extracted out and

incorporated into a clock synchronizer and HDL model created using a dynamic code

generator. If needed, the clock synchronization controller can be synthesized into the

given technology and included on the IC. In addition, the model can be used to

determine the appropriate delay settings required by the system and pre-program them

into the delay lines for different configurations. This step can either be used to skip the

synchronization step or to speed up the synchronization time when switching between

configurations.

8.2.3. Alternative applications

The averaging technique demonstrated in this thesis has a number of useful

qualities concerning applications that require correct synchronization. As long as delays

are matched for forward and reverse interconnect segments between clock taps, it will

be possible to align clocks at multiple points that may be located are arbitrary distances

from one another. As long as the averaging technique used is reliable, the clocks can be

constructed to be well-synchronized regardless of the technology used at each of the tap

points. The use of digital circuitry also makes the system easy to design and implement.

This makes the system appropriate for printed circuit board applications which require

synchronization between different device clocks or multi-processor clusters designed to

 - 187 -

Chapter 8

operate using a synchronized global clock [126]. Other distributed applications such as

sensor networks could also benefit from an averaging approach. These applications

would require modification to the circuitry to deal with potentially different signal voltages

and technologies. The diversity of these applications highlights the ease of use and

potential of our averaging technique in synchronizing events between different and

distributed components.

 - 188 -

 System-wide simulations

 - 189 -

Appendix A:

System-wide simulations

Appendix A

Fi
gu

re
 A

.1
: C

om
pl

et
e

si
m

ul
at

io
n

of
 a

 4
-ta

p
di

st
rib

ut
io

n
at

 1
 G

H
z.

 - 190 -

 System-wide simulations

Fi
gu

re
 A

.2
: R

es
ul

t o
f c

lo
ck

 th
re

ad
 in

iti
al

iz
at

io
n

of
 4

-ta
p

cl
oc

k
di

st
rib

ut
io

n
at

 1
 G

H
z.

 - 191 -

Appendix A

Fi
gu

re
 A

.3
: S

im
ul

at
io

n
re

su
lt

of
 fi

rs
t t

ap
 s

yn
ch

ro
ni

za
tio

n
of

 4
-ta

p
cl

oc
k

di
st

rib
ut

io
n

at
 1

 G
H

z.

 - 192 -

 System-wide simulations

Fi
gu

re
 A

.4
: C

om
pa

ris
on

 o
f i

ni
tia

l a
nd

 fi
na

l t
ap

 c
lo

ck
s

of
 4

-ta
p

cl
oc

k
di

st
rib

ut
io

n
at

 1
 G

H
z.

 (l
ef

t:
in

iti
al

, r
ig

ht
: f

in
al

)

 - 193 -

Appendix A

Fi
gu

re
 A

.5
: C

om
pl

et
e

si
m

ul
at

io
n

of
 a

 4
-ta

p
di

st
rib

ut
io

n
at

 1
.5

 G
H

z.

 - 194 -

 System-wide simulations

Fi
gu

re
 A

.6
: S

im
ul

at
io

n
re

su
lt

of
 fi

rs
t t

ap
 s

yn
ch

ro
ni

za
tio

n
of

 4
-ta

p
cl

oc
k

di
st

rib
ut

io
n

at
 1

.5
 G

H
z.

 - 195 -

Appendix A

Fi
gu

re
 A

.7
: C

om
pa

ris
on

 o
f i

ni
tia

l a
nd

 fi
na

l t
ap

 c
lo

ck
s

of
 4

-ta
p

cl
oc

k
di

st
rib

ut
io

n
at

 1
.5

 G
H

z.
 (l

ef
t:

in
iti

al
, r

ig
ht

: f
in

al
)

 - 196 -

 System-wide simulations

Fi
gu

re
 A

.8
: C

om
pl

et
e

si
m

ul
at

io
n

of
 a

 1
5-

ta
p,

 3
 c

lo
ck

 d
om

ai
n

re
co

nf
ig

ur
ab

le
 c

lo
ck

 d
is

tr
ib

ut
io

n.

 - 197 -

Appendix A

Fi
gu

re
 A

.9
: F

in
al

 s
ta

ge
 o

f c
lo

ck
 d

om
ai

n
sy

nc
hr

on
iz

at
io

n
of

 c
lo

ck
 th

re
ad

 A
 (c

lo
ck

 p
er

io
d

of
 9

00
 p

s)
.

 - 198 -

 System-wide simulations

Fi
gu

re
 A

.1
0:

 F
in

al
 s

ta
ge

 o
f c

lo
ck

 d
om

ai
n

sy
nc

hr
on

iz
at

io
n

of
 c

lo
ck

 th
re

ad
 B

 (c
lo

ck
 p

er
io

d
of

 7
50

 p
s)

.

 - 199 -

Appendix A

Fi
gu

re
 A

.1
1:

 F
in

al
 s

ta
ge

 o
f c

lo
ck

 d
om

ai
n

sy
nc

hr
on

iz
at

io
n

of
 c

lo
ck

 th
re

ad
 C

 (c
lo

ck
 p

er
io

d
of

 6
00

 p
s)

.

 - 200 -

 System-wide simulations

Fi
gu

re
 A

.1
2:

 F
in

al
 s

yn
ch

ro
ni

ze
d

en
d

re
su

lt
of

 1
5-

ta
p

re
co

nf
ig

ur
ab

le
 c

lo
ck

 d
is

tr
ib

ut
io

n
op

er
at

in
g

w
ith

 th
re

e
cl

oc
k

do
m

ai
ns

.

 - 201 -

Appendix A

Fi
gu

re
 A

.1
3:

 C
om

pl
et

e
ca

lib
ra

tio
n

an
d

sy
nc

hr
on

iz
at

io
n

of
 tw

o
cl

oc
k

ta
ps

 u
si

ng
 B

IC
SS

.

 - 202 -

 System-wide simulations

Fi
gu

re
 A

.1
4:

 C
al

ib
ra

tio
n

of
 B

IC
SS

 fo
r t

ra
ns

po
rt

 d
el

ay
 fr

om
 ta

p
A

 to
 c

en
tr

al
 B

IC
SS

 c
irc

ui
tr

y.

 - 203 -

Appendix A

Fi
gu

re
 A

.1
5:

 E
nl

ar
ge

d
fin

al
 s

ta
ge

 o
f c

al
ib

ra
tio

n
of

 B
IC

SS
 fo

r t
ra

ns
po

rt
 d

el
ay

 fr
om

 ta
p

A
 to

 c
en

tr
al

 B
IC

SS
 c

irc
ui

tr
y.

 - 204 -

 System-wide simulations

Fi
gu

re
 A

.1
6:

 C
al

ib
ra

tio
n

of
 B

IC
SS

 fo
r t

ra
ns

po
rt

 d
el

ay
 fr

om
 ta

p
B

 to
 c

en
tr

al
 B

IC
SS

 c
irc

ui
tr

y.

 - 205 -

Appendix A

 Fi
gu

re
 A

.1
7:

 F
in

al
 e

nd
 s

ta
ge

 o
f c

al
ib

ra
tio

n
of

 B
IC

SS
 fo

r t
ra

ns
po

rt
 d

el
ay

 fr
om

 ta
p

B
 to

 c
en

tr
al

 B
IC

SS
 c

irc
ui

tr
y.

 - 206 -

 System-wide simulations

Fi
gu

re
 A

.1
8:

 S
yn

ch
ro

ni
za

tio
n

of
 ta

p
cl

oc
ks

 A
 a

nd
 B

 u
si

ng
 B

IC
SS

.

 - 207 -

Appendix A

Fi
gu

re
 A

.1
9:

 E
nl

ar
ge

d
fin

al
 s

ta
ge

 o
f s

yn
ch

ro
ni

za
tio

n
of

 ta
p

cl
oc

ks
 A

 a
nd

 B
 u

si
ng

 B
IC

SS
.

 - 208 -

 System-wide simulations

Fi
gu

re
 A

.2
0:

 W
rit

e-
ba

ck
 a

nd
 e

nd
 s

ta
ge

s
of

 c
lo

ck
 s

yn
ch

ro
ni

za
tio

n
of

 ta
p

cl
oc

ks
 A

 a
nd

 B
 u

si
ng

 B
IC

SS
.

 - 209 -

Appendix B

 - 210 -

Selected circuit drwaings with transistor sizes

Appendix B:

Selected circuit drawings with

transistor sizes

 - 211 -

Appendix B

F
ig

ur
e

B
.1

: T
ra

ns
is

to
r

si
ze

s
fo

r
fin

e
gr

ai
n

de
la

y
ce

ll
(n

on
-in

ve
rt

in
g)

 fr
om

 F
ig

ur
e

7.
2

fo
r

de
la

y
ra

ng
e

1.

 - 212 -

Selected circuit drwaings with transistor sizes

F
ig

ur
e

B
.2

: T
ra

ns
is

to
r

si
ze

s
fo

r
fin

e
gr

ai
n

de
la

y
ce

ll
(n

on
-in

ve
rt

in
g)

 fr
om

 F
ig

ur
e

7.
2

fo
r

de
la

y
ra

ng
e

2.

 - 213 -

Appendix B

F
ig

ur
e

B
.3

: T
ra

ns
is

to
r

si
ze

s
fo

r
ta

p
by

pa
ss

 s
w

itc
h

fr
om

 F
ig

ur
e

7.
10

.

 - 214 -

Selected circuit drwaings with transistor sizes

F

ig
ur

e
B

.4
: T

ra
ns

is
to

r
si

ze
s

fo
r

in
pu

t s
ec

tio
n

of
 th

e
fix

ed
 to

le
ra

nc
e

ph
as

e
de

te
ct

or
 fr

om
 F

ig
ur

e
7.

15
.

 - 215 -

Appendix B

F
ig

ur
e

B
.5

: T
ra

ns
is

to
r

si
ze

s
fo

r
m

em
or

y
se

ct
io

n
of

 th
e

fix
ed

 to
le

ra
nc

e
ph

as
e

de
te

ct
or

 fr
om

 F
ig

ur
e

7.
15

.

 - 216 -

Selected circuit drwaings with transistor sizes

F
ig

ur
e

B
.6

: T
ra

ns
is

to
r

si
ze

s
fo

r
m

od
ifi

ed
 p

ha
se

 d
et

ec
to

r
fo

r
sh

ar
ed

 d
el

ay
 li

ne
 s

ys
te

m
 fr

om
 F

ig
ur

e
7.

19
.

 - 217 -

 - 218 -

List of references

List of references

[1] BrainyMedia.com, "Charles Caleb Colton Quotes," http://www.brainyquote.com/quotes/
quotes/c/charlescal108128.htm.

[2] H. Kalte, D. Langen, E. Vonnahme, A. Brinkmann, and U. Ruckert, "Dynamically
reconfigurable system-on-programmable-chip," Proceedings of the 10th Euromicro Workshop
on Parallel, Distributed and Network-based Processing (EUROMICRO-PDP 2002), 235-242.

[3] Wikipedia.org, “ASIC Verification,” http://en.wikipedia.org/wiki/Asic_verification.

[4] M. Radu, "Extensive Coverage of Functional Verification of Hardware Designs" Proceedings
of the 2007 IEEE International Conference on Microelectronic Systems Education (MSE
2007), 101-102.

[5] P. Cheung, "Introduction to Digital Integrated Circuit Design," Imperial College London,
http://www.ee.ic.ac.uk/pcheung/teaching/ee4_asic/notes/1-intro.pdf, 2007.

[6] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho, "Profile-based
dynamic voltage and frequency scaling for a multiple clock domain microprocessor,"
Proceedings of the 30th International Symposium on Computer Architecture (ISCA 2003), 14-
25.

[7] A. Chattopadhyay, and Z. Zilic, "Reference-Based Clock Distribution Architectures,"
Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS 2006), II-704-708.

 - 219 -

[8] A. Chattopadhyay and Z. Zilic, "A CMOS Averaging Circuit for Programmable Clock
Distributions," CMC TEXPO Research Exhibition, Oct. 2007, poster.

[9] A. Chattopadhyay, and Z. Zilic, "Design and operating characteristics of a reconfigurable
clock distribution network," Proceedings of the 2007 IEEE Northeast Workshop on Circuits
and Systems (NEWCAS 2007), 9-12.

[10] A. Chattopadhyay, and Z. Zilic, "Built-in Clock Skew System for On-line Debug and Repair,"
Proceedings of the 2008 Design, Automation and Test in Europe Conference (DATE 2008),
248-251.

[11] A. Chattopadhyay, and Z. Zilic, "Reconfigurable Clock Distribution Circuitry," Proceedings of
the 2007 IEEE International Symposium on Circuits and Systems (ISCAS 2007), 877-880.

[12] I. S. Kourtev, and E. G. Friedman, "Timing optimization through clock skew scheduling,"
Kluwer Academic Publishers, 2000.

[13] J. M. Rabaey, "Digital integrated circuits," Prentice Hall Inc., 1996.

[14] E.G. Friedman, “Clock distribution networks in synchronous digital integrated circuits,”
Proceedings of the IEEE, vol. 89, issue 5 (May 2001), 665-692.

[15] E. Buterbaugh, "Perfect Timing," Cypress Semiconductor Corp., 2002.

[16] C. Yeh, G. Wilke, H. Chen, S. Reddy, H. Nguyen, T. Miyoshi, W. Walker, and R. Murgai,
"Clock distribution architectures: a comparative study," Proceedings of the 7th IEEE
International Symposium on Quality Electronic Design (ISQED 2006), 7.

[17] Maxim Integrated Products, “Application Note 1916: An Introduction to Jitter in
Communications Systems,” http://www.maxim-ic.com/appnotes.cfm/an_pk/1916.

[18] V. Bhargava, N. Haider, and N. Sarpotdar, “IO Clock Network Skew & Performance Analysis:
A Pentium-D Case Study,” Proceedings of the IEEE 2006 Custom Integrated Circuits
Conference (CICC 2006), 345-348.

[19] D. Matzke, "Will Physical Scalability Sabotage Performance Gains?" Computer, 30, 9 (Sept.
1997), 37-39.

[20] G. Tosik, F. Abramowicz, Z. Lisik, and F. Gaffiot, “Clock Skew Analysis in Optical Clock
Distribution Network,” Proceedings of the 2007 International Conference on CAD Systems in
Microelectronics (CADSM 2007), 422-425.

 - 220 -

List of references

[21] N. Nedovic, and V. G. Oklobdzija, “Dual-edge triggered storage elements and clocking
strategy for low-power systems,” IEEE Transactions on VLSI Systems, 13, 5 (May 2005),
577-590.

[22] M. A. El-Moursy, and E. G. Friedman, “Exponentially tapered H-tree clock distribution
networks,” IEEE Transactions on VLSI Systems, 13, 8 (Aug. 2005), 971-975.

[23] M. Omana, D. Rossi and C. Metra, “Fast and low-cost clock deskew buffer,” Proceedings of
the 2004 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT 2004), 202-210.

[24] V. Varghese, T. Chen and P. Young, “Stability analysis of active clock deskewing systems
using a control theoretic approach,” Proceedings of the 2005 American Control Conference
(ACC 2005), 3, 1758-1763.

[25] M. A. Karami, A. Afzali-Kusha, R. Faraji-Dana, and M. Rostami, “Quantitative Comparison of
Optical and Electrical H, X, and Y clock Distribution Networks,” Proceedings of the 2007 IEEE
Computer Society Symposium on VLSI (ISVLSI 2007), 488-489.

[26] A. Iyer, and D. Marculescu, "Power efficiency of voltage scaling in multiple clock multiple
voltage cores," Proceedings of the 2002 IEEE/ACM International Conference on Computer
Aided Design (ICCAD 2002), 379-386.

[27] S. Abe, M. Hashimoto, and T. Onoye, “Clock Skew Evaluation Considering Manufacturing
Variability in Mesh-Style Clock Distribution,” Proceedings of the 9th IEEE International
Symposium on Quality Electronic Design (ISQED 2008), 520-525.

[28] A. J. Drake, K. J. Nowka, T. Y. Nguyen, J. L. Burns, and R. B. Brown, “Resonant clocking
using distributed parasitic capacitance,” IEEE Journal of Solid-State Circuits, 39, 9 (Sept.
2004), 1520-1528.

[29] Jang-Ying Chueh, M. C. Papaefthymiou, and C. H. Ziesler, “Two-phase resonant clock
distribution,” Proceedings of the 2005 IEEE Computer Society Symposium on VLSI (ISVLSI
2005), 65-70.

[30] B. Mesgarzadeh, M. Hansson, and A. Alvandpour, “Jitter Characteristic in Charge Recovery
Resonant Clock Distribution,” IEEE Journal of Solid-State Circuits, 42, 7 (July 2007), 1618-
1625.

[31] B. Mesgarzadeh, M. Hansson, and A. Alvandpour, “Low-power bufferless resonant clock
distribution networks,” Proceedings of the 50th IEEE Midwest Symposium on Circuits and
Systems (MWSCAS 2007), 960-963.

 - 221 -

[32] Cyclos Semiconductor Inc., Elizabeth Resonant-Clocked ARM926EJ-S (Information
brochure), http://www.cyclos-semi.com/NewFiles/ElizLitFront.pdf, 2008.

[33] V. S. Sathe, J. C. Kao, and M. C. Papaefthymiou, “Resonant-Clock Latch-Based Design,”
IEEE Journal of Solid-State Circuits, 43, 4 (Apr. 2008), 864-873.

[34] M. Hansson, B. Mesgarzadeh, and A. Alvandpour, “1.56 GHz On-chip Resonant Clocking in
130nm CMOS,” Proceedings of the IEEE 2006 Custom Integrated Circuits Conference (CICC
2006), 241-244.

[35] Zheng Xu, and K. L. Shepard, “Low-Jitter Active Deskewing Through Injection-Locked
Resonant Clocking,” Proceedings of the IEEE 2007 Custom Integrated Circuits Conference
(CICC 2007). 9-12.

[36] S. C. Chan, K. L. Shepard, and P. J. Restle, "Design of resonant global clock distributions,"
Proceedings of the 21st International Conference on Computer Design (ICCD 2003), 248-
253.

[37] V. H. Cordero, and S. P. Khatri, “Clock Distribution Scheme using Coplanar Transmission
Lines,” Proceedings of the 2008 Design, Automation and Test in Europe Conference (DATE
2008), 985-990.

[38] G. Venkataraman, Jiang Hu, and F. Liu, “Integrated Placement and Skew Optimization for
Rotary Clocking,” IEEE Transactions on VLSI Systems, 15, 2 (Feb. 2007), 149-158.

[39] Z. Yu, and X. Liu, “Low-Power Rotary Clock Array Design,” IEEE Transactions on VLSI
Systems, 15, 1 (Jan. 2007), 5-12

[40] E. Ogunti, M. Frank, and S. Y. Foo, “Power analysis of resonant clocks,” Proceedings of the
2008 International Conference on Computer and Communications Engineering (ICCCE
2008), 336-340.

[41] Wood, J., Lipa, S., Franzon, P., and Steer, M. "Multi-gigahertz low-power low-skew rotary
clock scheme," Digest of Technical Papers of the 2001 IEEE International Solid-State Circuits
Conference (ISSCC 2001), 400-401, 470.

[42] A. L. Sobczyk, A. W. Luczyk, and W. A. Pleskacz, “Power Dissipation in Basic Global Clock
Distribution Networks,” Proceedings of the 10th IEEE Workshop on Design and Diagnostics
of Electronic Circuits and Systems (DDECS 2007), 1-4.

[43] G. Tosik, L. M. S. Gallego, and Z. Lisik, “Different Approaches for Clock Skew Analysis in
Present and Future Synchronous IC's,” Proceedings of the IEEE 2007 Region 8 Eurocon
(EUROCON 2007), 1227-1232.

 - 222 -

List of references

[44] W.-C. D Lam, J. Jam, C.-K. Koh, V. Balakrishnan, and Y. Chen, “Statistical based link
insertion for robust clock network design,” Proceedings of the 2005 IEEE/ACM International
Conference on Computer Aided Design (ICCAD 2005), 588-591.

[45] R. Saeidi, and N. Masoumi, “Clock Skew Reduction by Link-region Technique,” Proceedings
of the 49th IEEE Midwest Symposium on Circuits and Systems (MWSCAS 2006). 213-216.

[46] G. Venkataraman, N. Jayakumar, J. Hu, P. Li, S. Khatri; A. Rajaram; P. McGuinness, and C.
Alpert, “Practical techniques to reduce skew and its variations in buffered clock networks,”
Proceedings of the 2005 IEEE/ACM International Conference on Computer Aided Design
(ICCAD 2005), 592-596.

[47] M. Mori, Hongyu Chen; B. Yao, and Chung-Kuan Cheng, “A mulitple level network approach
for clock skew minimization with process variations,” Proceedings of the 2004 Asia and South
Pacific Design Automated Conference (ASP-DAC 2004), 263-268.

[48] W.D. Grover, J. Brown, T. Friesen and S. Marsh, “All-digital multipoint adaptive delay
compensation circuit for low skew clock distribution,” Electronics Letters, vol. 31, issue 23 (9
Nov. 1995), 1996-1998.

[49] T. Knight, and H. M. Wu, "A method for skew-free distribution of digital signals using matched
variable delay lines," Digest of Technical Papers from the 1993 Symposium on VLSI Circuits
(ISVLSI 1993), 19-20.

[50] V. Prodanov, and M. Banu, “GHz Serial Passive Clock Distribution in VLSI Using Bidirectional
Signaling,” Proceedings of the IEEE 2006 Custom Integrated Circuits Conference (CICC
2006), 285-288.

[51] J. Lamoureux, S. J. E. Wilton, “Clock-Aware Placement for FPGAs,” Proceedings of the 2007
International Conference on Field Programmable Logic and Applications (FPL 2007), 124-
131.

[52] Altera Inc., Stratix IV Handbook, http://www.altera.com/literature/hb/stratix-iv/
stratix4_handbook.pdf, 2008.

[53] G. Venkataraman, C. N. Sze, and Hu Jiang, "Skew scheduling and clock routing for improved
tolerance to process variations," Proceedings of the 2005 Asia and South Pacific Design
Automation Conference (ASP-DAC 2005), 1, 594-599.

[54] M. J. M Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS
transistors” IEEE Journal of Solid-State Circuits, 24, 5 (Oct 1989), 1433-1439.

 - 223 -

[55] A. Maxim, and M. Gheorghe, “A novel physical based model of deep-submicron CMOS
transistors mismatch for Monte Carlo SPICE simulation,” Proceedings of the 2001 IEEE
International Symposium on Circuits and Systems (ISCAS 2001), 5, 511-514.

[56] A. Narasimhan, and R. Sridhar, “Impact of Variability on Clock Skew in H-tree Clock
Networks,” Proceedings of the 8th IEEE International Symposium on Quality Electronic
Design (ISQED 2007), 458-466.

[57] M. Nekili, Y. Savaria, and G. Bois, "Minimizing process-induced skew using delay tuning,"
Proceedings of the 2001 IEEE International Symposium on Circuits and Systems (ISCAS
2001), 4, 426-429.

[58] S. A. Tawfik, and V. Kursun, “Low-Power Low-Voltage Hot-Spot Tolerant Clocking with
Suppressed Skew,” Proceedings of the 2007 IEEE International Symposium on Circuits and
Systems (ISCAS 2007), 645-648.

[59] D. P. Dimitrov, “Deep-Submicron MOS Transistor Matching: A Case Study,” Proceedings of
the 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems
(DDECS 2008), 1-4.

[60] Long Jieyi, Ku Ja Chun, S. O. Memik, and Y. Ismail, "A self-adjusting clock tree architecture
to cope with temperature variations," Proceedings of the 2007 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD 2007). 75-82.

[61] K. Duraisami, P. Sithambaram, A. Sathanur, A. Macii, E. Macii, and M. Poncino, "Design
Exploration of a Thermal Management Unit for Dynamic Control of Temperature-Induced
Clock Skew," Proceedings of the 2007 IEEE International Symposium on Circuits and
Systems (ISCAS 2007), 1061-1064.

[62] G. Geannopoulos, and X. Dai, “An adaptive digital deskewing circuit for clock distribution
networks,” Digest of Technical Papers of the 1998 IEEE International Solid-State Circuits
Conference (ISSCC 1998), 400-401.

[63] S. Hassoun, and C. J. Alpert, "Optimal path routing in single- and multiple-clock domain
systems," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22, 11 (Nov. 2003), 1580-1588.

[64] M. Saint-Laurent, M. Swaminathan and J.D. Meindl, “On the micro-architectural impact of
clock distribution using multiple PLLs,” Proceedings of the 2001 IEEE International
Conference on Computer Design (ICCD 2001), 214-220.

 - 224 -

List of references

[65] T. Yamashita, T. Fujimoto, and K. Ishibashi, “A dynamic clock skew compensation circuit
technique for low power clock distribution.” Proceedings of the 2005 IEEE International
Conference on Integrated Circuit Design and Technology (ICICDT 2005), 7-10.

[66] A. Kapoor, N. Jayakumar and S. P. Khatri, “A novel clock distribution and dynamic de-
skewing methodology,” Proceedings of the 2004 IEEE/ACM International Conference on
Computer Aided Design (ICCAD 2004), 626-631.

[67] H. Lee, H. Q. Nguyen and D.W. Potter, “Design self-synchronized clock distribution networks
in an SoC ASIC using DLL with remote clock feedback,” Proceedings of the 13th IEEE
International ASIC/SOC Conference (ASICSOC 2000), 248-252.

[68] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, Ji Zhang and I. Young, “Clock generation and
distribution for the first IA-64 microprocessor,” IEEE Journal of Solid-State Circuits, 35, 11
(Nov. 2000), 1545-1552.

[69] D. Duarte, N. Vijaykrishnan, M. J. Irwin, H.-S. Kim, and G. McFarland, "Impact of scaling on
the effectiveness of dynamic power reduction schemes," Proceedings of the 2002 IEEE
International Conference on Computer Design (ICCD 2002), 382-387.

[70] Liu Zhiyu, and V. Kursun, "Temperature dependent leakage power characteristics of dynamic
circuits in sub-65 nm CMOS technologies," Proceedings of the 48th Midwest Symposium on
Circuits and Systems (MWSCAS 2005), 1, 551-554.

[71] R. Tessier, "Power Reductions Techniques for FPGAs," University of Massachusetts
Amherst, http://www.ecs.umass.edu/ece/tessier/courses/697ff/lect22-ece697f.ppt, 2006.

[72] P. Zarkesh-Ha, and J. D. Meindl, "Optimum chip clock distribution networks," Proceedings of
the 1999 IEEE International Conference Interconnect Technology (ICIT 1999), 18-20.

[73] K. Masselos, "Low Power Design," Imperial College London, http://cas.ee.ic.ac.uk/people/
kostas/web%20page%20material/Lecture%208%20-%20Low%20power%20design.pdf,
2005.

[74] M. Horowitz, E. Alon, D. Patil, S. Naffziger, K. Rajesh, and K. Bernstein, "Scaling, power, and
the future of CMOS," Technical Digest of 2005 IEEE International Electron Devices Meeting
(IEDM 2005), 2005. 7.

[75] R. L. Aguiar and D. M. Santos, “Wide-area clock distribution using controlled delay lines,”
Proceedings of the 5th IEEE International Conference on Electronics, Circuits & Systems
(ICECS 1998), 2, 63-66.

 - 225 -

[76] D.E. Brueske and S.H.K. Embabi, “A dynamic clock synchronization technique for large
systems,” IEEE Transactions on Components, Packaging, and Manufacturing Technology,
Part B: Advanced Packaging, 17, 3 (Aug. 1994), 350-361.

[77] S. Zanella, A. Nardi, A. Neviani, M. Quarantelli, S. Saxena and C. Guardiani, “Analysis of the
impact of process variations on clock skew,” IEEE Transactions on Semiconductor
Manufacturing, vol. 13, issue 4 (Nov. 2000), 401-407.

[78] S. Zanella, A. Nardi, M. Quarantelli, A. Neviani, and C. Guardiani, "Analysis of the impact of
intra-die variance on clock skew," Proceedings of the 4th International Workshop on
Statistical Metrology (IWSM 1999), 14-17.

[79] C.-Y. Yang and S.-I Liu. “A one-wire approach for skew-compensating clock distribution
based on bidirectional techniques,” IEEE Journal of Solid-State Circuits, vol. 36, issue 2 (Feb.
2001), 266-272.

[80] M. M. Gourary, S. G. Rusakov, S. L. Ulyanov, M. M. Zharov, K. K. Gullapalli and B. J.
Mulvaney, "Approximation approach for timing jitter characterization in circuit simulators,"
Proceedings of the 2003 Design, Automation and Test in Europe Conference (DATE 2003),
156-161.

[81] D. Garrett, M. Stan, and A. Dean, "Challenges in clockgating for a low power ASIC
methodology," Proceedings of the 1999 International Symposium on Low Power Electronics
and Design (ISLPED 1999), 176-181.

[82] Wang Qi, and S. Roy, "Power minimization by clock root gating," Proceedings of the. 2003
Asia and South Pacific Design Automation Conference (ASP-DAC 2003), 249-254.

[83] A. Chattopadhyay, and Z. Zilic, “GALDS: a complete framework for designing multiclock
ASICs and SoCs,” IEEE Transactions on VLSI, 13, 6 (June 2005), 641–654.

[84] Harris, D., and Naffziger, S. Statistical clock skew modeling with data delay variations. IEEE
Transactions on VLSI Systems, 9, 6 (Dec. 2001), 888-898.

[85] V. Agarwal, J. Sun, A. Mitev, and J. Wang, "Delay Uncertainty Reduction by Interconnect and
Gate Splitting," Proceedings of the 2007 Asia and South Pacific Design Automated
Conference (ASP-DAC 2007), 690-695.

[86] I. Chanodia and D. Velenis, “Effects of parameter variations and crosstalk on H-tree clock
distribution networks,” Proceedings of the 48th IEEE Midwest Symposium on Circuits and
Systems (MWSCAS 2005), 547- 550.

 - 226 -

List of references

[87] S. A. Bota, J. L. Rossello, C. de Benito, A. Keshavarzi, and J. Segura, “Impact of Thermal
Gradients on Clock Skew and Testing,” IEEE Design & Test of Computers, 23, 5 (May 2006),
412-424.

[88] M. J. Figueiredo, and R. L. Aguiar, “Noise and Jitter in CMOS Digitally Controlled Delay
Lines,” Proceedings of the 13th IEEE International Conference on Electronics, Circuits &
Systems (ICECS 2006), 1356-1359.

[89] P. Heydari, "Characterizing the effects of the PLL jitter due to substrate noise in discrete-time
delta-sigma modulators," IEEE Transactions on Circuits and Systems I, 52, 6 (June 2005),
1073-1085.

[90] Jang Jinwook, O. Franza, and W. Burleson, "Period Jitter Estimation in Global Clock Trees,"
Proceedings of the 12th IEEE Workshop on Signal Propagation on Interconnects (SPI 2008),
1-4.

[91] J. Rosenfeld, and E. G. Friedman, "Design methodology for global resonant H-tree clock
distribution networks," Proceedings of the 2006 IEEE International Symposium on Circuits
and Systems (ISCAS 2006), 4.

[92] F. Liu, “A General Framework for Spatial Correlation Modeling in VLSI Design,” Proc. of DAC
2007, 817-822.

[93] B. Linares-Barranco, and T. Serrano-Gotarredona, “A Physical Interpretation of the Distance
Term in Pelgrom's Mismatch Model results in very Efficient CAD,” Proceedings of the 2007
IEEE International Symposium on Circuits and Systems (ISCAS 2007), 1561-1564.

[94] S. J. Lovett, M. Welten, A. Mathewson, and B. Mason, “Optimizing MOS transistor
mismatch,” IEEE Journal of Solid-State Circuits, 33, 1 (Jan. 1998), 147-150.

[95] B. Linares-Barranco, and T. Serrano-Gotarredona, “Cheap and easy systematic CMOS
transistor mismatch characterization,” Proceedings of the 1998 IEEE International
Symposium on Circuits and Systems (ISCAS 1998), 2, 466-469.

[96] Doyle, B., Mahoney, P., Fetzer, E., and Naffziger, S. Clock distribution on a dual-core, multi-
threaded Itanium family microprocessor. Proceedings of the 2005 International Conference
on Integrated Circuit Design and Technology (ICICDT 2005), 1-6.

[97] Omana, M., Rossi, D., and Metra, C. Low cost scheme for on-line clock skew compensation.
Proceedings of the 2005 IEEE VLSI Test Symposium (VTS 2005), 90-95.

 - 227 -

[98] Hong-Yean Hsieh, Wentai Liu, M. Clements and P. Franzon, “Self-calibrating clock
distribution with scheduled skews,” Proceedings of the 1998 IEEE International Symposium
on Circuits and Systems (ISCAS 1998), 470-473.

[99] R. Watn, T. Njolstad, F. Berntsen, and J. F Lonnum, "Independent clocks for peripheral
modules in system-on-chip design," Proceedings of the 2003 IEEE International SOC
Conference (SOC 2003), 25-28.

[100] S. Sivaswamy, and K. Bazargan, “Statistical Generic and Chip-Specific Skew Assignment for
Improving Timing Yield of FPGAs,” Proceedings of the 2007 International Conference on
Field Programmable Logic and Applications (FPL 2007). 429-434.

[101] D. Harris and S. Naffziger, “Statistical clock skew modeling with data delay variations,” IEEE
Transactions on VLSI, 9, 6 (Dec. 2001), 888-898.

[102] R. Darapu, C. W. Zhang and L. Forbes, “Analysis of Jitter in Clock Distrbution Networks,”
Proceedings of the 2004 IEEE Workshop on Microelectronics and Electron Devices (WMED
2004), 45-47.

[103] A. Attarha and M. Nourani, “Testing interconnects for noise and skew in gigahertz SoCs”,
Proceedings of the 2001 IEEE International Test Conference (ITC 2001), 305-14.

[104] A. Maxim, “A 0.16-2.55-GHz CMOS active clock deskewing PLL using analog phase
interpolation,” IEEE Journal of Solid-State Circuits, 40, 1 (Jan. 2005), 110-131.

[105] K.-H. Cheng, C.-L. Wu, Y.-L. Lo, and C.-W. Su, “A phase-detect synchronous mirror delay for
clock skew-compensation circuits,” Proceedings of the 2005 IEEE International Symposium
on Circuits and Systems (ISCAS 2005), vol. 2. 1070-1073.

[106] C.-S. Hwang, W.-C. Chung, C.-Y. Wang, H.-W. Tsao, and S.-I. Liu, “A 2 V clock synchronizer
using digital delay-locked loop,” Proceedings of the 2000 IEEE Asia-Pacific Conference on
ASIC (AP-ASIC 2000), 91-94.

[107] M. Saint-Laurent, and M. Swaminathan, “A multi-PLL clock distribution architecture for
gigascale integration,” Proceedings of the 2001 IEEE Computer Society Workshop on VLSI
(IWVLSI 2001), 30-35.

[108] Wikipedia.org, " Functional verification," http://en.wikipedia.org/wiki/Functional_verification.

[109] K. A. Jenkins, K. L. Shepard, and Z. Xu, "On-Chip Circuit for Measuring Period Jitter and
Skew of Clock Distribution Networks," Proceedings of the 2007 IEEE Custom Integrated
Circuits Conference (CICC 2007), 157-160.

 - 228 -

List of references

[110] V. Gutnik, and A. P. Chandrakasan, “Active GHz clock network using distributed PLLs,” IEEE
Journal of Solid-State Circuits, 35, 11 (Nov. 2000), 1553-1560.

[111] S.-D. Mai, H.-W. Lune, R.-C. Hsu and C. Su, “An autonomous multiple module clock
synchronization methodology for SoC,” Proceedings of the 2003 International Systems-on-
Chip Conference (SOCC 2003), 39-42.

[112] Y.-M. Wang, and J.-S. Wang, “A low-power half-delay-line fast skew-compensation circuit,”
IEEE Journal of Solid-State Circuits, 39, 6 (June 2004), 906-918.

[113] Y. Elboim, A. Kolodny, and R. Ginosar, “A clock-tuning circuit for system-on-chip,” IEEE
Transactions on VLSI, 11, 4 (Aug. 2003), 616-626.

[114] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, "Statistical timing analysis driven post-silicon-tunable
clock-tree synthesis," Proceedings of the 2005 IEEE/ACM International Conference on
Computer Aided Design (ICCAD 2005), 575-581.

[115] V. Khandelwal, and A. Srivastava, "Variability-driven formulation for simultaneous gate sizing
and post-silicon tunability allocation," Proceedings of 6th Internationsal Symposium on
Parallel and Distributed Computing (ISPD 2007), 11-18.

[116] T. J. Yamaguchi, M. Soma, J. P. Nissen, D.E. Halter, R. Raina, and M. Ishida, “Skew
measurements in clock distribution circuits using an analytic signal method,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, 7 (July
2004), 997-1009.

[117] M. Nekili, Y. Savaria, and G. Bois, "Design of clock distribution networks in presence of
process variations," Proceedings of the 8th Great Lakes Symposium on VLSI (GLSVLSI
1998), 95-102.

[118] Park Joonbae, Koo Yido, and Kim Wonchan, "A semi-digital delay locked loop for clock skew
minimization," Proceedings of the 12th International Conference on VLSI Design (VLSI 1999),
584-588.

[119] J. Jansson, A. Mantyniemi,and J. Kostamovaara, "A delay line based CMOS time digitizer IC
with 13 ps single-shot precision," Proceedings of the 2005 IEEE International Symposium on
Circuits and Systems (ISCAS 2005), vol. 5, V-4269-4272.

[120] A. H. Atrash, and B. Butka, "A technique to deskew differential PCB traces," Proceedings of
the 2004 IEEE International Symposium on Circuits and Systems (ISCAS 2004), 2, II-565-
568.

 - 229 -

 - 230 -

[121] P. Raha, S. Randall, R. Jennings, B. Helmick, A. Amerasekera, and B. Haroun, "A robust
digital delay line architecture in a 0.13 /spl mu/m CMOS technology node for reduced design
and process sensitivities," Proceedings of the 3rd IEEE International Symposium on Quality
Electronic Design (ISQED 2002), 148-153.

[122] Jun Zhou, D. J. Kinniment, C. E. Dike, G. Russell, and A. V. Yakovlev, "On-Chip
Measurement of Deep Metastability in Synchronizers," IEEE Journal of Solid-State Circuits,
43, 2 (Feb. 2008), 550-557.

[123] M. Renaud, and Y. Savaria, “A linear phase detector for arbitrary clock signals,” Proceedings
of the 2002 IEEE International Symposium on Circuits and Systems (ISCAS 2002), IV-775-
778.

[124] J. Savoj, and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate
linear phase detector,” IEEE Journal of Solid-State Circuits, 36, 5 (May 2001), 761-768.

[125] S. Soliman, F. Yuan, and K. Raahemifar, “An overview of design techniques for CMOS phase
detectors,” Proceedings of the 2002 IEEE International Symposium on Circuits and Systems
(ISCAS 2002), 5, V-457-460.

[126] R. B. Watson Jr., and R. B. Iknaian, "Clock buffer chip with multiple target automatic skew
compensation," IEEE Journal of Solid-State Circuits, 30, 11 (Nov. 1995), 1267-1276.

	Abstract
	Abrégé
	Acknowledgements
	Table of figures
	Table of tables
	Chapter 1:
	Introduction
	1.1. Problem description
	1.2. Thesis objectives
	1.3. Statement of original contributions
	1.3.1. Single clock averaging network
	1.3.2. Multiple clock reconfigurable clock network
	1.3.3. On-chip clock skew detection circuitry
	1.3.4. Custom circuitry

	1.4. Thesis organization
	Chapter 2:
	Background
	2.1. Introduction
	2.2. Clock characteristics
	2.3. Clock uncertainty
	2.4. Clock networks
	2.4.1. Symmetric clock tree
	2.4.2. Asymmetric buffered clock trees
	2.4.3. Clock mesh
	2.4.4. Resonant clocking
	2.4.5. Standing and traveling wave network
	2.4.6. Hybrid structures
	2.4.7. Serial clock distributions
	2.4.8. Reconfigurable clocks networks

	2.5. Skew compensation
	2.6. Clock power
	Chapter 3:
	A dual reference signal averaging single
	clock distribution network
	3.1. Introduction
	3.2. Implementation approach
	3.2.1. Synchronization
	3.2.2. Calibration
	3.2.3. Operation

	3.3. Wire length savings
	3.4. Architecture variants
	3.4.1. Architecture with 2n delay lines
	3.4.2. Architecture with n+1 delay lines
	3.4.3. Architecture with n delay lines
	3.4.4. Hotspot tolerant architecture

	3.5 Clock jitter and skew.
	3.5.1. Jitter sources
	3.5.2. Skew
	3.5.3. Temperature variation
	3.5.4. Dynamic operation

	3.6. Controller requirements
	3.6.1 Synchronization time

	3.7. Simulation results
	3.8. Conclusion
	Chapter 4:
	Skew-tolerant reconfigurable clock networks
	based on averaging
	4.1. Introduction
	4.2. Multiple clock architectures
	4.2.1 Static clock network with multiple clocks
	4.2.2 Locally-reconfigurable clock network
	4.2.3. Globally-reconfigurable clock network

	4.3. Versatility of a programmable multiple clock mesh network
	4.4. Controller requirements
	4.5. Single clock fixed methodology
	4.6. Reconfigurable methodology
	4.7. Simulation results
	4.8. Conclusion
	Chapter 5:
	A built-in system for online clock skew
	debug and correction
	5.1. Introduction
	5.2. Background
	5.3. System architecture
	5.4. Operating characteristics
	5.5. Conclusion
	Chapter 6:
	System-level modelling
	6.1. Introduction
	6.2. Implementation approach
	6.3. Configuration memory requirements
	6.4 Synchronization controllers
	6.4.1 Single clock domain controller
	6.4.2 Reconfigurable clock domain controller
	6.4.3 Built-in clock skew system controller

	6.5 System models
	6.5.1. Single clock model
	6.5.2. Reconfigurable clock network model
	6.5.3. BICSS model

	6.6 Operating behaviour of the systems
	6.6.1 Single clock domain system
	6.6.2. Reconfigurable clock domain system
	6.6.3. Built-in clock skew system

	6.6 Conclusion
	Chapter 7:
	Core circuit components
	7.1. Introduction
	7.2. Delay lines
	7.2.1 Coarse grain delay lines
	7.2.2 Fine grain delay lines
	7.2.3 Performance

	7.3. Clock switches
	7.4. Phase detectors
	7.4.1 Fixed tolerance phase detector
	7.4.2 Variable-tolerance phase detector
	7.4.3 Modified phase detector for shared delay line implementations

	Chapter 8:
	Conclusions and future work
	8.1. Summary
	8.1.1. Single clock averaging network
	8.1.2. Reconfigurable multiple clock averaging network
	8.1.3. Built-in clock skew system
	8.1.4. Circuit implementations

	8.2. Future work
	8.2.1. On-chip clock networks
	8.2.2. Automate system implementation
	8.2.3. Alternative applications

	Appendix A:
	System-wide simulations
	Appendix B:
	Selected circuit drawings with
	transistor sizes
	List of references

